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VII.D Non-relativistic Gas 

Quantum particles are further characterized by a spin s. In the absence of a magnetic 

field different spin states have the same energy, and a spin degeneracy factor, g = 2s + 1, 

multiplies eqs.(VII.28)–(VII.31). In particular, for a non-relativistic gas in three dimen-
⎫ 

sions (E(ρk) = ¯ k � Vh2k2/2m, and β d3ρk/(2ψ)3) these equations reduce to 
⎞ � ⎬� 

h2k2λ¯
⎨ ⎨ 
λPα =

ln Qα 
= πg 

� 
d3ρk 

ln 

� 

1 − πz exp ,
⎨ 
⎨ 
⎨ V (2ψ)3 

− 
2m 

⎨ 
⎨ 
⎨ 
⎨ 
⎨ 
⎠ Nα d3ρk 1 

= g � �nα ∞ 
h2 k2 (VII.32)V (2ψ)3 

z−1 exp 2m − π
, 

⎨ 
⎨ 
⎨ 
⎨ 
⎨

� 
h2k2 

⎨ 
⎨ Eα d3ρk ¯ 1 
⎨ 
⎨ = g � � . 
⎨ βα ∞ 

h2k2 
⎧ V (2ψ)3 2m z−1 exp �¯

2m − π 

To simplify these equations, we change variables to x = λh̄2k2/(2m), so that 

2ψ1/2 ψ1/2 
1/2k = 

⇒
2mkB T

x 1/2 = x , =≥ dk = x −1/2dx. 
h̄ � � 

Substituting into eqs.(VII.32) gives 
⎞ � � g 4ψ3/2 

� 
⎨ 
⎨ λPα = − π 

2ψ2 
dx x 1/2 ln 

� 
1 − πze −x 

⎨ 
⎨ �3 
⎨ 0 
⎨ 
⎨ 
⎨ 
⎨ 
⎨ g 4 

� � dx x3/2 
⎨ 
⎨ = 

z−1ex − π
, (integration by parts) 

⎠ �3 3
⇒
ψ 0 (VII.33) 

⎨ g 2 
� � dx x1/2 

⎨ 
⎨ 
⎨ nα = 

z−1ex − π
, 

⎨ 
⎨ 
⎨ �3 

⇒
ψ 0 

⎨ 
⎨ 
⎨ 
⎨ g 2 

� � dx x3/2 
⎨ 
⎧ λβα = 

z−1ex − π�3 
⇒
ψ 0 

. 

We now define two sets of functions by


1 
� �
 dx xm−1 

fα 
m(z) = . (VII.34)

(m − 1)! z−1 ex − π0 

For non-integer arguments, the function m! �(m + 1) is defined by the integral 
⎫ � 

∞ 

dx xme−x . In particular, from this definition it follows that (1/2)! = 
⇒
ψ/2, and 

(3/2)! = (3/2)
⇒
ψ/2. Eqs.(VII.33) now take the simple form 

⎞ g 
⎨ λPα = 

�3 
f5

α
/2(z), ⎨ 

⎨ 
⎨ 
⎠ g 

nα = 
�3 
f3

α
/2(z), (VII.35) 

⎨ 
⎨ 
⎨ 
⎨ 3 
⎧ βα = Pα . 
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These results completely describe the thermodynamics of ideal quantum gases as a function 

of z. To find the equation of state Pα (nα , T ), we need to solve for z in terms of density. 

This requires knowledge of the behavior of the functions f α 
m(z). 

The high temperature, low density (non-degenerate) limit will be examined first. In 

this limit, z is small, and 

1 
� � dx xm−1 1 

� �
−x 
� � 

fα 
m(z) = 

(m − 1)! z−1ex − π 
=

(m − 1)! 
dx x m−1 

� 
ze 1 − πze −x 

�−1 

0 0 

1 
� � � 

⎛ 
� 

−x 
�� 

π�+1 = dx x m−1 ze 
(m − 1)! 0 �=1 

= 
⎛ 

π�+1 z � 1 
� � 

dx x m−1 e −�x


(m − 1)!

