
8.333: Statistical Mechanics I Re: Final Exam

Review Problems

The final exam will take place on Tuesday December 16, in the Johnson Athletic

Center, from 1:30 to 4:30pm. All topics presented in the course will be covered, with

emphasis on the second half. It will be a closed book exam, but you may bring a two–sided

sheet of formulas if you wish. It may also be helpful to bring along a calculator. There

will be a lecture on Monday 12/8/03, and a recitation with quiz review on Wednesday

12/10/03.

The enclosed exams (and solutions) from the previous years are intended to help you

review the material.

********

Note that the first parts of each problem are easier than its last parts. Therefore,

make sure to proceed to the next problem when you get stuck.

You may find the following information helpful:

Physical Constants

Electron mass me ≈ 9.1 × 10−31Kg Proton mass mp ≈ 1.7 × 10−27Kg

Electron Charge e ≈ 1.6 × 10−19C Planck’s constant/2π h̄ ≈ 1.1 × 10−34Js−1

Speed of light c ≈ 3.0 × 108ms−1 Stefan’s constant σ ≈ 5.7 × 10−8Wm−2K−4

Boltzmann’s constant kB ≈ 1.4 × 10−23JK−1Avogadro’s number N0 ≈ 6.0 × 1023mol−1

Conversion Factors

1atm ≡ 1.0 × 105Nm−2 1Å ≡ 10−10m 1eV ≡ 1.1 × 104K

Thermodynamics

dE = TdS+dW For a gas: dW = −PdV For a film: dW = σdA

Mathematical Formulas

limx→∞ cothx = 1 + 2e−2x + O
(

e−4x
)

limx→0 cothx = 1
x + x

3 + O
(

x2
)

∫∞
0
dx xn e−αx = n!

αn+1 ( 1
2 )! =

√
π

2

∫∞
−∞ dx exp

[

−ikx− x2

2σ2

]

=
√

2πσ2 exp
[

−σ2k2

2

]

limN→∞ lnN ! = N lnN −N

〈

e−ikx
〉

=
∑∞

n=1
(−ik)n

n!
〈xn〉 ln

〈

e−ikx
〉

=
∑∞

n=1
(−ik)n

n!
〈xn〉c

fη
m(z) = 1

(m−1)!

∫∞
0
dx xm−1

z−1ex−η =
∑∞

α=1 η
α+1 zα

αm

dfη
m

dz = 1
zf

η
m−1

limz→∞ f−
m(z) = (ln z)m

m!

[

1 + π2

6 m(m− 1)(ln z)−2 + · · ·
]

f−
2 (1) = π2

12 f−
4 (1) = 7π4

720

ζm ≡ f+
m(1) ζ3/2 ≈ 2.612 ζ2 = π2

6 ζ5/2 ≈ 1.341 ζ3 ≈ 1.202 ζ4 = π4

90
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8.333: Statistical Mechanics I Fall 1998 Final Exam

1. Exciton dissociation in a semiconductor: By shining an intense laser beam on a semicon-

ductor, one can create a metastable collection of electrons (charge −e, and effective mass

me) and holes (charge +e, and effective mass mh) in the bulk. The oppositely charged

particles may pair up (as in a hydrogen atom) to form a gas of excitons, or they may

dissociate into a plasma. We shall examine a much simplified model of this process.

(a) Calculate the free energy of a gas composed of Ne electrons and Nh holes, at temper-

ature T , treating them as classical non-interacting particles of masses me and mh.

• The canonical partition function of gas of non-interacting electrons and holes is the

product of contributions from the electron gas, and from the hole gas, as

Ze−h = ZeZh =
1

Ne!

(

V

λ3
e

)Ne

· 1

Nh!

(

V

λ3
h

)Nh

,

where λα = h/
√

2πmαkBT (α =e, h). Evaluating the factorials in Stirling’s approximation,

we obtain the free energy

Fe−h = −kBT lnZe−h = NekBT ln

(

Ne

eV
λ3

e

)

+NhkBT ln

(

Nh

eV
λ3

h

)

.

(b) By pairing into an excition, the electron hole pair lowers its energy by ε. [The binding

energy of a hydrogen-like exciton is ε ≈ me4/(2h̄2ε2), where ε is the dielectric constant,

and m−1 = m−1
e +m−1

h .] Calculate the free energy of a gas of Np excitons, treating them

as classical non-interacting particles of mass m = me +mh.

• Similarly, the partition function of the exciton gas is calculated as

Zp =
1

Np!

(

V

λ3
p

)Np

e−β(−Npε),

leading to the free energy

Fp = NpkBT ln

(

Np

eV
λ3

p

)

−Npε,

where λp = h/
√

2π (me +mh) kBT .

(c) Calculate the chemical potentials µe, µh, and µp of the electron, hole, and exciton

states, respectively.

• The chemical potentials are derived from the free energies, through

µe =
∂Fe−h

∂Ne

∣

∣

∣

∣

T,V

= kBT ln
(

neλ
3
e

)

,
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µh =
∂Fe−h

∂Nh

∣

∣

∣

∣

T,V

= kBT ln
(

nhλ
3
h

)

,

µp =
∂Fp

∂Np

∣

∣

∣

∣

T,V

= kBT ln
(

npλ
3
p

)

− ε,

where nα = Nα/V (α =e, h, p).

