
8.333: Statistical Mechanics I Mid-term Quiz Solutions Fall 2003

Answer all three problems, but note that the first parts of each problem are easier

than its last parts. Therefore, make sure to proceed to the next problem when you get

stuck.

You may find the following information helpful:

Physical Constants

Electron mass me ≈ 9.1 × 10−31Kg Proton mass mp ≈ 1.7 × 10−27Kg

Electron Charge e ≈ 1.6 × 10−19C Planck’s const./2π h̄ ≈ 1.1 × 10−34Js−1

Speed of light c ≈ 3.0 × 108ms−1 Stefan’s const. σ ≈ 5.7 × 10−8Wm−2K−4

Boltzmann’s const. kB ≈ 1.4 × 10−23JK−1 Avogadro’s number N0 ≈ 6.0 × 1023mol−1

Conversion Factors

1atm ≡ 1.0 × 105Nm−2 1Å ≡ 10−10m 1eV ≡ 1.1 × 104K

Thermodynamics

dE = TdS+d̄W For a gas: d̄W = −PdV For a wire: d̄W = Jdx

Mathematical Formulas
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∑∞
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∑∞
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1. Hard core gas: A gas obeys the equation of state P (V −Nb) = NkBT , and has a heat

capacity CV independent of temperature. (N is kept fixed in the following.)

(a) Find the Maxwell relation involving ∂S/∂V |T,N .

• For dN = 0,

d(E − TS) = −SdT − PdV, =⇒ ∂S

∂V

∣

∣

∣

∣

T,N

=
∂P

∂T

∣

∣

∣

∣

V,N

.

(b) By calculating dE(T, V ), show that E is a function of T (and N) only.

• Writing dS in terms of dT and dV ,

dE = TdS − PdV = T

(

∂S

∂T

∣

∣

∣

∣

V,N

dT +
∂S

∂V

∣

∣

∣

∣

T,N

dV

)

− PdV.

Using the Maxwell relation from part (a), we find

dE(T, V ) = T
∂S

∂T

∣

∣

∣

∣

V,N

dT +

(

T
∂P

∂T

∣

∣

∣

∣

V,N

− P

)

dV.

But from the equation of state, we get

P =
NkBT

(V − Nb)
, =⇒ ∂P

∂T

∣

∣

∣

∣

V,N

=
P

T
, =⇒ dE(T, V ) = T

∂S

∂T

∣

∣

∣

∣

V,N

dT,

i.e. E(T, N, V ) = E(T, N) does not depend on V .

(c) Show that γ ≡ CP /CV = 1 + NkB/CV (independent of T and V ).

• The heat capacity is

CP =
∂Q

∂T

∣

∣

∣

∣

P

=
∂E + P∂V

∂T

∣

∣

∣

∣

P

=
∂E

∂T

∣

∣

∣

∣

P

+ P
∂V

∂T

∣

∣

∣

∣

P

.

But, since E = E(T ) only,
∂E

∂T

∣

∣

∣

∣

P

=
∂E

∂T

∣

∣

∣

∣

V

= CV ,

and from the equation of state we get

∂V

∂T

∣

∣

∣

∣

P

=
NkB

P
, =⇒ CP = CV + NkB, =⇒ γ = 1 +

NkB

CV
,

which is independent of T , since CV is independent of temperature. The independence of

CV from V also follows from part (a).
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(d) By writing an expression for E(P, V ), or otherwise, show that an adiabatic change

satisfies the equation P (V − Nb)γ =constant.

• Using the equation of state, we have

dE = CV dT = CV d

(

P (V − Nb)

NkB

)

=
CV

NkB
(PdV + (V − Nb)dP ) .

The adiabatic condition, dQ = dE + PdV = 0, can now be written as

0 = dQ =

(

1 +
CV

NkB

)

Pd(V − Nb) +
CV

NkB
(V − Nb)dP.

Dividing by CV P (V − Nb)/(NkB) yields

dP

P
+ γ

d(V − Nb)

(V − Nb)
= 0, =⇒ ln [P (V − Nb)γ ] = constant.

********

2. Energy of a gas: The probability density to find a particle of momentum p ≡ (px, py, pz)

in a gas at temperature T is given by

p(p) =
1

(2πmkBT )
3/2

exp

(

− p2

2mkBT

)

, where p2 = p · p .

(a) Using Wick’s theorem, or otherwise, calculate the averages
〈

p2
〉

and 〈(p · p)(p · p)〉.
• From the Gaussian form we obtain 〈pαpβ〉 = mkBTδαβ , where α and β label any of the

three components of the momentum. Therefore:

〈

p2
〉

= 〈pαpα〉 = mkBTδαα = 3mkBT,

and using Wick’s theorem

〈(p · p)(p · p)〉 = 〈pαpαpβpβ〉 = (mkBT )
2
[δααδββ + 2δαβδαβ ] = 15 (mkBT )

2
.

(b) Calculate the characteristic function for the energy ε = p2/2m of a gas particle.

• The characteristic function ε is the average
〈

eikε
〉

, which is easily calculated by Gaussian

integration as

〈

eikε
〉

=
〈

eikp2/2m
〉

=

∫

d3p

(2πmkBT )
3/2

exp

[(

ik − 1

kBT

)

p2

2m

]

= (1 − ikkBT )
−3/2

.
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(c) Using the characteristic function, or otherwise, calculate the mth cumulant of the

particle energy 〈εm〉c.
• The cumulants are obtained from the expansion

ln
〈

eikε
〉

=
∞
∑

m=1

(ik)m

m!
〈εm〉c = −3

2
ln (1 − ikkBT ) =

3

2

∞
∑

m=1

(kBT )
m

m
(ik)m,

as

〈εm〉c =
3

2
(m − 1)! (kBT )

m
.

