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V. Interacting Particles


V.A The Cumulant Expansion 

The examples studied in the previous section involve non-interacting particles. It is 

precisely the lack of interactions that renders these problems exactly solvable. Interactions, 

however, are responsible for the wealth of interesting materials and phases observed in 

nature. We would thus like to understand the role of interactions amongst particles, and 

learn how to treat them in statistical mechanics. For a general Hamiltonian, 

N 
� p 2β iHN = + U(qβ1, · · · , βqN ), (V.1)

2m 
i=1 

the partition function can be written as 

� d3 β pi1 
� N � 

pid
3βqi 
�

� β 2 

Z(T, V, N) = exp −� exp [−�U(qβ1, · · · , βqN )]
N ! h3 2m (V.2)

i=1 i 
0 

=Z0(T, V, N) �exp [−�U(qβ1, · · · , βqN )]� , 

where Z0(T, V, N) = V/�3 
�N 

/N ! is the partition function of the ideal gas (eq.(IV.73)), 
0

and �O� denotes the expectation value of O computed with the probability distribution of 

the non-interacting system. In terms of the cumulants of the random variable U , eq.(V.2) 

can be recast as 

ln Z = ln Z0 + 
� (−�)� � 

U � 
�0 

. (V.3)
λ! c 

�=1 

The cumulants are related to the moments by the relations in section II.B. Since U depends 

only on {βqi} which are uniformly and independently distributed within the box of volume 

V , the moments are given by 

� N 
� �0 � d3β
U � = 

qi 
U(qβ1, · · · , βqN )

� . (V.4)
V 

i=1 

Various expectation values can also be calculated perturbatively, from 

� d3β pi1 1 
� N � 

pid
3βqi 
�

� β 2 

�O� = exp −� exp [−�U (qβ1, · · · , βqN )] × O 
Z N ! h3 2m 

i=1 i (V.5)
0

�O exp [−�U ]� � 0
� 

= = i ln �exp [−ikO − �U ]� .
0 ��exp [−�U ]� �k k=0 
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The final expectation value generates the joint cumulants of the random variables O and 

U , as 
� �0 

0 
� (−ik)�� 

(−�)� 

O�� 

U � ,ln �exp [−ikO − �U ]� � (V.6)
λ�! λ! c 

�,�� =1 

resulting in 
� (−�)� � �0 

�O� = OU � . (V.7)
λ! c 

�=0 

The simplest system for treating interactions is again the dilute gas. As discussed in 

chapter II, for a weakly interacting gas we can specialize to 

U (qβ1, · · · , βqN ) = V (qβi − βqj ) , (V.8) 
i<j 

where V(βqi −βqj ) is a pair-wise interaction between particles. The first correction in eq.(V.3) 

is 
� d3qβi d

3βqj0
�U � = V(qβi − βqj )c V V 

i<j (V.9) 
N(N − 1) 

= d3qβV(βq ) . 
2V 

The final result is obtained by performing the integrals over the relative and center of mass 

coordinates of qβi and βqj separately. (Each of the N(N − 1)/2 pairs makes an identical 

contribution.) 

The second order correction, 

� 
0 0 0

U 2
�0 

= �V(qβi − βqj )V(βqk − βql )� − �V(qβi − βqj )� �V (qβk − βql )� , (V.10)
c


i<j, k<l


is the sum of [N(N − 1)/2]2 terms that can be grouped as follows: 

(i) There is no contribution from terms in which the four indices {i, j, k, l} are different. 
0

This is because the different {βqi} are independently distributed and �V(qβi − qβj )V(qβk − qβl )�
0 0

equals �V(qβi − qβj )� �V (qβk − βql )� . 

(ii) There is one common index between the two pairs, e.g. {(i, j), (i, l)}. By changing 
0 

qij = qβi − qβj and qβil = βqi − βcoordinates to β ql , it again follows that �V(qβi − qβj )V(qβi − qβl )�
0 0

equals �V (βqi − βqj )� �V(qβi − qβl )� . The vanishing of these terms is a consequence of the 

translational symmetry of the problem in the absence of an external potential. 
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(iii) In the remaining N (N − 1)/2 terms the pairs are identical, resulting in


� 
U2
�0 

= 
N (N − 1) d3qβ

V(βq )2 − 
d3βq 

V(βq ) 

�2 

. (V.11)
c 2 V V 

The second term in the above equation is smaller by a factor of d3/V , where d is a 

characteristic range for the potential V. For any reasonable potential that decays with 

distance, this term vanishes in the thermodynamic limit. 