(d) Express the equilibrium condition between excitons and electron/holes in terms of their

chemical potentials.

• The equilibrium condition is obtained by equating the chemical potentials of the electron

and hole gas with that of the exciton gas, since the exciton results from the pairing of an

electron and a hole,

electron + hole ⇀↽ exciton.

Thus, at equilibrium

µe (ne, T ) + µh (nh, T ) = µp (np, T ) ,

which is equivalent, after exponentiation, to

neλ
3
e · nhλ

3
h = npλ

3
pe

−βε.

(e) At a high temperature T , find the density np of excitons, as a function of the total

density of excitations n ≈ ne + nh.

• The equilibrium condition yields

np = nenh
λ3

eλ
3
h

λ3
p

eβε.

At high temperature, np � ne = nh ≈ n/2, and

np = nenh
λ3

eλ
3
h

λ3
p

eβε =
(n

2

)2 h3

(2πkBT )
3/2

(

me +mh

memh

)3/2

eβε.

********

2. The Manning Transition: When ionic polymers (polyelectrolytes) such as DNA are

immersed in water, the negatively charged counter-ions go into solution, leaving behind

a positively charged polymer. Because of the electrostatic repulsion of the charges left

behind, the polymer stretches out into a cylinder of radius a, as illustrated in the figure.

While thermal fluctuations tend to make the ions wander about in the solvent, electrostatic

attractions favor their return and condensation on the polymer. If the number of counter-

ions is N , they interact with the N positive charges left behind on the rod through the
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potential U (r) = −2 (Ne/L) ln (r/L), where r is the radial coordinate in a cylindrical

geometry. If we ignore the Coulomb repulsion between counter-ions, they can be described

by the classical Hamiltonian

H =

N
∑

i=1

[

p2
i

2m
+ 2e2n ln

( r

L

)

]

,

where n = N/L.

L

R 2a

r

z

+
+
+

+

+

+

+

+

−

−

−
−

−

−

−

−

−

−

−

(a) For a cylindrical container of radius R, calculate the canonical partition function Z in

terms of temperature T , density n, and radii R and a.

• The canonical partition function is

Z =

∫
∏

i d
3pid

3qi
N !h3N

exp

{

−β
N
∑

i=1

[

p2
i

2m
+ 2e2n ln

( r

L

)

]

}

=

(

2πLe

Nλ3

)N

LN·β2e2n

[

∫ R

a

rdr · r−2e2n/kBT

]N

=

(

2πe

nλ3

)N

L2Ne2nβ

[

R2(1−e2n/kBT) − a2(1−e2n/kBT)

2 (1 − e2n/kBT )

]N

.

(b) Calculate the probability distribution function p (r) for the radial position of a counter-

ion, and its first moment 〈r〉, the average radial position of a counter-ion.
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• Integrating out the unspecified N momenta and N − 1 positions from the canonical

distribution, one obtains the distribution function

p (r) =
re−(2e2n/kBT) ln(r/L)

∫ R

a
drre−(2e2n/kBT ) ln(r/L)

= 2

(

1 − e2n

kBT

)

r1−2e2n/kBT

R2(1−e2n/kBT ) − a2(1−e2n/kBT )
.

(Note the normalization condition
∫ R

a
drp(r) = 1.) The average position is then

〈r〉 =

∫ R

a

rp (r) dr =

(

2kBT − 2e2n

3kBT − 2e2n

)

(

R3−2e2n/kBT − a3−2e2n/kBT

R2−2e2n/kBT − a2−2e2n/kBT

)

.

(c) The behavior of the results calculated above in the limit R� a is very different at high

and low temperatures. Identify the transition temperature, and characterize the nature of

the two phases. In particular, how does 〈r〉 depend on R and a in each case?

• Consider first low temperatures, such that e2n/kBT > 1. In the R � a limit, the

distribution function becomes

p (r) = 2

(

1 − e2n

kBT

)

r1−2e2n/kBT

a2(1−e2n/kBT )
,

and 〈r〉 ∝ a. To see this, either examine the above calculated average 〈r〉 in the R � a

limit, or notice that

p (r) dr = 2

(

1 − e2n

kBT

)

x1−2e2n/kBT dx,

where x = r/a, immediately implying 〈r〉 ∝ a (as
∫∞
1
dxx1−2e2n/kBT <∞ if e2n/kBT > 1).

On the other hand, at high temperatures (e2n/kBT < 1), the distribution function reduces

to

p (r) = 2

(

1 − e2n

kBT

)

r1−2e2n/kBT

R2(1−e2n/kBT )
,

and 〈r〉 ∝ R, from similar arguments. Thus, at temperature Tc = e2n/kB there is a

transition from a “condensed” phase, in which the counter-ions are stuck on the polymer,

to a “gas” phase, in which the counter-ions fluctuate in water at typical distances from

the polymer which are determined by the container size.

