
8.333: Statistical Mechanics I Mid-term Quiz Solutions Fall 2000

1. Superconducting transition: Many metals become superconductors at low temperatures

T , and magnetic fields B. The heat capacities of the two phases at zero magnetic field are

approximately given by

{

Cs(T ) = V αT 3 in the superconducting phase

Cn(T ) = V
[

βT 3 + γT
]

in the normal phase
,

where V is the volume, and {α, β, γ} are constants. (There is no appreciable change in

volume at this transition, and mechanical work can be ignored throughout this problem.)

(a) Calculate the entropies Ss(T ) and Sn(T ) of the two phases at zero field, using the third

law of thermodynamics.

• Finite temperature entropies are obtained by integrating dS = d̄Q/T , starting from

S(T = 0) = 0. Using the heat capacities to obtain the heat inputs, we find















Cs = V αT 3 = T
dSs

dT
, =⇒ Ss = V

αT 3

3
,

Cn = V
[

βT 3 + γT
]

= T
dSn

dT
, =⇒ Sn = V

[

βT 3

3
+ γT

] .

(b) Experiments indicate that there is no latent heat (L = 0) for the transition between

the normal and superconducting phases at zero field. Use this information to obtain the

transition temperature Tc, as a function of α, β, and γ.

• The Latent hear for the transition is related to the difference in entropies, and thus

L = Tc (Sn(Tc) − Ss(Tc)) = 0.

Using the entropies calculated in the previous part, we obtain

αT 3

c

3
=

βT 3

c

3
+ γTc, =⇒ Tc =

√

3γ

α − β
.

(c) At zero temperature, the electrons in the superconductor form bound Cooper pairs.

As a result, the internal energy of the superconductor is reduced by an amount V ∆, i.e.

En(T = 0) = E0 and Es(T = 0) = E0−V ∆ for the metal and superconductor, respectively.

Calculate the internal energies of both phases at finite temperatures.
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• Since dE = TdS + BdM + µdN , for dN = 0, and B = 0, we have dE = TdS = CdT .

Integrating the given expressions for heat capacity, and starting with the internal energies

E0 and E0 − V ∆ at T = 0, yields











Es(T ) = E0 + V
[

−∆ +
α

4
T 4

]

En(T ) = E0 + V

[

β

4
T 4 +

γ

2
T 2

] .

(d) By comparing the Gibbs free energies (or chemical potentials) in the two phases, obtain

an expression for the energy gap ∆ in terms of α, β, and γ.

• The Gibbs free energy G = E − TS − BM = µN can be calculated for B = 0 in each

phase, using the results obtained before, as











Gs(T ) = E0 + V
[

−∆ +
α

4
T 4

]

− TV
α

3
T 3 = E0 − V

[

∆ +
α

12
T 4

]

Gn(T ) = E0 + V

[

β

4
T 4 +

γ

2
T 2

]

− TV

[

β

3
T 3 + γT

]

= E0 − V

[

β

12
T 4 +

γ

2
T 2

] .

At the transition point, the chemical potentials (and hence the Gibbs free energies) must

be equal, leading to

∆ +
α

12
T 4

c =
β

12
T 4

c +
γ

2
T 2

c , =⇒ ∆ =
γ

2
T 2

c − α − β

12
T 4

c .

Using the value of Tc =
√

3γ/(α− β), we obtain

∆ =
3

4

γ2

α − β
.

(e) In the presence of a magnetic field B, inclusion of magnetic work results in dE =

TdS+BdM +µdN , where M is the magnetization. The superconducting phase is a perfect

diamagnet, expelling the magnetic field from its interior, such that Ms = −V B/(4π) in

appropriate units. The normal metal can be regarded as approximately non-magnetic,

with Mn = 0. Use this information, in conjunction with previous results, to show that the

superconducting phase becomes normal for magnetic fields larger than

Bc(T ) = B0

(

1 − T 2

T 2
c

)

,

giving an expression for B0.
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• Since dG = −SdT − MdB + µdN , we have to add the integral of −MdB to the Gibbs

free energies calculated in the previous section for B = 0. There is no change in the

metallic phase since Mn = 0, while in the superconducting phase there is an additional

contribution of −
∫

MsdB = (V/4π)
∫

BdB = (V/8π)B2. Hence the Gibbs free energies

at finite field are














Gs(T, B) = E0 − V
[

∆ +
α

12
T 4

]

+ V
B2

8π

Gn(T, B) = E0 − V

[

β

12
T 4 +

γ

2
T 2

] .