Similar groupings occur for higher order terms in this cumulant expansion. It is helpful 

to visualize the terms in the expansion diagrammatically as follows: 

(a) For a term of order λ, draw λ pairs of points (representing βqi and βqj ) connected 

by bonds, representing the interaction V ij � V(βqi − βqj ). An overall factor of 1/λ! 

accompanies such graphs. 

(b) By multiple selections of the same index i, two or more bonds can be joined together 

forming a diagram of interconnected points. There is a factor S� associated with the 

number of ways of assigning labels 1 through N to the different points of the graph. 

Ignoring the differences between N , N − 1, etc., a diagram with ns points makes 
sa contribution proportional to N n . There is typically also division by a symmetry 

factor which takes into account the number of equivalent assignments. For example, 

the diagrams involving a pair of points, calculated in eqs.(V.9) and (V.11), have a 

symmetry factor of 1/2. 

(c) Apart from these numerical prefactors, the contribution of a diagram is an integral R� 

over all the ns coordinates qβi, of products of corresponding V ij . If the graphs has nc 

disconnected clusters, integration over the center of mass coordinates of the clusters 
cgives a factor of V n . 

Fortunately, many cancellations occur in calculating cumulants. In particular: 

• When calculating the moment 
� 
U � 
�0 

, the contribution of a disconnected diagram is sim­

ply the product of its disjoint clusters. The coordinates of these clusters are independent 

random variables, and make no contribution to the joint cumulant 
� 
U � 
�0 

. This result also 
c 

ensures the extensivity of ln Z, as the surviving connected diagrams give a factor of V 

from their center of mass integration. (Disconnected clusters have more factors of V , and 

are non-extensive.) 

• There are also one particle reducible clusters which are fully connected, yet fall to disjoint 

fragments if a single coordinate point is removed. By measuring all other coordinates 

relative to this special point, it can be seen that (in a translationally invariant system) 
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the value of such a diagram is the product of its disjoint fragments. It can be shown that 

such diagrams are also cancelled out in calculating the cumulant. Thus only one particle 

irreducible clusters survive in this cumulant expansion. A cluster with ns sites and λ bonds 
smakes a contribution of order of N(N/V )n −1(�V )� to ln Z. 

Ignoring terms of order of 1/N , the cumulant expansion leads to a corrected free 

energy, 

N2 � � 

F (T, V, N) = F0(T, V, N)+ d3qβV(βq ) − 
�

d3qβV(qβ )2 + O 
� 
�2V 3

� 

2V 2 
� � (V.12)

N3�2 V3 

+ O . 
V 2 

From this expression we can proceed to calculate other modified state functions, e.g. P = 

− �F/�V |T ,N . Unfortunately, the expansion in powers of �V is not particularly useful. 

The inter-atomic potential V(βr ) for most particles has an attractive tail due to van der 

Waals interactions that decays as −1/r6 at large separations r = |βr |. At short distances 

the overlap of the electron clouds makes the potential strongly repulsive. Typically there 

is a minimum of depth a few hundred degrees Kelvin, at a distance of a few angstroms. 

The infinity in V(βr ) at short distances makes it an unsuitable expansion parameter. This 

problem can be alleviated by a partial resummation of diagrams. For example, to get the 

correction at order of N 2/V , we need to sum over all two point clusters, independent of 

the number of bonds. The resulting sum is actually quite trivial, and leads to 

� �
� 

N3 � 
� (−�)n N(N − 1) d3βq

ln Z = ln Z0 + V(qβ )n + O 
n! 2 V V 2 

n=1 (V.13) 
� 

N3 � 
N(N − 1)

= ln Z0 + d3βq [exp (−�V (qβ )) − 1] + O . 
2V V 2 

The quantity f(qβ ) = exp (−�V (βq )) − 1 is a much more convenient expansion parameter 

which goes to −1 at short distances and rapidly vanishes for large separations. In the next 

section we shall recast the perturbative expansion in terms of this quantity. 
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