8.333: Statistical Mechanics I Mid-term Quiz Solutions Fall 2000

1. Superconducting transition: Many metals become superconductors at low temperatures
T, and magnetic fields B. The heat capacities of the two phases at zero magnetic field are

approximately given by

Cy(T) =VaT? in the superconducting phase
C,(Th=V [ﬁT?’ +7T] in the normal phase

where V' is the volume, and {«, 3,7} are constants. (There is no appreciable change in

volume at this transition, and mechanical work can be ignored throughout this problem.)

(a) Calculate the entropies S¢(T") and S,,(T") of the two phases at zero field, using the third
law of thermodynamics.

e Finite temperature entropies are obtained by integrating dS = dQ/T, starting from
S(T = 0) = 0. Using the heat capacities to obtain the heat inputs, we find

dsS aT?
s — T3:T Sa s —V 5
Cs =Va 1T Ss=V 3
n T? '
cn:v[ﬁT?’ﬂT}:T%, snzv[%ﬂT]

(b) Experiments indicate that there is no latent heat (L = 0) for the transition between
the normal and superconducting phases at zero field. Use this information to obtain the
transition temperature 7T,, as a function of «, 3, and 7.

e The Latent hear for the transition is related to the difference in entropies, and thus
L=T.(S,(T.) — Ss(T.)) = 0.

Using the entropies calculated in the previous part, we obtain

aT3  BT3 3y
c — C TC) — TC — .
3 5 7 a_p

(¢) At zero temperature, the electrons in the superconductor form bound Cooper pairs.
As a result, the internal energy of the superconductor is reduced by an amount VA, i.e.
E,.(T'=0) = Eyand E;(T = 0) = Ey—V A for the metal and superconductor, respectively.

Calculate the internal energies of both phases at finite temperatures.
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e Since dE = TdS + BdM + pdN, for dN = 0, and B = 0, we have dEE = TdS = CdT.
Integrating the given expressions for heat capacity, and starting with the internal energies
FEpand Ey — VA at T =0, yields

E(T)=Ey +V [—A + %Tﬂ

En(T) = Eo+V ET‘* n %Tﬂ
(d) By comparing the Gibbs free energies (or chemical potentials) in the two phases, obtain
an expression for the energy gap A in terms of «, 3, and 7.
e The Gibbs free energy G = F — TS — BM = uN can be calculated for B = 0 in each

phase, using the results obtained before, as

Go(T) = Eg +V [—A + %T‘*] - TV%TS —Ey-V [A + %Tﬂ
_ Bra | Vo B s _ B Vel
Guo(T)=FEg+V |=T* 4+ =T°| =TV |ZT° +T| =Ey -V | =T+ =T
4 2 3 12 2
At the transition point, the chemical potentials (and hence the Gibbs free energies) must

be equal, leading to

a B o ol a—3
A+ —Tr="m74y 72 — A=172__"_"F74
Tole =gt Toles 27°¢ 12 ¢

Using the value of T. = /3v/(a — [3), we obtain

(e) In the presence of a magnetic field B, inclusion of magnetic work results in dE =
TdS+ BdM + pudN, where M is the magnetization. The superconducting phase is a perfect
diamagnet, expelling the magnetic field from its interior, such that My = =V B/(4r) in
appropriate units. The normal metal can be regarded as approximately non-magnetic,
with M,, = 0. Use this information, in conjunction with previous results, to show that the

superconducting phase becomes normal for magnetic fields larger than

T2
BC(T) - BO (1 - ﬁ) ,

giving an expression for By.



e Since dG = —SdT — MdB + pudN, we have to add the integral of —MdB to the Gibbs
free energies calculated in the previous section for B = 0. There is no change in the
metallic phase since M,, = 0, while in the superconducting phase there is an additional
contribution of — [ MydB = (V/4r) [ BdB = (V/8m)B?. Hence the Gibbs free energies
at finite field are

B o]y B
G(T, B) = Eq V[A+12T]+v87T
Go(T.B) = Eo— v | 21t 4 12 '
! 2" T2

Equating the Gibbs free energies gives a critical magnetic field

B; a=f 4 3 ¥ v a-p

c Y2 4 2 4
Ze _A_ LT T = — LT T
8T 2 + 12 4da—-pF 2 + 12
2 2
_ T _
a—p3 3 _ by L7 = a—f (Tf—Tz)Z,
12 a— [ a— 0 12

where we have used the values of A and T, obtained before. Taking the square root of the

above expression gives

T /2 — [ 62
BCZB()(l_T_CQ)’ where By = MTEZ aTﬁ:TC\/Qﬂ'y.

ok ok kookook ok ok

2. Probabilities: Particles of type A or B are chosen independently with probabilities p 4

and ppg.

(a) What is the probability p(N4, N) that N4 out of the N particles are of type A?

e The answer is the binomial probability distribution

B N N
T NAI(N - NyPA

A, N—Np

Pp

p(Na, N)

(b) Calculate the mean and the variance of N 4.

e We can write



where t; = 1 if the i-th particle is A, and 0 if it is B. The mean value is then equal to

N
(Na) :Z Z(PAXl—l—pBXO):NpA-

=1 =1

Similarly, since the {t;} are independent variables,

(¥, = 30 (6) ~ (07) = 3 (oa — 12) = Npaps

i=1

(c) Use the central limit theorem to obtain the probability p(/N 4, N) for large V.
e According to the central limit theorem the PDF of the sum of independent variables
for large N approaches a Gaussian of the right mean and variance. Using the mean and

variance calculated in the previous part, we get

(NA—NpA)2 1
li Nag, N) = - .
N p(Na, N) ~ exp [ 2NpapB V2rNpapp

(d) Apply Stirling’s approximation (In N!~ NIn N — N) to Inp(Na, N) [using the prob-
ability calculated in part (a), not part (c)] to find the most likely value, N4, for N > 1.

e Applying Stirling’s approximation to the logarithm of the binomial distribution gives
Inp(Na, N)=InN!—InNg! —In(N — Ng)!+ Nalnps + (N — Na)lnpp
N Ny
~—Naln ( A}“) — (N = N4)ln (1 - W) + Nalnpa+ (N — Ny)lnpg.