(d) Calculate the pressure exerted by the counter-ions on the wall of the container, at

r = R, in the limit R� a, at all temperatures.

• The work done by the counter-ions to expand the container from a radius R to a radius

R+ dR is

dW = dF = (force) dR = −P (2πRL)dR,
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leading to

P = − 1

2πRL

∂F

∂R
=

kBT

2πRL

∂lnZ

∂R
.

At low temperatures, T < Tc, the pressure vanishes, since the partition function is inde-

pendent of R in the limit R� a. At T > Tc, the above expression results in

P =
kBT

2πRL
2N

(

1 − e2n

kBT

)

1

R
,

i.e.

PV = NkBT

(

1 − e2n

kBT

)

.

(e) The character of the transition examined in part (d) is modified if the Coulomb in-

teractions between counter-ions are taken into account. An approximate approach to the

interacting problem is to allow a fraction N1 of counter-ions to condense along the polymer

rod, while the remaining N2 = N −N1 fluctuate in the solvent. The free counter-ions are

again treated as non-interacting particles, governed by the Hamiltonian

H =
N
∑

i=1

[

p2
i

2m
+ 2e2n2 ln

( r

L

)

]

,

where n2 = N2/L. Guess the equilibrium number of non-interacting ions, N ∗
2 , and justify

your guess by discussing the response of the system to slight deviations from N ∗
2 . (This is

a qualitative question for which no new calculations are needed.)

• Consider a deviation (n2) from n∗
2 ≡ N∗

2 /V ≡ kBT/e
2, occuring at a temperature lower

than Tc (i.e. e2n/kBT > 1). If n2 > n∗
2, the counter-ions have a tendency to condensate

(since e2n/kBT > 1), thus decreasing n2. On the other hand, if n2 > n∗
2, the counter-ions

tend to “evaporate” (since e2n/kBT < 1). In both cases, the system drives the density n2

to the (equilibrium) value of n∗
2 = kBT/e

2. If the temperature is higher than Tc, clearly

n∗
2 = n and there is no condensation.

********

3. Bose gas in d dimensions: Consider a gas of non-interacting (spinless) bosons with an

energy spectrum ε = p2/2m, contained in a box of “volume” V = Ld in d dimensions.

(a) Calculate the grand potential G = −kBT lnQ, and the density n = N/V , at a chemical

potential µ. Express your answers in terms of d and f+
m (z), where z = eβµ, and

f+
m (z) =

1

Γ (m)

∫ ∞

0

xm−1

z−1ex − 1
dx.

(Hint: Use integration by parts on the expression for lnQ.)
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• We have

Q =
∞
∑

N=0

eNβµ

∑

i
ni=N
∑

{ni}
exp

(

−β
∑

i

niεi

)

=
∏

i

∑

{ni}
eβ(µ−εi)ni =

∏

i

1

1 − eβ(µ−εi)

,

whence lnQ = −
∑

i ln
(

1 − eβ(µ−εi)
)

. Replacing the summation
∑

i with a d dimensional

integration
∫

V ddk/ (2π)
d

=
[

V Sd/ (2π)
d
]

∫

kd−1dk, where Sd = 2πd/2/ (d/2 − 1)!, leads

to

lnQ = − V Sd

(2π)
d

∫

kd−1dk ln
(

1 − ze−βh̄2k2/2m
)

.

The change of variable x = βh̄2k2/2m (⇒ k =
√

2mx/β/h̄ and dk = dx
√

2m/βx/2h̄)

results in

lnQ = − V Sd

(2π)
d

1

2

(

2m

h̄2β

)d/2 ∫

xd/2−1dx ln
(

1 − ze−x
)

.

Finally, integration by parts yields

lnQ =
V Sd

(2π)
d

1

d

(

2m

h̄2β

)d/2 ∫

xd/2dx
ze−x

1 − ze−x
= V

Sd

d

(

2m

h2β

)d/2 ∫

dx
xd/2

z−1ex − 1
,

i.e.

G = −kBT lnQ = −V Sd

d

(

2m

h2β

)d/2

kBTΓ

(

d

2
+ 1

)

f+
d
2
+1

(z) ,

which can be simplified, using the property Γ (x+ 1) = xΓ (x), to

G = − V

λd
kBTf

+
d
2
+1

(z) .

The average number of particles is calculated as

N =
∂

∂ (βµ)
lnQ =V

Sd

d

(

2m

h2β

)d/2 ∫

xd/2−1dx
ze−x

1 − ze−x

= V
Sd

2

(

2m

h2β

)d/2

Γ

(

d

2

)

f+
d
2

(z) =
V

λd
f+

d
2

(z)

,

i.e.

n =
1

λd
f+

d
2

(z) .

(b) Calculate the ratio PV/E, and compare it to the classical value.
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• We have PV = −G, while

E = − ∂

∂β
lnQ = +

d

2

lnQ
β

= −d
2
G.

Thus PV/E = d/2, identical to the classical value.

(c) Find the critical temperature, Tc (n), for Bose-Einstein condensation.

