
8.333: Statistical Mechanics I Problem Set # 7 Solutions Fall 2003

Canonical Ensembles

1. Non-harmonic Gas: The Hamiltonian for a gas of N non–interacting particles, in a

d–dimensional box, has the form

H =
N
∑

i=1

A |~pi|s .

(a) The partition function is given by

Z(N, T, V ) =
1

N !hdN

∫

· · ·
∫

dd~q1 · · ·dd~qNdd~p1 · · ·dd~pN exp

[

−β

N
∑

i=1

A |~pi|s
]

=
1

N !hdN

[
∫ ∫

dd~qdd~p exp (−βA |~p |s)
]N

.

Ignoring hard core exclusion, each atom contributes a d–dimensional volume V to the

integral over the spatial degrees of freedom, and

Z(N, T, V ) =
V N

N !hdN

[
∫

dd~p exp (−βA |~p |s)
]N

.

Observing that the integrand depends only on the magnitude |~p | = p, we can evaluate the

integral in spherical coordinates using
∫

dd~p = Sd

∫

dppd−1, where Sd denotes the surface

area of a unit sphere in d–dimensions, as

Z(N, T, V ) =
V N

N !hdN

[

Sd

∫ ∞

0

dppd−1 exp (−βAps)

]N

.

Introducing the variable x ≡ (βA)1/sp, we have

Z(N, T, V ) =
V NSN

d

N !hdN

(

A

kBT

)−dN/s [∫ ∞

0

dxxd−1 exp(−xs)

]N

= CN (d, s)
1

N !

(

V Sd

hd

)N (
A

kBT

)−dN/s

,

where C denotes the numerical value of the integral. (We assume that A and s are both

real and positive. These conditions ensure that energy increases with increasing |~p |.) The

integral is in fact equal to

C(d, s) =

∫ ∞

0

dxxd−1 exp(−xs)dx =
1

s
Γ

(

d

s

)

,
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and the partition function is

Z =
1

N !

(

V Sd

hds

)N (
A

kBT

)−dN/s [

Γ

(

d

s

)]N

.

(b) To calculate the pressure and internal energy, note that the Helmholtz free energy is

F = E − TS = −kBT lnZ,

and that

P = − ∂F

∂V

∣

∣

∣

∣

T

, while E = − ∂ ln Z

∂β

∣

∣

∣

∣

V

.

First calculating the pressure:

P = − ∂F

∂V

∣

∣

∣

∣

T

= kBT
∂ ln Z

∂V

∣

∣

∣

∣

T

=
NkBT

V
.

Now calculating the internal energy:

E = − ∂ ln Z

∂β

∣

∣

∣

∣

V

= − ∂

∂β

[

−dN

s
ln

(

A

kBT

)]

=
d

s
NkBT.

Note that for each degree of freedom with energy A|~pi|s, we have the average value,

〈A|~pi|s〉 = d
skBT. This evaluates to 3

2kBT for the 3–dimensional ideal gas.

(c) Now consider N diatomic molecules, with

H =

N
∑

i=1

Hi, where Hi = A
(
∣

∣

∣
~p

(1)
i

∣

∣

∣

s

+
∣

∣

∣
~p

(2)
i

∣

∣

∣

s)

+ K
∣

∣

∣
~q

(1)
i − ~q

(2)
i

∣

∣

∣

t

.

The expectation value

〈

∣

∣

∣
~q

(1)
i − ~q

(2)
i

∣

∣

∣

t
〉

=

1
N !

∫
∏N

i=1 dd~q
(1)
i dd~q

(2)
i dd~p

(1)
i dd~p

(2)
i

∣

∣

∣
~q

(1)
i − ~q

(2)
i

∣

∣

∣

t

exp [−β
∑

i Hi]

1
N !

∫
∏N

i=1 dd~q
(1)
i dd~q

(2)
i dd~p

(1)
i dd~p

(2)
i exp [−β

∑

i Hi]
,

is easily calculated by changing variables to

~x ≡ ~q (1) − ~q (2), and ~y ≡ ~q (1) + ~q (2)

2
,

as (note that the Jacobian of the transformation is unity)

〈

∣

∣

∣
~q (1) − ~q (2)

∣

∣

∣

t
〉

=

∫

dd~xdd~y · |~x |t · exp [−βK|~x |t]
∫

dd~xdd~y · exp [−βK|~x |t]

=

∫

dd~x · |~x |t · exp [−βK|~x |t]
∫

dd~x · exp [−βK|~x |t] .
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Further simplifying the algebra by introducing the variable ~z ≡ (βK)1/t~x, leads to

〈

∣

∣

∣
~q (1) − ~q (2)

∣

∣

∣

t
〉

=
(βK)−t/t

∫

dd~z · |~z |t · exp [−|~z |t]
∫

dd~z · exp [−|~z |t] =
d

t
· kBT

K
.

