
8.333: Statistical Mechanics I Fall 2003 Mid-term Quiz

Review Problems

The Mid-term quiz will take place on Wednesday10/22/03 in room 4-231 from

2:30 to 4:00 pm. There will be a recitation with quiz review on Monday 10/20/03.

All topics up to the micro-canonical ensemble will be covered. The exam is ‘closed

book,’ but if you wish you may bring a two-sided sheet of formulas. The enclosed exams

(and solutions) from the previous years are intended to help you review the material.

Solutions will be posted on the web-page.

********

Answer all three problems, but note that the first parts of each problem are easier

than its last parts. Therefore, make sure to proceed to the next problem when you get

stuck.

You may find the following information helpful:

Physical Constants

Electron mass me ≈ 9.1 × 10−31Kg Proton mass mp ≈ 1.7 × 10−27Kg

Electron Charge e ≈ 1.6 × 10−19C Planck’s const./2π h̄ ≈ 1.1 × 10−34Js−1

Speed of light c ≈ 3.0 × 108ms−1 Stefan’s const. σ ≈ 5.7 × 10−8Wm−2K−4

Boltzmann’s const. kB ≈ 1.4 × 10−23JK−1 Avogadro’s number N0 ≈ 6.0 × 1023mol−1

Conversion Factors

1atm ≡ 1.0 × 105Nm−2 1Å ≡ 10−10m 1eV ≡ 1.1 × 104K

Thermodynamics

dE = TdS+d̄W For a gas: d̄W = −PdV For a wire: d̄W = Jdx

Mathematical Formulas
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8.333: Statistical Mechanics I Fall 1998 Mid-term Quiz

1. Filament: For an elastic filament it is found that, at a finite range in temperature, a

displacement x requires a force

J = ax − bT + cTx,

where a, b, and c are constants. Furthermore, its heat capacity at constant displacement

is proportional to temperature, i.e. Cx = A(x)T .

(a) Use an appropriate Maxwell relation to calculate ∂S/∂x|T .

(b) Show that A has to in fact be independent of x, i.e. dA/dx = 0.

(c) Give the expression for S(T, x) assuming S(0, 0) = S0.

(d) Calculate the heat capacity at constant tension, i.e. CJ = T ∂S/∂T |J as a function of

T and J .

********

2. Viscosity: Consider a classical gas between two plates separated by a distance w.

One plate at y = 0 is stationary, while the other at y = w moves with a constant velocity

vx = u. A zeroth order approximation to the one particle density is,

f0
1 (~p, ~q) =

n

(2πmkBT )
3/2

exp

[

− 1

2mkBT

(

(px − mαy)2 + p2
y + p2

z

)

]

,

obtained from the uniform Maxwell–Boltzmann distribution by substituting the average

value of the velocity at each point. (α = u/w is the velocity gradient.)

(a) The above approximation does not satisfy the Boltzmann equation as the collision

term vanishes, while df0
1 /dt 6= 0. Find a better approximation, f 1

1 (~p), by linearizing the

Boltzmann equation, in the single collision time approximation, to

L
[

f1
1

]

≈
[

∂

∂t
+

~p

m
· ∂

∂~q

]

f0
1 ≈ −f1

1 − f0
1

τ×
,

where τ× is a characteristic mean time between collisions.

(b) Calculate the net transfer Πxy of the x component of the momentum, of particles

passing through a plane at y, per unit area and in unit time.

(c) Note that the answer to (b) is independent of y, indicating a uniform transverse force

Fx = −Πxy, exerted by the gas on each plate. Find the coefficient of viscosity, defined by

η = Fx/α.

********
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3. Molecular adsorption: N diatomic molecules are stuck on a metal surface of square

symmetry. Each molecule can either lie flat on the surface in which case it must be aligned

to one of two directions, x and y, or it can stand up along the z direction. There is an

energy cost of ε > 0 associated with a molecule standing up, and zero energy for molecules

lying flat along x or y directions.

(a) How many micro-states have the smallest value of energy? What is the largest micro-

state energy?