• The critical temperature Tc (n) is given by

n =
1

λd
f+

d
2

(1) =
1

λd
ζ d

2

for d > 2, i.e.

Tc =
h2

2mkB

(

n

ζ d
2

)−2/d

.

(d) Calculate the heat capacity C (T ) for T < Tc (n).

• At T < Tc, z = 1 and

C (T ) =
∂E

∂T

∣

∣

∣

∣

z=1

= −d
2

∂G
∂T

∣

∣

∣

∣

z=1

= −d
2

(

d

2
+ 1

) G
T

=
d

2

(

d

2
+ 1

)

V

λd
kBζ d

2
+1.

(e) Sketch the heat capacity at all temperatures.

•
.

(f) Find the ratio, Cmax/C (T → ∞), of the maximum heat capacity to its classical limit,

and evaluate it in d = 3

8



• As the maximum of the heat capacity occurs at the transition,

Cmax = C (Tc) =
d

2

(

d

2
+ 1

)

V
(

ζ d
2
/n
)kBf

+
d
2
+1

(1) =
d

2
NkB

(

d

2
+ 1

)

ζ d
2
+1

ζ d
2

.

Thus
Cmax

C (T → ∞)
=

(

d

2
+ 1

)

ζ d
2
+1

ζ d
2

,

which evaluates to 1.283 in d = 3.

(g) How does the above calculated ratio behave as d → 2? In what dimensions are your

results valid? Explain.

• The maximum heat capacity, as it stands above, vanishes as d→ 2! Since f+
m (x→ 1) →

∞ if m ≤ 2, the fugacuty z is always smaller than 1. Hence, there is no macroscopic

occupation of the ground state, even at the lowest temperatures, i.e. no Bose-Einstein

condensation in d ≤ 2. The above results are thus only valid for d ≥ 2.

********
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8.333: Statistical Mechanics I Fall 1999 Final Exam

1. Electron Magnetism: The conduction electrons in a metal can be treated as a gas of

fermions of spin 1/2 (with up/down degeneracy), and density n = N/V .

(a) Ignoring the interactions between electrons, describe (in words) their ground state.

Calculate the fermi wave number kF, and the ground-state energy density E0/V in terms

of the density n.

• In the ground state, the fermi sea is filled symmetrically by spin up and spin down

particles up to kF, where kF is related to the density through

N

2
= V

∫

k<kF

d3k

(2π)
3 = V

∫ kF

0

4π

(2π)
3 k

2dk =
V k3

F

6π2
,

i.e.

kF =
(

3π2n
)1/3

.

The ground-state energy is calculated as

E0 = 2V

∫

k<kF

h̄2k2

2m

d3k

(2π)
3 = 2V

h̄2

2m

4π

5 (2π)
3 k

5
F,

and the energy density is
E0

V
=

3

5

(

3π2
)2/3 h̄2

2m
n5/3.

Electrons also interact via the Coulomb repulsion, which favors a wave function which

is antisymmetric in position space, thus keeping them apart. Because of the full (position

and spin) antisymmetry of fermionic wave functions, this interaction may be described

as an effective spin-spin coupling which favors states with parallel spins. In a simple

approximation, the effect of this interaction is represented by adding a potential

U = α
N+N−
V

,

to the Hamiltonian, where N+ and N− = N−N+ are the numbers of electrons with up and

down spins, and V is the volume. (The parameter α is related to the scattering length a by

α = 4πh̄2a/m.) We would like to find out if the unmagnetized gas with N+ = N− = N/2

still minimizes the energy, or if the gas is spontaneously magnetized.

(b) Express the modified Fermi wave numbers kF+ and kF−, in terms of the densities

n+ = N+/V and n− = N−/V .

• From the solution to part (a), we can read off

kF± =
(

6π2n±
)1/3

.
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(c) Assuming small deviations n+ = n/2 + δ and n− = n/2− δ from the symmetric state,

calculate the change in the kinetic energy of the system to second order in δ.

• We can repeat the calculation of energy in part (a), now for two gases of spin up and

spin down fermions, to get

Ekin

V
=

1

10π2

h̄2

2m

(

k5
F+ + k5

F−
)

=
3

5

(

6π2
)2/3 h̄2

2m

(

n
5/3
+ + n

5/3
−

)

.

Using n± = n/2 ± δ, and expanding the above result to second order in δ, gives

Ekin

V
=
E0

V
+

4

3

(

3π2
)2/3 h̄

2n−1/3

2m
δ2 + O

(

δ4
)

.

(d) Express the spin-spin interaction density in terms of δ. Find the critical value of αc,

such that for α > αc the electron gas can lower its total energy by spontaneously developing

a magnetization. (This is known as the Stoner instability.)

• The interaction energy density is

U

V
= αn+n− = α

(n

2
+ δ
)(n

2
− δ
)

= α
n2

4
− αδ2.

The total energy density is now given by

E

V
=
E0 + αn2/4

V
+

[

4

3

(

3π2
)2/3 h̄

2n−1/3

2m
− α

]

δ2 + O
(

δ4
)

.

