8.333: Statistical Mechanics I Mid-term Quiz Solutions Fall 2003

Answer all three problems, but note that the first parts of each problem are easier
than its last parts. Therefore, make sure to proceed to the next problem when you get
stuck.

You may find the following information helpful:

Physical Constants

Electron mass me ~ 9.1 x1073'Kg  Proton mass m, ~1.7x 1072"Kg
Electron Charge e~ 1.6 x 10719C Planck’s const./2r h~ 1.1 x 10734Js71
Speed of light c~3.0x10%ms™! Stefan’s const. o~57x 108 Wm—2K~*

Boltzmann’s const. kg ~ 1.4 x 10723JK~! Avogadro’s number Ny ~ 6.0 x 10?3mol~!

Conversion Factors

latm = 1.0 x 10°Nm ™2 1A=10""m leV = 1.1 x 10*K
Thermodynamics
dE =TdS+dW For a gas: dW = —PdV For a wire: dW = Jdx

Mathematical Formulas

i do 2 oo = 2y ()=

J25 dzexp [—ikx — %} =V2n02exp [—#] limy oo InN!'=NInN — N
(e7he) = oLy S () In (e=*) = 3200, S0 (a7,
cosh(x)zl—l—%-i—ﬁ—?-i---- ln(l—x):—zzo:l%"
Surface area of a unit sphere in d dimensions Sq = (fde_/i)!



1. Hard core gas: A gas obeys the equation of state P(V — Nb) = NkgT, and has a heat
capacity Cy independent of temperature. (N is kept fixed in the following.)

(a) Find the Maxwell relation involving 95/0V|p y.
e For dN =0,
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(b) By calculating dE(T, V'), show that E' is a function of T' (and N) only.
e Writing dS in terms of d7T" and dV/,
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Using the Maxwell relation from part (a), we find
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But from the equation of state, we get
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ie. E(T,N,V)= E(T,N) does not depend on V.

(¢) Show that v = Cp/Cy =1+ Nkp/Cy (independent of T" and V).
e The heat capacity is
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But, since £ = E(T) only,
oF oF
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and from the equation of state we get
ov NEk NEk
= —7, = COp=Cyv+Nkp, = y=1+72
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which is independent of T', since C'y, is independent of temperature. The independence of

Cy from V also follows from part (a).



(d) By writing an expression for E(P, V), or otherwise, show that an adiabatic change
satisfies the equation P(V — Nb)? =constant.

e Using the equation of state, we have

(PdV + (V — Nb)dP).

dE:CVdT:CVd(P(V_Nb)) Cv

Nkp ~ Nkp

The adiabatic condition, dQ) = dFE + PdV = 0, can now be written as

0=dQ = (1 + NC—I;> Pd(V — Nb) + ]\?—];(v — Nb)dP.

Dividing by Cy P(V — Nb)/(Nkpg) yields

dpP d(V — Nb)
— —_— = In[P(V — Nb)"| = .
Iz + 7y VD) 0, = I[PV b)7] = constant
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2. Energy of a gas: The probability density to find a particle of momentum p = (ps, py, p-)

in a gas at temperature 7' is given by

1 p2

p(p) = ———————~ exp (— ) ,  where p’=p-p
2rmkpT)>/? 2mkpT

(a) Using Wick’s theorem, or otherwise, calculate the averages (p*) and ((p - p)(p - p))-
e From the Gaussian form we obtain (papg) = mkpTdap, where o and 3 label any of the

three components of the momentum. Therefore:
<p2> = <pozpa> = kaT(saa = gkaT7
and using Wick’s theorem

(P-P)(PP)) = (Papapsps) = (MkpT)? [baaldps + 20ap0as] = 15 (mkpT)*.

(b) Calculate the characteristic function for the energy e = p?/2m of a gas particle.
e The characteristic function ¢ is the average <e“’CE >, which is easily calculated by Gaussian

integration as

, o d’p 1 p? _
ike\ __ itkp®/2m\ __ L _ o 3/2
<e > = <e > - / o kBiT)?’/Q exp [(zk —kBT> —2m] (1 —ikkpT) .
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(c) Using the characteristic function, or otherwise, calculate the m™ cumulant of the

particle energy ().

e The cumulants are obtained from the expansion

n(es) = 3 ”:2? (™) — —g In(1 — ikkpT) = g s BB D)7 ym,

(") = S m = D! (ksT)"

(d) The total energy of a gas of N (independent) particles is given by E = Zf\il €;, where
g; is the kinetic energy of the " particle, as given above. Use the central limit theorem
to compute the probability density for energy, p(E), for N > 1.

e Since the energy E is the sum of N identically distributed independent variables, its

cumulants are simply N times those for a signle variable, i.e.