The most likely value, N4, is obtained by setting the derivative of the above expression

with respect to N4 to zero, i.e.

+mPA -0, — Ny=paN.
bB

dlnp__ln [N—A N }
dNs N N-N,4

Thus the most likely value is the same as the mean in this limit.

(e) Expand Inp(N4,N) calculated in (d) around its maximum to second order in
(N N — N—A), and check for consistency with the result from the central limit theorem.

e Taking a second derivative of Inp gives

d’Inp B 1 1 N 1

AN Na N-Na  Na(N—-Ni)  Npaps’



The expansion of Inp around its maximum thus gives

2
lnp ~ (Na—paN)
npr —————*
2Npapa
which is consistent with the result from the central limit theorem. The correct normaliza-

tion is also obtained if the next term in the Stirling approximation is included.
kKA KKK

3. Thermal Conductivity: Consider a classical gas between two plates separated by a
distance w. One plate at y = 0 is maintained at a temperature 77, while the other plate at
y = w is at a different temperature T5. The gas velocity is zero, so that the initial zeroth

order approximation to the one particle density is,

Py, ) = — "W PP }

[2rmkpT (y)]>> P {_ 2mkpT (y)

(a) What is the necessary relation between n(y) and T'(y), to ensure that the gas velocity @
remains zero? (Use this relation between n(y) and T'(y) in the remainder of this problem.)

e Since there is no external force acting on the gas between plates, the gas can only flow
locally if there are variations in pressure. Since the local pressure is P(y) = n(y)kgT (y),

the condition for the fluid to be stationary is

n(y)T(y) = constant.

(b) Using Wick’s theorem, or otherwise, show that

0 0
(p*)" = (papa)’ =3 (mkpT), and (p*)" = (papapsps)’ =15 (mkpT)?,

where ((9)0 indicates local averages with the Gaussian weight f. Use the result <p6>0 =
105(mkgT)? (you don’t have to derive this) in conjunction with symmetry arguments to

conclude
0
<p§p4> = 35 (mkpT)’ .

e The Gaussian weight has a covariance (papg)o = 0q3(mkpT). Using Wick’s theorem
gives
<p2> papa = (mkpT) daa = 3 (mkpT).
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Similarly

(0" = (papapsps)” = (MkT)? (Saa + 20a50as) = 15 (mkpT)? .

The symmetry along the three directions implies

1
") = ") = (2" = 5 (v**)’ = 5 % 105 (mkpT)* = 35 (mkpT)*.

(¢) The zeroth order approximation does not lead to relaxation of temperature/density
variations related as in part (a). Find a better (time independent) approximation f{(p,y),
by linearizing the Boltzmann equation in the single collision time approximation, to

o 1 _ 0
Clf] = |l Lo A

where T is of the order of the mean time between collisions.

e Since there are only variations in y, we have

2

9 'y 01 0_ 0Py 0_ 0Py 3nT p 3
[Bt + m@y} h ! may nfi ! may S 2mkgT 2 n(2mmkp)

_ 0Py {(%n 30,T P’ (9T] o opy{ b p? ]%T
= f0Y _ 2 = _ Ty

m| n 2T ' 2mkgT T Y| 2 2mkgT| T

where in the last equality we have used nT" = constant to get d,n/n = —0,T/T. Hence

the first order result is
2
p— 1 —_ —_— _ — [ .
f1 (0 y) = 1 (P,y) { TK (2 T 2) T

d) Use f{, along with the averages obtained in part (b), to calculate h,,, the ¥ component
1 g g y Y

of the heat transfer vector, and hence find K, the coefficient of thermal conductivity.

e Since the velocity « is zero, the heat transfer vector is

me2\ n o\ 1
hy:n<cy7> :2—m2<pyp> :

In the zeroth order Gaussian weight all odd moments of p have zero average. The correc-

tions in f{, however, give a non-zero heat transfer

0
n 0,1 /p p? 5
hy = o [Py 2 ) pp?)
v K92 T <m <2mk:BT 2)pyp>




Note that we need the Gaussian averages of <p§p4>0 and <p§p2>0. From the results of part

(b), these averages are equal to 35(mkpT)? and 5(mkpT)?, respectively. Hence

2 (35 H5x5H 5nrk3T
hy:: —T 5;;5'7fr‘(ﬂ@k31“ <7§'—' 9 ) ::———————————3y11

The coefficient of thermal conductivity relates the heat transferred to the temperature

gradient by h=-K VT, and hence we can identify

_ bnrgkET

2 m

(e) What is the temperature profile, T'(y), of the gas in steady state?

e Since 9,7 is proportional to —Jyh,, there will be no time variation if h, is a constant.
But h, = —K0,T, where K, which is proportional to the product n7’, is a constant in
the situation under investigation. Hence 0,7 must be constant, and T'(y) varies linearly
between the two plates. Subject to the boundary conditions of 7'(0) = T4, and T'(w) = Tb,
this gives

Ty — T
T(y) =T+ 2 Ly

Kokokokkk ko



