8.333: Statistical Mechanics I Problem Set # 7 Solutions Fall 2003

Canonical Ensembles

1. Non-harmonic Gas: The Hamiltonian for a gas of N non-interacting particles, in a

d—dimensional box, has the form
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(a) The partition function is given by
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Ignoring hard core exclusion, each atom contributes a d-dimensional volume V to the
integral over the spatial degrees of freedom, and
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Observing that the integrand depends only on the magnitude |p’| = p, we can evaluate the
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integral in spherical coordinates using [ d%p = Sy [ dpp®~1, where S; denotes the surface

area of a unit sphere in d-dimensions, as
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Introducing the variable x = (ﬁA)l/ Sp, we have
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where C' denotes the numerical value of the integral. (We assume that A and s are both

real and positive. These conditions ensure that energy increases with increasing |p’|.) The

integral is in fact equal to

C(d,s) = / dez®™ ! exp(—x®)dx = lf <§) )
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and the partition function is
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(b) To calculate the pressure and internal energy, note that the Helmholtz free energy is
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First calculating the pressure:
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Now calculating the internal energy:
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Note that for each degree of freedom with energy A|p;|®, we have the average value,
(A|p;]*) = LkpT. This evaluates to 3kpT for the 3-dimensional ideal gas.
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(¢) Now consider N diatomic molecules, with
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The expectation value
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is easily calculated by changing variables to
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as (note that the Jacobian of the transformation is unity)
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Further simplifying the algebra by introducing the variable Z = (3K)'/!Z, leads to
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Here we have assumed that the volume is large enough, so that the range of integration
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over the relative coordinate can be extended from 0 to oo.
Alternatively, note that for the degree of freedom & = ¢ — 7| the energy is K|Z|*.
Thus, from part (b) we know that

kT

(Kl = § -2,

|

ie.

(121 = {

And yet another way of calculating the expectation value is from
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(note that the relevant part of Z is calculated in part (d) below).

(d) For the ideal gas, the internal energy depends only on temperature T'. The gas in part

(c) is ideal in the sense that there are no molecule-molecule interactions. Therefore,
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We now calculate the partition function
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where
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Introducing the variables, Z, ¥, and 2, as in part (c),
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Now we can calculate the internal energy as
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From this result, the heat capacities are obtained as
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2. Curie Susceptibility: The net magnetization of the N quantum spins is
N
MZ:pZmi, with m; =—s,—(s—1),---,(s—1),s.
i=1

(a) The Gibbs partition function is

Z = Z exp <5§M> = Z exp (ﬂB,uZmZ) = [ f exp(BuB -m;)| .
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Thus we obtain the series
Z = [exp(—BBps) + exp(—BBpu(s — 1)) + - - + exp(BBu(s — 1)) + exp(BBus)] " .
In general, to evaluate a geometrical series of the form
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increase the order of the series by one,

and subtract from the original series:
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(Note that the same result is obtained whether s is an integer or half-integer quantity.)

Using this expression, we get
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Substituting in the proper trigonometric identity,
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(b) The Gibbs free energy is
G=F—-BM=—-kgTlhZ
= —NkpgT In[sinh(BuB(s+ 1/2))] + NkgT In[sinh(5uB/2)].

Using an approximation of sinh @ for small 6,
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we find (setting oo = SuB),
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Using the expansion In(1 + z) =z — 22/2+ 23/3 — - - -, we find
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(¢) The magnetic susceptibility, x = 0M, /0B, is obtained by noting that the average

magnetization is
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which obeys Curie’s law, x = ¢/T, with ¢ = Nu?s(s +1)/3kp.
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3. Surfactant Adsorption:

(a) The partition function of a d-dimensional ideal gas is given by
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The chemical potential is calculated from the Helmholtz free energy as
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(b) The density of particles can also be calculated from the grand canonical partition

function, which for particles in a d-dimensional space is
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The average number of particles absorbed in the space is
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We are interested in the coexistence of surfactants between a d = 3 dimensional solution,
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and its d = 2 dimensional surface. Dividing the expressions for (N3) and (Ns), and taking

into account g = €3 — €9, gives
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which implies that
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(c) It has been suggested that a porous gel should be regarded as fractal, and the surfactants
adsorbed on its surface treated as a gas in dy-dimensional space, with a non-integer dy.
Using the result found in part (b), but regarding the gel as a dy-dimensional container,

the adsorbed particle density is

(nge) = nA?~% exp [B(es — €gal)] -

Thus by studying the adsorption of particles as a function of temperature one can determine
the fractal dimensionality, d¢, of the surface. The largest contribution comes from the
difference in energies. If this leading part is accurately determined, there is a subleading

dependence via A3~% which depends on d f-
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