
8.333: Statistical Mechanics I Problem Set # 6 Solutions Fall 2003

The Microcanonical Approach

1. Classical Harmonic Oscillators:

(a) The volume of accessible phase space for a given total energy is proportional to

Ω =
1

hN

∫

H=E

dq1dq2 · · ·dqNdp1dp2 · · ·dpN ,

where the integration is carried out under the condition of constant energy,

E = H ({qi, pi}) =
N
∑

i=1

[

p2
i

2m
+

mω2q2
i

2

]

.

Note that Planck’s constant h, is included as a measure of phase space volume, so as to

make the final result dimensionless.

The surface of constant energy is an ellipsoid in 2N dimensions, whose area is difficult

to calculate. However, for N → ∞ the difference between volume and area is subleading in

N , and we shall instead calculate the volume of the ellipsoid, replacing the constraint H =

E by H ≤ E. The ellipsoid can be distorted into a sphere by a canonical transformation,

changing coordinates to

q′i ≡
√

mωqi, and p′i ≡
pi√
mω

.

The Hamiltonian in this coordinate system is

E = H ({q′i, p′i}) =
ω

2

N
∑

i=1

(

p′2i + q′2i
)

.

Since the canonical transformation preserves volume in phase space (the Jacobian is unity),

we have

Ω ≈ 1

hN

∫

H≤E

dq′1 · · ·dq′Ndp′1 · · ·dp′N ,

where the integral is now over the 2N -dimensional (hyper-) sphere of radius R =
√

2E/ω.

As the volume of a d-dimensional sphere of radius R is SdR
d/d, we obtain

Ω ≈ 2πN

(N − 1)!
· 1

2N

(

2E

hω

)N

=

(

2πE

hω

)N
1

N !
.
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The entropy is now given by

S ≡ kB ln Ω ≈ NkB ln

(

2πeE

Nhω

)

.

(b) From the expression for temperature,

1

T
≡ ∂S

∂E

∣

∣

∣

∣

N

≈ NkB

E
,

we obtain the energy

E = NkBT,

and the heat capacity

C = NkB.

(c) The single particle distribution function is calculated by summing over the undesired

coordinates and momenta of the other N − 1 particles. Keeping track of the units of h

used to make phase space dimensionless, gives

p(p1, q1)dp1dq1 =

∫

(H≤EN−1)
1

hN−1 dq2 · · ·dqNdp2 · · ·dpN
∫

(H≤E)
1

hN dq1dq2 · · ·dqNdp1dp2 · · ·dpN

× dp1dq1

h
,

where EN−1 = E − p2
1/2m − mω2q2

1/2. Using the results from part (a),

p(p1, q1) =
Ω (N − 1, EN−1)

hΩ(N, E)

=

(

2
hω

)N−1 πN−1

(N−1)!

(

E − p2

1

2m
− mω2

2
q2
1

)N−1

h
(

2
hω

)N πN

N ! E
N

=
ω

2π

N

E

(

1 −
p2

1

2m
+ mω2

2
q2
1

E

)N−1

.

Using the approximation (N − 1) ∼ N , for N � 1, and setting E = NkBT , we have

p(p1, q1) =
ω

2π

N

NkBT

(

1 −
p2

1

2m + mω2

2 q2
1

NkBT

)N

≈ ω

2πkBT
exp

(

−
p2

1

2m + mω2

2 q2
1

kBT

)

.
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Let us denote (p1, q1) by (p, q), then

p(p, q) =
ω

2πkBT
exp

(

− p2

2mkBT
− mω2q2

2kBT

)

,

is a properly normalized product of two Gaussians. The mean kinetic energy is

〈

p2

2m

〉

=

∫

p(p, q)
p2

2m
dqdp =

kBT

2
,

while the mean potential energy is also

〈

mω2q2

2

〉

=

∫

p(p, q)
mω2q2

2
dqdp =

kBT

2
.

********

2. Quantum Harmonic Oscillators:

(a) The total energy of the set of oscillators is

E = h̄ω

(

N
∑

i=1

ni +
N

2

)

.

Let us set the sum over the individual quantum numbers to

M ≡
N
∑

i=1

ni =
E

h̄ω
− N

2
.

The number of configurations {ni} for a given energy (thus for a given value of M) is

equal to the possible number of ways of distributing M energy units into N slots, or of

partitioning M particles using N − 1 walls. This argument gives to the number of states

as

Ω =
(M + N − 1)!

M ! (N − 1)!
,

and a corresponding entropy

S = kB ln Ω ≈ kB

[

(M + N − 1) ln

(

M + N − 1

e

)

− M ln
M

e
− (N − 1) ln

(

N − 1

e

)]

.

(b) The temperature is calculated by

1

T
≡ ∂S

∂E

∣

∣

∣

∣

N

≈ kB

h̄ω
ln

(

M + N − 1

M

)

=
kB

h̄ω
ln

(

E
h̄ω + N

2 − 1
E
h̄ω

− N
2

)

≈ kB

h̄ω
ln

(

E + N
2 h̄ω

E − N
2

h̄ω

)

.
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By inverting this equation, we get the energy

E =
N

2
h̄ω

exp (h̄ω/kBT ) + 1

exp (h̄ω/kBT ) − 1
= Nh̄ω

[

1

2
+

1

exp (h̄ω/kBT ) − 1

]

,

and a corresponding heat capacity

C ≡ ∂E

∂T

∣

∣

∣

∣

N

= NkB

(

h̄ω

kBT

)2
exp (h̄ω/kBT )

[exp (h̄ω/kBT ) − 1]
2 .