Equating the Gibbs free energies gives a critical magnetic field

B2

c

8π
= ∆ − γ

2
T 2 +

α − β

12
T 4 =

3

4

γ2

α − β
− γ

2
T 2 +

α − β

12
T 4

=
α − β

12

[

(

3γ

α − β

)2

− 6γT 2

α − β
+ T 4

]

=
α − β

12

(

T 2

c − T 2
)2

,

where we have used the values of ∆ and Tc obtained before. Taking the square root of the

above expression gives

Bc = B0

(

1 − T 2

T 2
c

)

, where B0 =

√

2π(α − β)

3
T 2

c =

√

6πγ2

α − β
= Tc

√

2πγ.

********

2. Probabilities: Particles of type A or B are chosen independently with probabilities pA

and pB.

(a) What is the probability p(NA, N) that NA out of the N particles are of type A?

• The answer is the binomial probability distribution

p(NA, N) =
N !

NA!(N − NA)!
pNA

A pN−NB

B .

(b) Calculate the mean and the variance of NA.

• We can write

nA =
N

∑

i=1

ti,
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where ti = 1 if the i-th particle is A, and 0 if it is B. The mean value is then equal to

〈NA〉 =

N
∑

i=1

〈ti〉 =

N
∑

i=1

(pA × 1 + pB × 0) = NpA.

Similarly, since the {ti} are independent variables,

〈

N2

A

〉

c
=

N
∑

i=1

(

〈

t2i
〉

− 〈ti〉2
)

=

N
∑

i=1

(

pA − p2

A

)

= NpApB .

(c) Use the central limit theorem to obtain the probability p(NA, N) for large N .

• According to the central limit theorem the PDF of the sum of independent variables

for large N approaches a Gaussian of the right mean and variance. Using the mean and

variance calculated in the previous part, we get

lim
N�1

p(NA, N) ≈ exp

[

− (NA − NpA)
2

2NpApB

]

1√
2πNpApB

.

(d) Apply Stirling’s approximation (ln N ! ≈ N lnN − N) to ln p(NA, N) [using the prob-

ability calculated in part (a), not part (c)] to find the most likely value, NA, for N � 1.

• Applying Stirling’s approximation to the logarithm of the binomial distribution gives

ln p(NA, N) = ln N ! − ln NA! − ln(N − NA)! + NA ln pA + (N − NA) ln pB

≈ −NA ln

(

NA

N

)

− (N − NA) ln

(

1 − NA

N

)

+ NA ln pA + (N − NA) ln pB.

The most likely value, NA, is obtained by setting the derivative of the above expression

with respect to NA to zero, i.e.

d ln p

dNA
= − ln

[

NA

N

N

N − NA

]

+ ln
pA

pB
= 0, =⇒ NA = pAN.

Thus the most likely value is the same as the mean in this limit.

(e) Expand ln p(NA, N) calculated in (d) around its maximum to second order in
(

NA − NA

)

, and check for consistency with the result from the central limit theorem.

• Taking a second derivative of ln p gives

d2 ln p

dN2

A

= − 1

NA

− 1

N − NA

= − N

NA

(

N − NA

) = − 1

NpApB
.
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The expansion of ln p around its maximum thus gives

ln p ≈ − (NA − pAN)
2

2NpApB
,

which is consistent with the result from the central limit theorem. The correct normaliza-

tion is also obtained if the next term in the Stirling approximation is included.

********

3. Thermal Conductivity: Consider a classical gas between two plates separated by a

distance w. One plate at y = 0 is maintained at a temperature T1, while the other plate at

y = w is at a different temperature T2. The gas velocity is zero, so that the initial zeroth

order approximation to the one particle density is,

f0

1 (~p, x, y, z) =
n(y)

[2πmkBT (y)]
3/2

exp

[

− ~p · ~p
2mkBT (y)

]

.

(a) What is the necessary relation between n(y) and T (y), to ensure that the gas velocity ~u

remains zero? (Use this relation between n(y) and T (y) in the remainder of this problem.)