Here we have assumed that the volume is large enough, so that the range of integration

over the relative coordinate can be extended from 0 to ∞.

Alternatively, note that for the degree of freedom ~x = ~q (1)−~q (2), the energy is K|~x |t.
Thus, from part (b) we know that

〈

K|~x |t
〉

=
d

t
· kBT

K
,

i.e.
〈

|~x |t
〉

=

〈

∣

∣

∣
~q (1) − ~q (2)

∣

∣

∣

t
〉

=
d

t
· kBT

K
.

And yet another way of calculating the expectation value is from

N
∑

i=1

〈

∣

∣

∣
~q

(1)
i − ~q

(2)
i

∣

∣

∣

t
〉

= − 1

β

∂ ln Z

∂K
=

Nd

t
· kBT

K
,

(note that the relevant part of Z is calculated in part (d) below).

(d) For the ideal gas, the internal energy depends only on temperature T . The gas in part

(c) is ideal in the sense that there are no molecule–molecule interactions. Therefore,

CV =
d̄Q

dT

∣

∣

∣

∣

V

=
dE + PdV

dT

∣

∣

∣

∣

V

=
dE(T )

dT
,

and

CP =
d̄Q

dT

∣

∣

∣

∣

P

=
dE + PdV

dT

∣

∣

∣

∣

P

=
dE(T )

dT
+ P

∂V (T )

∂T

∣

∣

∣

∣

P

.

Since PV = NkBT,

CP =
dE(T )

dT
+ NkB.

We now calculate the partition function

Z =
1

N !hdN

∫ N
∏

i=1

dd~q
(1)
i dd~q

(2)
i dd~p

(1)
i dd~p

(2)
i exp

[

−β
∑

i

Hi

]

=
1

N !hdN
zN
1 ,
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where

z1 =

∫

dd~q (1)dd~q (2)dd~p (1)dd~p (2) exp

[

−β ·
(

A
∣

∣

∣
~p (1)

∣

∣

∣

s

+ A
∣

∣

∣
~p (2)

∣

∣

∣

s

+ K
∣

∣

∣
~q (1) − ~q (2)

∣

∣

∣

t
)]

=

[
∫

dd~q (1)dd~q (2) exp

(

−βK
∣

∣

∣
~q (1) − ~q (2)

∣

∣

∣

t
)]

·
[
∫

dd~p (1) exp
(

−βA
∣

∣

∣
~p (1)

∣

∣

∣

s)
]2

.

Introducing the variables, ~x, ~y, and ~z, as in part (c),

Z ∝ V N

N !

[

(βK)−d/t

∫ ∞

0

zd−1 exp(−zt)dz

]N

·
[
∫ ∞

0

pd−1 exp(−βAps)dp

]2N

=
V N

N !

[

(βK)−d/t 1

t
Γ

(

d

t

)]N

·
[

1

s
(βA)−d/sΓ

(

d

s

)]2N

∝ V N

N !
(βK)

−dN/t
(βA)

−2Nd/s
.

Now we can calculate the internal energy as

〈E〉 = −∂ ln Z

∂β
=

d

t
NkBT +

2d

s
NkBT = dNkBT

(

1

t
+

2

s

)

.

From this result, the heat capacities are obtained as

CP =
∂E

∂T

∣

∣

∣

∣

P

+ P
∂V

∂T

∣

∣

∣

∣

P

= NkB

(

2d

s
+

d

t
+ 1

)

,

CV =
∂E

∂T

∣

∣

∣

∣

V

= dNkB

(

2

s
+

1

t

)

.

resulting in the ratio

γ =
CP

CV
=

2d/s + d/t + 1

2d/s + d/t
= 1 +

st

d(2t + s)
.

********

2. Curie Susceptibility: The net magnetization of the N quantum spins is

Mz = µ

N
∑

i=1

mi, with mi = −s,−(s − 1), · · · , (s − 1), s.

(a) The Gibbs partition function is

Z =
∑

{mi}

exp
(

β ~B · ~M
)

=
∑

{mi}

exp

(

βBµ

N
∑

i=1

mi

)

=

[

mi=s
∑

mi=−s

exp(βµB · mi)

]N

.
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Thus we obtain the series

Z = [exp(−βBµs) + exp(−βBµ(s − 1)) + · · ·+ exp(βBµ(s − 1)) + exp(βBµs)]
N

.