3 m
(E™), = N (™), = SN(m = 1! (ksT)™
According to the central limit theorem, in the large N limit the mean and variance are

sufficient to describe the probability density, which thus assumes the Gaussian form

1

. (E —3NkgT/2)?
V3rNkgT P

3NkpT

p(E) =

Kokokoskkk ko

3. ‘Relativistic” gas: Consider a gas of particles with a ‘relativistic’ one particle Hamil-

tonian H; = c|p|, where |p| = ,/p3 + pi + p? is the magnitude of the momentum. (The
external potential is assumed to be zero, expect at the edges of the box confining the

gas particles.) Throughout this problem treat the two body interactions and collisions

precisely as in the case of classical particles considered in lectures.

(a) Write down the Boltzmann equation for the one-particle density f;(p,q,t), using the
same collision form as employed in lectures (without derivation).

e The Boltzmann equation has the general form

Lf1 = C[f1, f1]-
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The collision term is assumed to be the same as in the classical case derived in lectures,

and thus given by

Clfi fi] = — / Ppad®blva — vi| [f1(p1) fr(p2) — f1 (D)) f1 (D).

(There are various subtleties in treatment of relativistic collisions, such as the meaning of

|ve — v1|, which shall be ignored here.) The streaming terms have the form

OH1

L at) = fr + {Ho, fi} = {at + o

aa} fi= [at +cp—aaa} fi.
p|

(b) The two body collisions conserve the number of particles, the momentum, and the
particle energies as given by H;. Write down the most general form fY(p,q,t) that sets
the collision integrand in the Boltzmann equation to zero. (You do not need to normalize
this solution.)

e The integrand in C[f1, f1] is zero if at each q, In f1(p1)+1n f1(p2) = In f1(p})+1n f1(p3).
This can be achieved if In f; = > " a,(q,t)x,(p), where x,(p) are quantities conserved in
a two body collision, and a, are functions independent of p. In our case, the conserved

quantities are 1 (particle number), p (momentum), and c|p| (energy), leading to

f(p,a,t) = exp[—ao(q,t) — ai(q, t)-p — az(q, t)c|p|].

For any function y(p) which is conserved in the collisions, there is a hydrodynamic

equation of the form

By (n (X)) + Oa (n <c|%*|x>) —n{(dx) —n <c|%"|aax> —0,

where n(q,t) = [d®pfi(p,q,t) is the local density, and
1 3
(O0) =~ [ &'pfi(p,q,)O.

(c) Obtain the equation governing the density n(q,t), in terms of the average local velocity

U = {cpa/|P|)-
e Substituting y = 1 in the conservation equation gives

on + 0y (nuy) = 0, with Uo = (cpa/|P|) -



(d) Find the hydrodynamic equation for the local momentum density 7, (q,t) = (pa), in
terms of the pressure tensor P,z = nc ((pa — 7o) (0 — 73) /|P|)-
e Since momentum is conserved in the collisions, we can obtain a hydrodynamic equation

by putting xo = po — T4 in the general conservation form. Since (x,) = 0, this leads to

Op (n <CXB‘7+‘7TBX&>) + n0imo + nugdamy = 0.
p

Further simplification and rearrangements leads to

1 1 Xo
Dy = 0y, +uglpgmy = ——08Pgq — —0 (mrc<—>>
t t BYB n BLpB n B B |p|

(Unfortunately, as currently formulated, the problem does not lead to a clean answer, in

that there is a second term in the above result that does not depend on P,g3.)

(e) Find the (normalized) one particle density fi1(p,q,t) for a gas of N such particles in a
box of volume V', in equilibrium at a temperature 7.
e At equilibrium, the temperature 7" and the density n = N/V are uniform across the

system, and there is no local velocity. The general form obtained in part (b) now gives

N cpl\ 1 c \°
0
p,q,t) = — - — .
fi(p.a.1) V exp( k:BT) 8m (kgT)

The normalization factor is obtained by requiring N = V [d®pfi, noting that d°p =

Amp*dp, and using [ dpp™eP/% = nla™t1.
(f) Evaluate the pressure tensor P,z for the above gas in equilibrium at temperature 7.

e For the gas at equilibrium 7, = u, = 0, and the pressure tensor is given by

PaPp PaxDx nc /p-p
P, :nc< >znc§a < >:5a —<—>
’ p| ’\ Ip| ?3 \ Ipl

In rewriting the above equation we have taken advantage of the rotational symmetry of

the system. The expectation value is simply

_JyS dppPpe=cr/knT kT
o fooodpp2e—cp/kBT - c

(Ipl)

leading to
Pag = 5a5nkBT,

which is the usual formula for an ideal gas.
kookoskokoskokoskok