• Since there is no external force acting on the gas between plates, the gas can only flow

locally if there are variations in pressure. Since the local pressure is P (y) = n(y)kBT (y),

the condition for the fluid to be stationary is

n(y)T (y) = constant.

(b) Using Wick’s theorem, or otherwise, show that

〈

p2
〉0 ≡ 〈pαpα〉0 = 3 (mkBT ) , and

〈

p4
〉0 ≡ 〈pαpαpβpβ〉0 = 15 (mkBT )

2
,

where 〈O〉0 indicates local averages with the Gaussian weight f 0

1
. Use the result

〈

p6
〉0

=

105(mkBT )3 (you don’t have to derive this) in conjunction with symmetry arguments to

conclude
〈

p2

yp4
〉0

= 35 (mkBT )
3
.

• The Gaussian weight has a covariance 〈pαpβ〉0 = δαβ(mkBT ). Using Wick’s theorem

gives
〈

p2
〉0

= 〈pαpα〉0 = (mkBT ) δαα = 3 (mkBT ) .
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Similarly

〈

p4
〉0

= 〈pαpαpβpβ〉0 = (mkBT )
2
(δαα + 2δαβδαβ) = 15 (mkBT )

2
.

The symmetry along the three directions implies

〈

p2

xp4
〉0

=
〈

p2

yp4
〉0

=
〈

p2

zp
4
〉0

=
1

3

〈

p2p4
〉0

=
1

3
× 105 (mkBT )

3
= 35 (mkBT )

3
.

(c) The zeroth order approximation does not lead to relaxation of temperature/density

variations related as in part (a). Find a better (time independent) approximation f 1

1
(~p, y),

by linearizing the Boltzmann equation in the single collision time approximation, to

L
[

f1

1

]

≈
[

∂

∂t
+

py

m

∂

∂y

]

f0

1
≈ −f1

1
− f0

1

τK
,

where τK is of the order of the mean time between collisions.

• Since there are only variations in y, we have

[

∂

∂t
+

py

m

∂

∂y

]

f0

1
= f0

1

py

m
∂y ln f0

1
= f0

1

py

m
∂y

[

lnn − 3

2
ln T − p2

2mkBT
− 3

2
ln (2πmkB)

]

= f0

1

py

m

[

∂yn

n
− 3

2

∂yT

T
+

p2

2mkBT

∂T

T

]

= f0

1

py

m

[

−5

2
+

p2

2mkBT

]

∂yT

T
,

where in the last equality we have used nT = constant to get ∂yn/n = −∂yT/T . Hence

the first order result is

f1

1 (~p, y) = f0

1 (~p, y)

[

1 − τK
py

m

(

p2

2mkBT
− 5

2

)

∂yT

T

]

.

(d) Use f1

1 , along with the averages obtained in part (b), to calculate hy, the y component

of the heat transfer vector, and hence find K, the coefficient of thermal conductivity.

• Since the velocity ~u is zero, the heat transfer vector is

hy = n

〈

cy
mc2

2

〉1

=
n

2m2

〈

pyp2
〉1

.

In the zeroth order Gaussian weight all odd moments of p have zero average. The correc-

tions in f1

1
, however, give a non-zero heat transfer

hy = −τK
n

2m2

∂yT

T

〈

py

m

(

p2

2mkBT
− 5

2

)

pyp2

〉0

.
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Note that we need the Gaussian averages of
〈

p2

yp4
〉0

and
〈

p2

yp2
〉0

. From the results of part

(b), these averages are equal to 35(mkBT )3 and 5(mkBT )2, respectively. Hence

hy = −τK
n

2m3

∂yT

T
(mkBT )

2

(

35

2
− 5 × 5

2

)

= −5

2

nτKk2

BT

m
∂yT.

The coefficient of thermal conductivity relates the heat transferred to the temperature

gradient by ~h = −K∇T , and hence we can identify

K =
5

2

nτKk2

BT

m
.

(e) What is the temperature profile, T (y), of the gas in steady state?

• Since ∂tT is proportional to −∂yhy, there will be no time variation if hy is a constant.

But hy = −K∂yT , where K, which is proportional to the product nT , is a constant in

the situation under investigation. Hence ∂yT must be constant, and T (y) varies linearly

between the two plates. Subject to the boundary conditions of T (0) = T1, and T (w) = T2,

this gives

T (y) = T1 +
T2 − T1

w
y.

********
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