(b) For microcanonical macro-states of energy E, calculate the number of states Ω(E, N),

and the entropy S(E, N).

(c) Calculate the heat capacity C(T ) and sketch it.

(d) What is the probability that a specific molecule is standing up?

(e) What is the largest possible value of the internal energy at any positive temperature?

********
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8.333: Statistical Mechanics I Fall 1999 Mid-term Quiz

1. Photon gas Carnot cycle: The aim of this problem is to obtain the blackbody ra-

diation relation, E(T, V ) ∝ V T 4, starting from the equation of state, by performing an

infinitesimal Carnot cycle on the photon gas.

P

V
V V+dV

P+dP

T

T+dT
P

(a) Express the work done, W , in the above cycle, in terms of dV and dP .

(b) Express the heat absorbed, Q, in expanding the gas along an isotherm, in terms of P ,

dV , and an appropriate derivative of E(T, V ).

(c) Using the efficiency of the Carnot cycle, relate the above expressions for W and Q to

T and dT .

(d) Observations indicate that the pressure of the photon gas is given by P = AT 4,

where A = π2k4
B/45 (h̄c)

3
is a constant. Use this information to obtain E(T, V ), assuming

E(0, V ) = 0.

(e) Find the relation describing the adiabatic paths in the above cycle.

********

2. Moments of momentum: Consider a gas of N classical particles of mass m in thermal

equilibrium at a temperature T , in a box of volume V .

(a) Write down the equilibrium one particle density feq. (~p, ~q ), for coordinate ~q, and mo-

mentum ~p.

(b) Calculate the joint characteristic function,
〈

exp
(

−i~k · ~p
)〉

, for momentum.

(c) Find all the joint cumulants
〈

p`
xpm

y pn
z

〉

c
.

(d) Calculate the joint moment 〈pαpβ (~p · ~p )〉.
********

3. Light and matter: In this problem we use kinetic theory to explore the equilibrium

between atoms and radiation.

(a) The atoms are assumed to be either in their ground state a0, or in an excited state a1,

which has a higher energy ε. By considering the atoms as a collection of N fixed two-state

4



systems of energy E (i.e. ignoring their coordinates and momenta), calculate the ratio

n1/n0 of densities of atoms in the two states as a function of temperature T .

Consider photons γ of frequency ω = ε/h̄ and momentum |~p | = h̄ω/c, which can

interact with the atoms through the following processes:

(i) Spontaneous emission: a1 → a0 + γ.

(ii) Adsorption: a0 + γ → a1.

(iii) Stimulated emission: a1 + γ → a0 + γ + γ.

Assume that spontaneous emission occurs with a probability σsp, and that adsorption

and stimulated emission have constant (angle-independent) differential cross-sections of

σad/4π and σst/4π, respectively.

(b) Write down the Boltzmann equation governing the density f of the photon gas, treating

the atoms as fixed scatterers of densities n0 and n1.

(c) Find the equilibrium density feq. for the photons of the above frequency.

(d) According to Planck’s law, the density of photons at a temperature T depends on their

frequency ω as feq. = [exp (h̄ω/kBT ) − 1]
−1

/h3. What does this imply about the above

cross sections?

(e) Consider a situation in which light shines along the x axis on a collection of atoms

whose boundary coincides with the x = 0 plane, as illustrated in the figure.

x

γ

vacuum matter (n0 , n1 )

Clearly, f will depend on x (and px), but will be independent of y and z. Adapt the

Boltzmann equation you propose in part (b) to the case of a uniform incoming flux of

photons with momentum ~p = h̄ωx̂/c. What is the penetration length across which the

incoming flux decays?

********
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8.333: Statistical Mechanics I Fall 2000 Mid-term Quiz

1. Superconducting transition: Many metals become superconductors at low temperatures

T , and magnetic fields B. The heat capacities of the two phases at zero magnetic field are

approximately given by

{

Cs(T ) = V αT 3 in the superconducting phase

Cn(T ) = V
[

βT 3 + γT
]

in the normal phase
,

where V is the volume, and {α, β, γ} are constants. (There is no appreciable change in

volume at this transition, and mechanical work can be ignored throughout this problem.)

