8.333: Statistical Mechanics I Problem Set # 8 Solutions Fall 2003

Interacting Particles
1. Debye—Hiickel theory and Ring Diagrams: Consider a gas of N electrons moving in a
uniform background of positive charge density Ne/V. The Coulomb interaction is
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The constant ¢ represents the attraction to the positively charged background, and satisfies
[d*qV(q) = 0, from the condition of overall neutrality. The Fourier transform of V(§) is
singular at the origin, and can be defined explicitly as
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which is then given by
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Proof: The result at & = 0 follows immediately from the definition of ¢. For & # 0,
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(a) In the cumulant expansion for <U€2> , we retain only the diagrams forming a ring.

The contribution of these diagrams to thecpartition function is
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where we introduced the new set of variables {Z; = ¢; — ¢j41}, fori =1,2,---, ¢/ —1. Note
that since the integrand is independent of ¢y,
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Using the inverse Fourier transform
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the integral becomes
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we have
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resulting finally in
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(b) The number of rings graphs generated in <I/{€2> is given by the product of the number
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of ways to choose ¢ electrons out of a total of IV,
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multiplied by the number of ways to arrange the ¢ electrons in a ring
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The numerator is the number of ways of distributing the ¢ labels on the ¢ points of the
ring. This overcounts by the number of equivalent arrangements that appear in the denom-
inator. The factor of 1/2 comes from the equivalence of clockwise and counterclockwise
arrangements (reflection), and there are ¢ equivalent choices for the starting point of the
ring (rotations). Hence
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For N > /, we can approximate N(N —1)---(N — ¢+ 1) ~ N*, and
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Another way to justify this result is by induction: A ring of length ¢ + 1 can be created
from a ring of ¢ links by inserting an additional point in between any of the existing ¢
nodes. Hence Sp11 = Sy x (N — ¢ —1) x £, leading to the above result, when starting with
Sy =N(N-1)/2.

(¢) The contribution of the ring diagrams is summed as
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where we have used In(1 + z) = — 3,0, (—x)*/¢. Finally, substituting x = \/B3e2N/V,

leads to V% dri?d ) )
mwdw |/ Kk K

In Zines = In Z, — - (—) —In(14+—]].

1 Zrings =10 °+2/0 (2r)? {w “( *w?)]

(d) Changing variables to x = k/w, and integrating the integrand by parts, gives
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(e) The correction to the ideal gas pressure due to the Debye—Hiickel approximation is
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Note that the correction to the ideal gas behavior is non-analytic, and cannot be expressed
by a virial series. This is due to the long range nature of the Coulomb interaction.

(f) Introducing the effective potential V(¢ —¢’), and summing over the loop-less diagrams
gives
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Using the changes of notation
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r1=q, T2=4q, 3=4(q1, 4=q2, - ¢t =4qy,

Vig = V(& — T2), and n=N/V,

we can write
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Using the inverse Fourier transform (as in part (a)), and the notation Z;; = #; — &,
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and employing the delta function, as in part (a)
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Generalizing this result and dropping the subscript such that ¥ = 1o,
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Finally, including the Fourier transform of the direct potential (first term), gives
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Setting y = w/k, gives
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Intergrating in the complex plane, via the residue theorem, gives
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Recalling our original notation, z = |¢ — ¢’'| = |¢|, we obtain the screened Coulomb
potential
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2. Virial Coefficients: Consider a gas of particles in a d—dimensional space, interacting
through a pair-wise potential V(r), where

+00 for 0<r<a,
V(ir)=4 —¢ for a<r<b,
0 for b<r<oo.

(a) The second virial coefficient is obtained from
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where ri5 = |7} — 72|, as
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is the volume of a d-dimensional sphere of radius r. Thus,
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For high temperatures exp(f¢) ~ 1 + (¢, and
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At the highest temperatures, B¢ < 1, the hard-core part of the potential is dominant, and

Bo(T) ~ %Vdm).

For low temperatures 3 > 1, the attractive component takes over, and
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resulting in Bs < 0.

(b) The isothermal compressibility is defined by
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for constant temperature and particle number, we get
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(c¢) Including the correction introduced by the second virial coefficient, the equation of

state becomes PV N
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Using the expression for By in the high temperature limit,
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and

22 1% 2V
Using the variable n = N/V, and noting that for low concentrations
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the equation of state becomes
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This can be recast in the usual van der Waals form
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(d) By definition, the third virial coefficient is
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where, for a hard core gas
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In one-dimension, the only contributions come from 0 < r, and r’ < a, where f(r) =

f(r") = —1. Using the notations |z| =, |y| =1’ (i.e. —a < z, and y < a),
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where the relevant integration area is plotted below.
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