(d) The total energy of a gas of N (independent) particles is given by E =
∑N

i=1 εi, where

εi is the kinetic energy of the ith particle, as given above. Use the central limit theorem

to compute the probability density for energy, p(E), for N � 1.

• Since the energy E is the sum of N identically distributed independent variables, its

cumulants are simply N times those for a signle variable, i.e.

〈Em〉c = N 〈εm〉c =
3

2
N(m − 1)! (kBT )

m
.

According to the central limit theorem, in the large N limit the mean and variance are

sufficient to describe the probability density, which thus assumes the Gaussian form

p(E) =
1√

3πNkBT
exp

[

− (E − 3NkBT/2)
2

3NkBT

]

.

********

3. ‘Relativistic’ gas: Consider a gas of particles with a ‘relativistic’ one particle Hamil-

tonian H1 = c|p|, where |p| =
√

p2
x + p2

y + p2
z is the magnitude of the momentum. (The

external potential is assumed to be zero, expect at the edges of the box confining the

gas particles.) Throughout this problem treat the two body interactions and collisions

precisely as in the case of classical particles considered in lectures.

(a) Write down the Boltzmann equation for the one-particle density f1(p,q, t), using the

same collision form as employed in lectures (without derivation).

• The Boltzmann equation has the general form

Lf1 = C[f1, f1].
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The collision term is assumed to be the same as in the classical case derived in lectures,

and thus given by

C[f1, f1] = −
∫

d3p2d
2b|v2 − v1| [f1(p1)f1(p2) − f1(p

′
1
)f1(p

′
2
)] .

(There are various subtleties in treatment of relativistic collisions, such as the meaning of

|v2 − v1|, which shall be ignored here.) The streaming terms have the form

Lf1(p,q, t) = ∂tf1 + {H1, f1} =

[

∂t +
∂H1

∂pα
∂α

]

f1 =

[

∂t + c
pα

|p|∂α

]

f1.

(b) The two body collisions conserve the number of particles, the momentum, and the

particle energies as given by H1. Write down the most general form f 0
1 (p,q, t) that sets

the collision integrand in the Boltzmann equation to zero. (You do not need to normalize

this solution.)

• The integrand in C[f1, f1] is zero if at each q, ln f1(p1)+ln f1(p2) = ln f1(p
′
1
)+ln f1(p

′
2
).

This can be achieved if ln f1 =
∑

µ aµ(q, t)χµ(p), where χµ(p) are quantities conserved in

a two body collision, and aµ are functions independent of p. In our case, the conserved

quantities are 1 (particle number), p (momentum), and c|p| (energy), leading to

f0
1 (p,q, t) = exp [−a0(q, t) − a1(q, t)·p− a2(q, t)c|p|] .

For any function χ(p) which is conserved in the collisions, there is a hydrodynamic

equation of the form

∂t (n 〈χ〉) + ∂α

(

n

〈

c
pα

|p|χ
〉)

− n 〈∂tχ〉 − n

〈

c
pα

|p|∂αχ

〉

= 0,

where n(q, t) =
∫

d3pf1(p,q, t) is the local density, and

〈O〉 =
1

n

∫

d3pf1(p,q, t)O.

(c) Obtain the equation governing the density n(q, t), in terms of the average local velocity

uα = 〈cpα/|p|〉.
• Substituting χ = 1 in the conservation equation gives

∂tn + ∂α (nuα) = 0, with uα = 〈cpα/|p|〉 .
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(d) Find the hydrodynamic equation for the local momentum density πα(q, t) ≡ 〈pα〉, in

terms of the pressure tensor Pαβ = nc 〈(pα − πα) (pβ − πβ) /|p|〉.
• Since momentum is conserved in the collisions, we can obtain a hydrodynamic equation

by putting χα = pα − πα in the general conservation form. Since 〈χα〉 = 0, this leads to

∂β

(

n

〈

c
χβ + πβ

|p| χα

〉)

+ n∂tπα + nuβ∂βπα = 0.

Further simplification and rearrangements leads to

Dtπα ≡ ∂tπα + uβ∂βπα = − 1

n
∂βPβα − 1

n
∂β

(

nπβc

〈

χα

|p|

〉)

.

(Unfortunately, as currently formulated, the problem does not lead to a clean answer, in

that there is a second term in the above result that does not depend on Pαβ .)

(e) Find the (normalized) one particle density f1(p,q, t) for a gas of N such particles in a

box of volume V , in equilibrium at a temperature T .

• At equilibrium, the temperature T and the density n = N/V are uniform across the

system, and there is no local velocity. The general form obtained in part (b) now gives

f0
1 (p,q, t) =

N

V
exp

(

− c|p|
kBT

)

1

8π

(

c

kBT

)3

.

The normalization factor is obtained by requiring N = V
∫

d3pf1, noting that d3p =

4πp2dp, and using
∫∞
0

dppne−p/a = n!an+1.

(f) Evaluate the pressure tensor Pαβ for the above gas in equilibrium at temperature T .

• For the gas at equilibrium πα = uα = 0, and the pressure tensor is given by

Pαβ = nc

〈

pαpβ

|p|

〉

= ncδαβ

〈

pxpx

|p|

〉

= δαβ
nc

3

〈

p · p
|p|

〉

.

In rewriting the above equation we have taken advantage of the rotational symmetry of

the system. The expectation value is simply

〈|p|〉 =

∫∞
0

dpp2pe−cp/kBT

∫∞
0

dpp2e−cp/kBT
= 3

kBT

c
,

leading to

Pαβ = δαβnkBT,

which is the usual formula for an ideal gas.

********
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