8.333: Statistical Mechanics I Problem Set # 9 Solutions Fall 2003

Phase Transitions

1. Dieterici’s equation: The isotherms corresponding to Dieterici’s equation of state,

P(v—>5)=kpTexp <— kBaTv) )

are sketched below in the plane of (P,v = V/N).
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(a) The critical point is the point of inflection, described by
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Therefore v. and T, are determined by
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The critical pressure is
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resulting in the ratio

P
L =2 %~ 0.2T.
kBTc ‘
Note that for the van der Waals gas
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while for some actual gases
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(b) The isothermal compressibility is defined by
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and from part (a), given by
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Expanding this expression, at v = v, in terms of ¢t = kgT — kT, (for T > T,), yields
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Note that expanding any analytic equation of state will yield the same simple pole for the

divergence of the compressibility.

(¢) Perform a Taylor—series expansion along the critical isotherm T' = T, as
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The first two terms are zero at the critical point, and
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Substituting this into the Taylor expansion for P(v,T.), results in

P(v,T.) = P, (1 - %) ,

which is equivalent to

Kokokoskkok >k ok

2. 2d Coulomb Gas: The Hamiltonian for this system is
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(a) There are N positively charged particles, and N negatively charged particles. Hence
there are N - N = N? pairs of opposite charges, and nairactive = IN2. For like charges,
we can choose pairs from the N particles of positive charge, or from the N particles with

negative charges. Hence the number of pairs of like pairs is

N N
nrepulsive:2x 5 =2 X m :N(N—l)

(b) The partition function is

2
7

+ 8 cic;n|q; — 4

<]

1 2N 2N D
Z(N,T, A) = W/Hcﬂqzd?ﬁi exp [—8) o
) =1 =1

2N
1 — — — 1CiCs
~ MN(NT)? /Hdzqiexp[ﬁlnmz'—qﬂ ],
’ i=1

3



where A = h/v/2mmkgT. Further simplifying the expression for the partition function
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where we have used the fact that e*® = z.

(c) The only length scale appearing in the problem is set by the system size L. Rescaling
the expression using ¢;’ = ¢’;/L, then yields
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Note that there are N2 terms for which the interaction is attractive (Bc;c; = —B¢3), and

N(N —1) terms for which the interaction is repulsive (8c;c; = BcZ). Thus
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since A = L2.

(d) The pressure is then calculated from
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At high temperatures,
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which is the ideal gas behavior for 2N particles. The pressure becomes negative at tem-
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which is unphysical, indicating the collapse of the particles due to their attractions.
(e) A complete collapse of the system (to a single point) can be avoided by adding a hard
core repulsion which prevents any two particles from coming closer than a distance a. The

partition function for two particles (i.e. N = 1) is now given by

1
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To evaluate this integral, first change to center of mass and relative coordinates
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Integrating over the center of mass gives
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is controlled by the short distance cutoff a; while if 2—3¢3 > 0, the integral is controlled by
the system size L, as assumed in part (c). Hence the critical temperature can be estimated
by B¢ = 2, giving
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which is larger than T? by a factor of 2. Thus the unphysical collapse at low temperatures
is preempted at the higher temperature where the hard cores become important. The high
temperature phase (T' > T,.) is a dissociated plasma; while the low temperature phase is a

gas of paired dipoles.
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3. One dimensional gas:

(a) Each particle ¢ interacts only with adjacent particles i — 1 and i + 1, as the hard cores
from these nearest neighbors screen the interactions with any other particle. Thus we
need only consider nearest neighbor interactions, and, included the kinetic energies, the

Hamiltonian is given by

o N
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(b) The partition function is
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where A = h/\/2rmkpT. (Note that there is no N! factor, as the ordering of the particles

is specified.) Introducing a new set of variables
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the integration becomes
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This integration can also be expressed as
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with the constraint
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This constraint can be put into the equation explicitly with the use of the step function

0 for z <0
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(c) The Gibbs partition function is
Z(T,N, P) = / dL exp(—BPL)Z(T, N, ).
0
The saddle point is obtained by extremizing the integrand with respect to L,
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From thermodynamics, for a one-dimensional gas we have
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(d) The expression for the partition function given above is
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Since the integrals for different J}s are equivalent, we obtain
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This expression can also be obtained directly, without use of the step function as follows.
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Change variables to dy+1 = L — vazl 0;, and note that each of the ¢’s indicates the
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distance between neighboring particles. The size of the gas L, has been extended to any

value, hence each 6 can be varied independently from 0 to oco. Thus the Gibbs partition

function is
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(e) The mean length is
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and the density n is given by
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(f) For a hard sphere gas

the Gibbs partition function is
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From the partition function, we can calculate the mean length
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For N> 1,n> 1/L, and
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which gives the virial coefficients
By (T) =a" L
The value of Bs = a? agrees with the result obtained in PS# 8, problem 2, part (d). Also

note that the exact ‘excluded volume’ is (N — 1)a, as opposed to the estimate of Na/2
obtained in PS#6, problem 3.
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