When the second order term in δ is negative, the electron gas has lower energy for finite

δ, i.e. it acquires a spontaneous magnetization. This occurs for

α > αc =
4

3

(

3π2
)2/3 h̄

2n−1/3

2m
.

(e) Explain qualitatively, and sketch the behavior of the spontaneous magnetization as a

function of α.

• For α > αc, the optimal value of δ is obtained by expanding the energy density to fourth

order in δ. The coefficient of the fourth order term is positive, and the minimum energy is

obtained for a value of δ2 ∝ (α− αc). The magnetization is proportional to δ, and hence

grows in the vicinity of αc as
√
α− αc, as sketched below
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********

2. Boson magnetism: Consider a gas of non-interacting spin 1 bosons, each subject to a

Hamiltonian

H1(~p, sz) =
~p 2

2m
− µ0szB ,

where µ0 = eh̄/mc, and sz takes three possible values of (-1, 0, +1). (The orbital effect,

~p→ ~p− e ~A, has been ignored.)

(a) In a grand canonical ensemble of chemical potential µ, what are the average occupation

numbers
{

〈n+(~k)〉, 〈n0(~k)〉, 〈n−(~k)〉
}

, of one-particle states of wavenumber ~k = ~p/h̄?

• Average occupation numbers of the one-particle states in the grand canonical ensemble

of chemical potential µ, are given by the Bose-Einstein distribution

ns(~k) =
1

eβ[H(s)−µ] − 1
, (for s = −1, 0, 1)

=
1

exp
[

β
(

h̄2k2

2m
− µ0sB

)

− βµ
]

− 1

(b) Calculate the average total numbers {N+, N0, N−}, of bosons with the three possible

values of sz in terms of the functions f+
m(z).

• Total numbers of particles with spin s are given by

Ns =
∑

{~k}

ns(~k), =⇒ Ns =
V

(2π)3

∫

d3k
1

exp
[

β
(

h̄2k2

2m − µ0sB
)

− βµ
]

− 1
.

After a change of variables, k ≡ x1/2
√

2mkBT/h, we get

Ns =
V

λ3
f+
3/2

(

zeβµ0sB
)

,

where

f+
m(z) ≡ 1

Γ(m)

∫ ∞

0

dx xm−1

z−1ex − 1
, λ ≡ h√

2πmkBT
, z ≡ eβµ.
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(c) Write down the expression for the magnetization M(T, µ) = µ0(N+ − N−), and by

expanding the result for small B find the zero field susceptibility χ(T, µ) = ∂M/∂B|B=0.

• Magnetization is obtained from

M(T, µ) = µ0 (N+ −N−)

= µ0
V

λ3

[

f+
3/2

(

zeβµ0B
)

− f+
3/2

(

ze−βµ0sB
)

]

.

Expanding the result for small B gives

f+
3/2

(

ze±βµ0B
)

≈ f+
3/2 (z[1 ± βµ0B]) ≈ f+

3/2(z) ± z · βµ0B
∂

∂z
f+
3/2(z).

Using zdf+
m(z)/dz = f+

m−1(z), we obtain

M = µ0
V

λ3
(2βµ0B) · f+

1/2(z) =
2µ2

0

kBT

V

λ3
·B · f+

1/2(z),

and

χ ≡ ∂M

∂B

∣

∣

∣

∣

B=0

=
2µ2

0

kBT

V

λ3
· f+

1/2(z).

To find the behavior of χ(T, n), where n = N/V is the total density, proceed as follows:

(d) For B = 0, find the high temperature expansion for z(β, n) = eβµ, correct to second

order in n. Hence obtain the first correction from quantum statistics to χ(T, n) at high

temperatures.

• In the high temperature limit, z is small. Use the Taylor expansion for f+
m(z) to write

the total density n(B = 0), as

n(B = 0) =
N+ +N0 +N−

V

∣

∣

∣

∣

B=0

=
3

λ3
f+
3/2(z)

≈ 3

λ3

(

z +
z2

23/2
+

z3

33/2
+ · · ·

)

.

Inverting the above equation gives

z =

(

nλ3

3

)

− 1

23/2

(

nλ3

3

)2

+ · · · .

The susceptibility is then calculated as

χ =
2µ2

0

kBT

V

λ3
· f+

1/2(z),

χ/N =
2µ2

0

kBT

1

nλ3

(

z +
z2

21/2
+ · · ·

)

=
2µ2

0

3kBT

[

1 +

(

− 1

23/2
+

1

21/2

)(

nλ3

3

)

+O
(

n2
)

]

.
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(e) Find the temperature Tc(n,B = 0), of Bose-Einstein condensation. What happens to

χ(T, n) on approaching Tc(n) from the high temperature side?

• Bose-Einstein condensation occurs when z = 1, at a density

n =
3

λ3
f+
3/2(1),

or a temperature

Tc(n) =
h2

2πmkB

(

n

3 ζ 3/2

)2/3

,

where ζ 3/2 ≡ f+
3/2(1) ≈ 2.61. Since limz→1 f

+
1/2(z) = ∞, the susceptibility χ(T, n) diverges

on approaching Tc(n) from the high temperature side.