(c) The probability that a particular oscillator is in its nth quantum level is given by

summing the joint probability over states for all the other oscillators, i.e.

p(n) =
∑

{ni6=1}

p(ni) =

∑

(E−(n+1/2)h̄ω) 1
∑

(E) 1
=

Ω
(

N − 1, E − (n + 1
2 )h̄ω

)

Ω(N, E)

=
[(M − n) + N − 2]!

(M − n)! · (N − 2)!
· M ! · (N − 1)!

(M + N − 1)!

≈ M(M − 1) · · · (M − n + 1) · N
(M + N − 1)(M + N − 2) · · · (M + N − n − 1)

≈ N(M + N)−n−1Mn,

where the approximations used are of the from (I − 1) ≈ I, for I � 1. Hence,

p(n) = N

(

E

h̄ω
− N

2
+ N

)−n−1 (
E

h̄ω
− N

2

)n

=
N

E
h̄ω + N

2

(

E
h̄ω − N

2
E
h̄ω + N

2

)n

,

which using

1

T
=

kB

h̄ω
ln

(

E + Nh̄ω
2

E − Nh̄ω
2

)

, =⇒
(

E
h̄ω + N

2
E
h̄ω − N

2

)n

= exp

(

−nh̄ω

kBT

)

,

leads to the probability

p(n) = exp

(

−n
h̄ω

kBT

)[

1 − exp

(

− h̄ω

kBT

)]

.

(d) As found in part (b),

Cquantum = NkB

(

h̄ω

kBT

)2 exp
(

h̄ω
kBT

)

[

exp
(

h̄ω
kBT

)

− 1
]2 .
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In the high temperature limit, h̄ω/(kBT ) � 1, using the approximation ex ≈ 1 + x for

x � 1, gives

Cquantum = NkB = Cclassical.

At low temperatures, the quantized nature of the energy levels of the quantum oscillators

becomes noticeable. In the limit T → 0, there is an energy gap between the ground state

and the first excited state. This results in a heat capacity that goes to zero exponentially,

as can be seen from the limit h̄ω/(kBT ) � 1,

Cquantum = NkB

(

h̄ω

kBT

)2

exp

(

− h̄ω

kBT

)

.

********

3. Hard Sphere Gas:

(a) The available phase space for N identical particles is given by

Ω =
1

N !h3N

∫

H=E

d3~q1 · · ·d3~qNd3~p1 · · ·d3~pN ,

where the integration is carried out under the condition,

E = H(~qi, ~pi) =
N
∑

i=1

p2
i

2m
, or

N
∑

i=1

p2
i = 2mE.

The momentum integrals are now performed as in an ideal gas, yielding

Ω =
(2mE)3N/2−1

N !h3N
· 2π3N

(

3N
2 − 1

)

!
·
∫

d3~q1 · · ·d3~qN .

The joint integral over the spacial coordinates with excluded volume constraints is best

performed by introducing particles one at a time. The first particle can explore a volume

V , the second V − ω, the third V − 2ω, etc., resulting in

∫

d3~q1 · · ·d3~qN = V (V − ω)(V − 2ω) · · · (V − (N − 1)ω).

Using the approximation (V − aω)(V − (N − a)ω) ≈ (V − Nω/2)2, we obtain

∫

d3~q1 · · ·d3~qN ≈
(

V − Nω

2

)N

.
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Thus the entropy of the system is

S = kB ln Ω ≈ NkB ln

[

e

N

(

V − Nω

2

)(

4πmEe

3Nh2

)3/2
]

.

(b) We can obtain the equation of state by calculating the expression for the pressure of

the gas,
P

T
=

∂S

∂V

∣

∣

∣

∣

E,N

≈ NkB

V − Nω
2

,

which is easily re-arranged to,

P

(

V − Nω

2

)

= NkBT.

Note that the joint effective excluded volume that appears in the above expressions is one

half of the total volume excluded by N particles.

(c) The isothermal compressibility is calculated from

κT = − 1

V

∂V

∂P

∣

∣

∣

∣

T,N

=
NkBT

P 2V
> 0,

and is explicitly positive, as required by stability constraints.

********

4. Interacting Rod-Molecules:

θ

2l

excluded
volume

(a) Including both forms of entropy, translational and rotational, leads to

S = kB ln

[

1

N !

(

V − NΩ(θ)

2

)N

A(θ)N

]

≈ NkB

[

ln

(

n−1 − Ω(θ)

2

)

+ 1 + ln A(θ)

]

.

(b) The extremum condition ∂S/∂θ = 0 is equivalent to

Ω′

2n−1 − Ω
=

A′

A
,
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where primes indicate derivatives with respect to θ. Solving for the density gives

n =
2A′

ΩA′ + Ω′A
.

(c) Elementary geometry yields

Ω = l2 (θ + sin θ) ,

so that the equilibrium condition becomes

n = f (θ) =
2

l2
[θ (2 + cos θ) + sin θ]

−1
,

with the function f(θ) plotted below:

f(θ)

n

nc

θc0 θ π

(d) At high densities, θ � 1 and the equilibrium condition reduces to

N ≈ V

2θl2
;

the angle θ is as open as allowed by the close packing. The equilibrium value of θ increases

as the density is decreased, up to its “optimal” value θc at nc, and θ (n < nc) = θc. The

transition occurs at the minimum of f (θ), whence θc satisfies

d

dθ
[θ (2 + cos θ) + sin θ] = 0,

i.e.

2 (1 + cos θc) = θc sin θc.

********
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