�=1 0


� 2 3 4

⎛ � z z z

π�+1 z= = z + π + + π + . 
�m 2m 3m 4m 

· · ·
�=1 

(VII.36) 

We thus find (self-consistently) that f α 
m(z), and hence nα (z) and Pα (z), are indeed small 

as z � 0. Eqs.(VII.35) in this limit give, 

⎞ 2 3 4z z z
⎨ 
⎨ 

nα 

g

�3 

= f3
α
/2(z) = z + π 

23/2 
+

33/2 
+ π 

43/2 
+ · · · ,

⎠ 
(VII.37)

2 3 4z z
⎨ 
⎧ 
⎨ λPα �

3 

= f5
α
/2(z) = z + π 

2

z
5/2 

+ + π + . 
g 35/2 45/2 

· · ·

The first of the above equations can be solved perturbatively, by the recursive procedure 

of substituting the solution up to a lower order, as 

2 3nα �
3 z z

z = 
g 

− π 
23/2 

− 
33/2 

− · · · 
� ⎬ 
nα �

3 π 
� 
nα �

3 ⎬2 

= (VII.38) 
g 

− 
23/2 g 

− · · ·

� ⎬ 

π 
� 
nα �

3 ⎬2 � ⎬�

nα �

3 1 1 nα �
3 ⎬3 

= +
4 
− 

33/2g 
− 

23/2 g g 
− · · · . 

Substituting this solution into the second leads to 

� ⎬ � � ⎬� 
nα �

3 ⎬3
λPα �

3 nα �
3 π nα �

3 ⎬2 
1 1 

= +
4 
− 

33/2g g 
− 

23/2 g g 

π 
� 
nα �

3 ⎬2 
1 nα �

3 ⎬3 
1 nα �

3 ⎬3 

+ + + . 
25/2 g 

− 
8 g 35/2 g 

· · ·
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The pressure of the quantum gas can thus be obtained from the virial expansion,


� ⎬ � 
π nα �

3 1 2 
⎬� 

nα �
3 ⎬2 

+
8 
− 

35/2 
+ . (VII.39)Pα = nα kB T 1 − 

25/2 g g 
· · · 

The second virial coefficient B2 = −π�3 /(25/2g), agrees with eq.(VII.22) computed in 

the canonical ensemble for g = 1. The natural (dimensionless) expansion parameter is 

nα �
3/g, and quantum mechanical effects become important when nα �

3 � g; the quantum 

degenerate limit. The behavior of fermi and bose gases is very different in this degenerate 

limit of low temperatures and high densities, and the two cases will be discussed separately 

in the following sections. 

VII.E The Degenerate Fermi Gas 

At zero temperature, the fermi occupation number,


1

= � � , (VII.40)√nβk �− 

� E(k)−µe + 1 

is one for E(ρk) < µ, and zero otherwise. The limiting value of µ at zero temperature is 

called the fermi energy, EF , and all one-particle states of energy less than EF are occupied, 

forming a fermi sea. For the ideal gas with E(ρk) = h̄2k2/(2m), there is a corresponding 

fermi wavenumber kF , calculated from 

⎛

� k<kF d3ρk V 
N = (2s + 1) = gV F . (VII.41)

(2ψ)3 
= g 

6ψ2 
k3 

|βk|�kF 

In terms of the density n = N/V , 

h2k2 h2 6ψ2n 
⎬2/3

6ψ2n 
⎬1/3 

¯ ¯
kF = , = EF (n) = F = . (VII.42) 

g 
≥ 

2m 2m g 

Note that while in a classical treatment the ideal gas has a large density of states at 

T = 0 (from �Classical = V N /N !), the quantum fermi gas has a unique ground state with 

� = 1. Once the one-particle momenta are specified (all ρk for |ρk| < kF ), there is only one 

anti-symmetrized state, as constructed in eq.(VII.7). 