In general, to evaluate a geometrical series of the form

S = x−s + x−(s−1) + · · · + xs−1 + xs,

increase the order of the series by one,

Sx = x−s+1 + · · ·+ xs + xs+1,

and subtract from the original series:

(1 − x)S = x−s − xs+1, =⇒ S =
x−s − xs+1

1 − x
.

(Note that the same result is obtained whether s is an integer or half–integer quantity.)

Using this expression, we get

Z =

(

exp(−βBµs) − exp(βBµ(s + 1))

1 − exp(βBµ)

)N

=

(

exp(−βBµ(s + 1/2)) − exp(−βBµ(s + 1/2))

exp(−βBµ/2) − exp(−βBµ/2)

)N

.

Substituting in the proper trigonometric identity,

Z =

[

sinh (βµB(s + 1/2))

sinh(βµB/2)

]N

.

(b) The Gibbs free energy is

G = E − BM = −kBT lnZ

= −NkBT ln[sinh(βµB(s + 1/2))] + NkBT ln[sinh(βµB/2)].

Using an approximation of sinh θ for small θ,

sinh θ =
1

2

(

eθ − e−θ
)

≈ 1

2

(

2θ + 2
θ3

3!

)

+ O(θ5), for θ � 1,

we find (setting α = βµB),

G ≈ −NkBT

{

ln

[

α

(

s +
1

2

)

(

1 +
α2

6

(

s +
1

2

)2
)]

− ln

[

α

2

(

1 +
α2

24

)]

+ O(α4)

}

.
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Using the expansion ln(1 + x) = x − x2/2 + x3/3 − · · ·, we find

G ≈ −NkBT

[

ln(2s + 1) +
1

6
(α(s + 1/2))

2 − 1

6
(α/2)

2
+ O(α4)

]

≈ −NkBT ln(2s + 1) − NkBTα2 (s2 + s)

6

= G0 −
Nµ2B2s(s + 1)

6kBT
+ O(B4).

(c) The magnetic susceptibility, χ = ∂Mz/∂B, is obtained by noting that the average

magnetization is

〈Mz〉 = kBT
∂ lnZ
∂B

= −∂G

∂B
.

Thus

χ =
∂ 〈Mz〉

∂B
= − ∂

∂B

∂G

∂B
=

Nµ2ts(s + 1)

3kBT
,

which obeys Curie’s law, χ = c/T , with c = Nµ2s(s + 1)/3kB.

********

3. Surfactant Adsorption:

(a) The partition function of a d-dimensional ideal gas is given by

Zd =
1

Nd!hdNd

∫

· · ·
∫ Nd
∏

i=1

dd~qid
d~p i exp

{

−β

[

Ndεd +

Nd
∑

i=1

(

~pi
2

2m

)

]}

=
1

Nd!

(

Vd

λd

)Nd

e−βNdεd ,

where

λ ≡ h√
2πmkBT

.

The chemical potential is calculated from the Helmholtz free energy as

µd =
∂F

∂N

∣

∣

∣

∣

V,T

= −kBT
∂ ln Zd

∂Nd

∣

∣

∣

∣

V,T

= −εd + kBT ln

(

Vd

Ndλd

)

.

(b) The density of particles can also be calculated from the grand canonical partition

function, which for particles in a d–dimensional space is

Ξ(µ, Vd, T ) =
∞
∑

Nd=0

Z(Nd, Vd, T )eβNdµ

=
∞
∑

Nd=0

1

Nd!

(

Vd

λd

)Nd

e−βNdεdeβNdµ = exp

[(

Vd

λd

)

· eβ(µ−εd)

]

.
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The average number of particles absorbed in the space is

〈Nd〉 =
1

β

∂

∂µ
ln Ξ =

1

β

∂

∂µ

[(

Vd

λd

)

· eβ(µ−εd)

]

=

(

Vd

λd

)

· eβ(µ−εd).

We are interested in the coexistence of surfactants between a d = 3 dimensional solution,

and its d = 2 dimensional surface. Dividing the expressions for 〈N3〉 and 〈N2〉, and taking

into account ε0 = ε3 − ε2, gives
〈N2〉
〈N3〉

=
Aλ

V
eβε0 ,

which implies that

n2 =
〈N2〉
A

= nλeβε0 .

(c) It has been suggested that a porous gel should be regarded as fractal, and the surfactants

adsorbed on its surface treated as a gas in df–dimensional space, with a non–integer df .

Using the result found in part (b), but regarding the gel as a df–dimensional container,

the adsorbed particle density is

〈ngel〉 = nλ3−df exp [β(ε3 − εgel)] .

Thus by studying the adsorption of particles as a function of temperature one can determine

the fractal dimensionality, df , of the surface. The largest contribution comes from the

difference in energies. If this leading part is accurately determined, there is a subleading

dependence via λ3−df which depends on df .

********
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