(f) What is the chemical potential µ for T < Tc(n), at a small but finite value of B? Which

one-particle state has a macroscopic occupation number?

• Chemical potential for T < Tc: Since ns(~k,B) =
[

z−1eβEs(~k,B) − 1
]−1

is a positive

number for all ~k and sz, µ is bounded above by the minimum possible energy, i.e.

for T < Tc, and B finite, zeβµ0B = 1, =⇒ µ = −µ0B.

Hence the macroscopically occupied one particle state has ~k = 0, and sz = +1.

(g) Using the result in (f), find the spontaneous magnetization,

M(T, n) = lim
B→0

M(T, n,B).

• Spontaneous magnetization: Contribution of the excited states to the magnetization

vanishes as B → 0. Therefore the total magnetization for T < Tc is due to the macroscopic

occupation of the (k = 0, sz = +1) state, and

M(T, n) = µ0 V n+(k = 0)

= µ0 V
(

n− nexcited

)

= µ0

(

N − 3V

λ3
ζ 3/2

)

.

********

3. The virial theorem is a consequence of the invariance of the phase space for a system

of N (classical or quantum) particles under canonical transformations, such as a change of

scale. In the following, consider N particles with coordinates {~qi}, and conjugate momenta

{~pi} (with i = 1, · · · , N), and subject to a Hamiltonian H ({~pi} , {~qi}).
(a) Classical version: Write down the expression for classical partition function, Z ≡ Z [H].

Show that it is invariant under the rescaling ~q1 → λ~q1, ~p1 → ~p1/λ of a pair of conjugate
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variables, i.e. Z [Hλ] is independent of λ, where Hλ is the Hamiltonian obtained after the

above rescaling.

• The classical partition function is obtained by appropriate integrations over phase space

as

Z =
1

N !h3N

∫

(

∏

i

d3pid
3qi

)

e−βH.

The rescaled Hamiltonian Hλ = H (~p1/λ, {~pi6=1} , λ~q1, {~qi6=1}) leads to a rescaled partition

function

Z [Hλ] =
1

N !h3N

∫

(

∏

i

d3pid
3qi

)

e−βHλ ,

which reduces to

Z [Hλ] =
1

N !h3N

∫

(

λ3d3p′1
) (

λ−3d3q′1
)

(

∏

i

d3pid
3qi

)

e−βH = Z,

under the change of variables ~q1
′ = λ~q1, ~p1

′ = ~p1/λ.

(b) Quantum mechanical version: Write down the expression for quantum partition func-

tion. Show that it is also invariant under the rescalings ~q1 → λ~q1, ~p1 → ~p1/λ, where ~pi

and ~qi are now quantum mechanical operators. (Hint: start with the time-independent

Schrödinger equation.)

• Using the energy basis

Z = tr
(

e−βH) =
∑

n

e−βEn ,

where En are the energy eigenstates of the system, obtained from the Schrödinger equation

H ({~pi} , {~qi}) |ψn〉 = En |ψn〉 ,

where |ψn〉 are the eigenstates. After the rescaling transformation, the corresponding

equation is

H (~p1/λ, {~pi6=1} , λ~q1, {~qi6=1})
∣

∣

∣
ψ(λ)

n

〉

= E(λ)
n

∣

∣

∣
ψ(λ)

n

〉

.

In the coordinate representation, the momentum operator is ~pi = −ih̄∂/∂~qi, and therefore

ψλ ({~qi}) = ψ ({λ~qi}) is a solution of the rescaled equation with eigenvalue E
(λ)
n = En.

Since the eigen-energies are invariant under the transformation, so is the partition function

which is simply the sum of corresponding exponentials.

(c) Now assume a Hamiltonian of the form

H =
∑

i

~pi
2

2m
+ V ({~qi}) .
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Use the result that Z [Hλ] is independent of λ to prove the virial relation

〈

~p1
2

m

〉

=

〈

∂V

∂~q1
· ~q1
〉

,

where the brackets denote thermal averages. (You may formulate your answer in the

classical language, as a possible quantum derivation is similar.)

• Differentiating the free energy with respect to λ at λ = 1, we obtain

0 =
∂ lnZλ

∂λ

∣

∣

∣

∣

λ=1

= −β
〈

∂Hλ

∂λ

∣

∣

∣

∣

λ=1

〉

= −β
〈

−~p1
2

m
+
∂V

∂~q1
· ~q1
〉

,

i.e.,
〈

~p1
2

m

〉

=

〈

∂V

∂~q1
· ~q1
〉

.

(d) The above relation is sometimes used to estimate the mass of distant galaxies. The

stars on the outer boundary of the G-8.333 galaxy have been measured to move with

velocity v ≈ 200 km/s. Give a numerical estimate of the ratio of the G-8.333’s mass to its

size.

• The virial relation applied to a gravitational system gives

〈

mv2
〉

=

〈

GMm

R

〉

.

Assuming that the kinetic and potential energies of the starts in the galaxy have reached

some form of equilibrium gives

M

R
≈ v2

G
≈ 6 × 1020kg/m.