(a) Calculate the entropies Ss(T ) and Sn(T ) of the two phases at zero field, using the third

law of thermodynamics.

(b) Experiments indicate that there is no latent heat (L = 0) for the transition between

the normal and superconducting phases at zero field. Use this information to obtain the

transition temperature Tc, as a function of α, β, and γ.

(c) At zero temperature, the electrons in the superconductor form bound Cooper pairs.

As a result, the internal energy of the superconductor is reduced by an amount V ∆, i.e.

En(T = 0) = E0 and Es(T = 0) = E0−V ∆ for the metal and superconductor, respectively.

Calculate the internal energies of both phases at finite temperatures.

(d) By comparing the Gibbs free energies (or chemical potentials) in the two phases, obtain

an expression for the energy gap ∆ in terms of α, β, and γ.

(e) In the presence of a magnetic field B, inclusion of magnetic work results in dE =

TdS+BdM +µdN , where M is the magnetization. The superconducting phase is a perfect

diamagnet, expelling the magnetic field from its interior, such that Ms = −V B/(4π) in

appropriate units. The normal metal can be regarded as approximately non-magnetic,

with Mn = 0. Use this information, in conjunction with previous results, to show that the

superconducting phase becomes normal for magnetic fields larger than

Bc(T ) = B0

(

1 − T 2

T 2
c

)

,

giving an expression for B0.

********

2. Probabilities: Particles of type A or B are chosen independently with probabilities pA

and pB.

(a) What is the probability p(NA, N) that NA out of the N particles are of type A?

(b) Calculate the mean and the variance of NA.
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(c) Use the central limit theorem to obtain the probability p(NA, N) for large N .

(d) Apply Stirling’s approximation (ln N ! ≈ N lnN − N) to ln p(NA, N) [using the prob-

ability calculated in part (a), not part (c)] to find the most likely value, NA, for N � 1.

(e) Expand ln p(NA, N) calculated in (d) around its maximum to second order in
(

NA − NA

)

, and check for consistency with the result from the central limit theorem.

********

3. Thermal Conductivity: Consider a classical gas between two plates separated by a

distance w. One plate at y = 0 is maintained at a temperature T1, while the other plate at

y = w is at a different temperature T2. The gas velocity is zero, so that the initial zeroth

order approximation to the one particle density is,

f0
1 (~p, x, y, z) =

n(y)

[2πmkBT (y)]
3/2

exp

[

− ~p · ~p
2mkBT (y)

]

.

(a) What is the necessary relation between n(y) and T (y), to ensure that the gas velocity ~u

remains zero? (Use this relation between n(y) and T (y) in the remainder of this problem.)

(b) Using Wick’s theorem, or otherwise, show that

〈

p2
〉0 ≡ 〈pαpα〉0 = 3 (mkBT ) , and

〈

p4
〉0 ≡ 〈pαpαpβpβ〉0 = 15 (mkBT )

2
,

where 〈O〉0 indicates local averages with the Gaussian weight f 0
1 . Use the result

〈

p6
〉0

=

105(mkBT )3 (you don’t have to derive this) in conjunction with symmetry arguments to

conclude
〈

p2
yp4

〉0
= 35 (mkBT )

3
.

(c) The zeroth order approximation does not lead to relaxation of temperature/density

variations related as in part (a). Find a better (time independent) approximation f 1
1 (~p, y),

by linearizing the Boltzmann equation in the single collision time approximation, to

L
[

f1
1

]

≈
[

∂

∂t
+

py

m

∂

∂y

]

f0
1 ≈ −f1

1 − f0
1

τK
,

where τK is of the order of the mean time between collisions.

(d) Use f1
1 , along with the averages obtained in part (b), to calculate hy, the y component

of the heat transfer vector, and hence find K, the coefficient of thermal conductivity.

(e) What is the temperature profile, T (y), of the gas in steady state?

********
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