********
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8.333: Statistical Mechanics I Fall 2000 Final Exam

1. Freezing of He3: At low temperatures He3 can be converted from liquid to solid by

application of pressure. A peculiar feature of its phase boundary is that (dP/dT )melting is

negative at temperatures below 0.3 oK [(dP/dT )m ≈ −30atm oK−1 at T ≈ 0.1 oK]. We

will use a simple model of liquid and solid phases of He3 to account for this feature.

(a) In the solid phase, the He3 atoms form a crystal lattice. Each atom has nuclear spin

of 1/2. Ignoring the interaction between spins, what is the entropy per particle ss, due to

the spin degrees of freedom?

• Entropy of solid He3 comes from the nuclear spin degeneracies, and is given by

ss =
Ss

N
=
kB ln(2N )

N
= kB ln 2.

(b) Liquid He3 is modelled as an ideal Fermi gas, with a volume of 46Å3 per atom. What

is its Fermi temperature TF , in degrees Kelvin?

• The Fermi temperature for liquid 3He may be obtained from its density as

TF =
εF

kB
=

h2

2mkB

(

3N

8πV

)2/3

≈ (6.7 × 10−34)2

2 · (6.8 × 10−27)(1.38 × 10−23)

(

3

8π × 46 × 10−30

)2/3

≈ 9.2 oK.

(c) How does the heat capacity of liquid He3 behave at low temperatures? Write down an

expression for CV in terms of N, T, kB, TF , up to a numerical constant, that is valid for

T � TF .

• The heat capacity comes from the excited states at the fermi surface, and is given by

CV = kB
π2

6
kBT D(εF ) =

π2

6
k2

BT
3N

2kBTF
=
π2

4
NkB

T

TF
.

(d) Using the result in (c), calculate the entropy per particle s`, in the liquid at low

temperatures. For T � TF , which phase (solid or liquid) has the higher entropy?

• The entropy can be obtained from the heat capacity as

CV =
TdS

dT
, ⇒ s` =

1

N

∫ T

0

CV dT

T
=
π2

4
kB

T

TF
.

As T → 0, s` → 0, while ss remains finite. This is an unusual situation in which the solid

has more entropy than the liquid! (The finite entropy is due to treating the nuclear spins

17



as independent. There is actually a weak coupling between spins which causes magnetic

ordering at a much lower temperature, removing the finite entropy.)

(e) By equating chemical potentials, or by any other technique, prove the Clausius–

Clapeyron equation (dP/dT )melting = (s` − ss)/(v` − vs), where v` and vs are the volumes

per particle in the liquid and solid phases respectively.

• The Clausius-Clapeyron equation can be obtained by equating the chemical potentials

at the phase boundary,

µ`(T, P ) = µs(T, P ), and µ`(T + ∆T, P + ∆P ) = µs(T + ∆T, P + ∆P ).

Expanding the second equation, and using the thermodynamic identities

(

∂µ

∂T

)

P

= S, and

(

∂µ

∂P

)

T

= −V,

results in
(

∂P

∂T

)

melting

=
s` − ss

v` − vs
.

(f) It is found experimentally that v` − vs = 3Å3 per atom. Using this information, plus

the results obtained in previous parts, estimate (dP/dT )melting at T � TF .

• The negative slope of the phase boundary results from the solid having more entropy

than the liquid, and can be calculated from the Clausius-Clapeyron relation

(

∂P

∂T

)

melting

=
s` − ss

v` − vs
≈ kB

π2

4

(

T
TF

)

− ln 2

v` − vs
.

Using the values, T = 0.1 oK, TF = 9.2 J oK, and v` − vs = 3 Å3, we estimate

(

∂P

∂T

)

melting

≈ −2.7 × 106Pa ◦K−1,

in reasonable agreement with the observations.

********

2. Non-interacting bosons: Consider a grand canonical ensemble of non-interacting bosons

with chemical potential µ. The one–particle states are labelled by a wavevector ~q, and have

energies E(~q).

(a) What is the joint probability P ({n~q}), of finding a set of occupation numbers {n~q}, of

the one–particle states, in terms of the fugacities z~q ≡ exp [β(µ− E(~q))]?
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• In the grand canonical ensemble with chemical potential µ, the joint probability of

finding a set of occupation numbers {n~q}, for one–particle states of energies E(~q) is given

by the normalized bose distribution

P ({n~q}) =
∏

~q

{1 − exp [β(µ− E(~q))]} exp [β(µ− E(~q))n~q]

=
∏

~q

(1 − z~q) z
n~q

~q , with n~q = 0, 1, 2, · · · , for each ~q.

(b) For a particular ~q, calculate the characteristic function 〈exp [ikn~q]〉.
• Summing the geometric series with terms growing as

(

z~qe
ik
)n~q , gives

〈exp [ikn~q]〉 =
1 − exp [β(µ− E(~q))]

1 − exp [β(µ− E(~q)) + ik]
=

1 − z~q

1 − z~qeik
.

(c) Using the result of part (b), or otherwise, give expressions for the mean and variance

of n~q. occupation number 〈n~q〉.
• Cumulnats can be generated by expanding the logarithm of the characteristic function

in powers of k. Using the expansion formula for ln(1 + x), we obtain

ln 〈exp [ikn~q]〉 = ln (1 − z~q) − ln
[

1 − z~q

(

1 + ik − k2/2 + · · ·
)]

= − ln

[

1 − ik
z~q

1 − z~q
+
k2

2

z~q

1 − z~q
+ · · ·

]

= ik
z~q

1 − z~q
− k2

2

[

z~q

1 − z~q
+

(

z~q

1 − z~q

)2
]

+ · · ·

= ik
z~q

1 − z~q
− k2

2

z~q

(1 − z~q)
2 + · · · .

From the coefficients in the expansion, we can read off the mean and variance

〈n~q〉 =
z~q

1 − z~q
, and

〈

n2
~q

〉

c
=

z~q

(1 − z~q)
2 .

(d) Express the variance in part (c) in terms of the mean occupation number 〈n~q〉.
• Inverting the relation relating n~q to z~q, we obtain

z~q =
〈n~q〉

1 + 〈n~q〉
.
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Substituting this value in the expression for the variance gives

〈

n2
~q

〉

c
=

z~q

(1 − z~q)
2 = 〈n~q〉 (1 + 〈n~q〉) .

(e) Express your answer to part (a) in terms of the occupation numbers {〈n~q〉}.
• Using the relation between z~q and n~q, the joint probability can be reexpressed as

P ({n~q}) =
∏

~q

[

(〈n~q〉)n~q (1 + 〈n~q〉)−1−n~q

]

.

(f) Calculate the entropy of the probability distribution for bosons, in terms of {〈n~q〉}, and

comment on its zero temperature limit.

• Quite generally, the entropy of a probability distribution P is given by S = −kB 〈lnP 〉.
Since the occupation numbers of different one-particle states are independent, the corre-

sponding entropies are additive, and given by

S = −kB

∑

~q

[〈n~q〉 ln 〈n~q〉 − (1 + 〈n~q〉) ln (1 + 〈n~q〉)] .

In the zero temperature limit all occupation numbers are either 0 (for excited states) or

infinity (for the ground states). In either case the contribution to entropy is zero, and the

system at T = 0 has zero entropy.

********

3. Hard rods: A collection of N asymmetric molecules in two dimensions may be modeled

as a gas of rods, each of length 2l and lying in a plane. A rod can move by translation of

its center of mass and rotation about latter, as long as it does not encounter another rod.

Without treating the hard-core interaction exactly, we can incorporate it approximately

by assuming that the rotational motion of each rod is restricted (by the other rods) to an

angle θ, which in turn introduces an excluded volume Ω (θ) (associated with each rod).

The value of θ is then calculated self consistently by maximizing the entropy at a given

density n = N/V , where V is the total accessible area.

θ

2l

excluded
volume
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(a) Write down the entropy of such a collection of rods in terms of N , n, Ω, and A (θ),

the entropy associated to the rotational freedom of a single rod. (You may ignore the

momentum contributions throughout, and consider the large N limit.)

• Including both forms of entropy, translational and rotational, leads to

S = kB ln

[

1

N !

(

V − NΩ(θ)

2

)N

A(θ)N

]

≈ NkB

[

ln

(

n−1 − Ω(θ)

2

)

+ 1 + lnA(θ)

]

.

(b) Extremizing the entropy as a function of θ, relate the density to Ω, A, and their

derivatives Ω′, A′; express your result in the form n = f (Ω, A,Ω′, A′).

• The extremum condition ∂S/∂θ = 0 is equivalent to

Ω′

2n−1 − Ω
=
A′

A
,

where primes indicate derivatives with respect to θ. Solving for the density gives

n =
2A′

ΩA′ + Ω′A
.

(c) Express the excluded volume Ω in terms of θ and sketch f as a function of θ ∈ [0, π],

assuming A ∝ θ.

• Elementary geometry yields

Ω = l2 (θ + sin θ) ,

so that the equilibrium condition becomes

n = f (θ) =
2

l2
[θ (2 + cos θ) + sin θ]

−1
,

with the function f(θ) plotted below:

f(θ)

n

nc

θc0 θ π
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(d) Describe the equilibrium state at high densities. Can you identify a phase transition

as the density is decreased? Draw the corresponding critical density nc on your sketch.

What is the critical angle θc at the transition? You don’t need to calculate θc explicitly,

but give an (implicit) relation defining it. What value does θ adopt at n < nc?

• At high densities, θ � 1 and the equilibrium condition reduces to

N ≈ V

2θl2
;

the angle θ is as open as allowed by the close packing. The equilibrium value of θ increases

as the density is decreased, up to its “optimal” value θc at nc, and θ (n < nc) = θc. The

transition occurs at the minimum of f (θ), whence θc satisfies

d

dθ
[θ (2 + cos θ) + sin θ] = 0,

i.e.

2 (1 + cos θc) = θc sin θc.

********
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