To see how the fermi sea is modified at small temperatures, we need the behavior of 

f− 
m (z) for large z which, after integration by parts, is 

� ⎬ 

f− 
m (z) = 

1 
� � 

dx x m d −1 
. 

m! 0 dx z−1ex + 1 
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Since the fermi occupation number changes abruptly from one to zero, its derivative in the 

above equation is sharply peaked. We can expand around this peak by setting x = ln z + t, 

and extending the range of integration to −∼ < t < +∼, as 

� ⎬ 

f − 
m (z) ∝ 

1 
� � 

dt (ln z + t)m d −1 
m! −� dt et + 1 

� ⎬ 
⎛ m 

=
1 
� � 

dt 
� 

t (ln z)m−� d −1 
m! −� � dt et + 1 (VII.43) 

�=0 
� ⎬ 

(ln z)m � 

= 
⎛ m! 

(ln z)−� 
� � 

dt t� d −1 
. 

m! �!(m − �)! dt et + 1 
�=0 −� 

Using the (anti-) symmetry of the integrand under t � −t, and un-doing the integration 

by parts yields, 

⎞ 

1 
� � � ⎬ ⎨ 0 for � odd, 

⎠ 
dt t� d −1

= 2 
� � t�−1 

⎧ � (1) for � even.�! −� dt et + 1 ⎨ dt = 2f −


(� − 1)! et + 1
0 

Inserting the above into eq.(VII.43), and using tabulated values for the integrals f − 
� (1), 

leads to the Sommerfeld expansion, 

⎛ 
lim f − (ln z)m even 

2f − m! 
m (z) = � (1) (ln z)−� 

z�� m! (m − �)!
�=0 

(ln z)m ψ2 m(m − 1) 7ψ4 m(m − 1)(m − 2)(m − 3) 
= 1 + + + . 

m! 6 (ln z)2 360 (ln z)4 
· · · 
(VII.44) 

In the degenerate limit, the density and chemical potential are related by 

n�3 

= f3
− 
/2(z) = 

(ln z)3/2 

1 + 
ψ2 3 1 

(ln z)−2 + ≈ 1. (VII.45) 
g (3/2)! 6 2 2 

· · · 

The lowest order result reproduces the expression in eq.(VII.41) for the fermi energy, 

3 n�3 �2/3 
λh̄2 6ψ2n 

⎬2/3 

lim ln z = = = λEF . 
T �0 4

⇒
ψ g 2m g 

Inserting the zero temperature limit into eq.(VII.45) gives the first order correction, 

ψ2 � ⎬2 
�−2/3 

ψ2 � ⎬2
kB T kB T 

ln z = λEF 1 + + = λEF 1 − 
12 EF 

+ . (VII.46)
8 EF 

· · · · · · 
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The appropriate dimensionless expansion parameter is (kB T /EF ). Note that the fermion 

chemical potential µ = kB T ln z, is positive at low temperatures, and negative at high 

temperatures (from eq.(VII.38)). It changes sign at a temperature proportional to EF /kB . 

The low temperature expansion for the pressure is 

g (ln z)5/2 ψ2 5 3 
(ln z)−2 +λP = 1 + 

�

g 
3 
f5
− 
/2(z) = 

�3 (5/2)! 6 2 2 
· · · 

g 8(λEF )
5/2 5 ψ2 kB T 

⎬2 
5ψ2 kB T 

⎬2 

= 
�3 15

⇒
ψ 

1 − 
2 12 EF 

+ · · · 1 + 
8 EF 

+ · · · (VII.47) 

� ⎬2
5 
ψ2 kB T 

= PF 1 + + ,
12 EF 

· · · 

where PF = (2/5)nEF if the fermi pressure. Unlike its classical counterpart, the fermi gas 

at zero temperature has finite pressure and internal energy. 

The low temperature expansion for the internal energy is obtained easily from 

eq.(VII.47) using 
� ⎬2

E 3 3 5 
= P = nkB TF 1 + ψ2 T 

+ , (VII.48)
V 2 5 12 TF 

· · · 

where we have introduced the fermi temperature TF = EF /kB . Eq.(VII.48) leads to a low 

temperature heat capacity, 
� ⎬ � 

dE ψ2 T T 
⎬2 

CV = 
dT 

=
2 
N kB 

TF 
+ O 

TF 
. (VII.49) 

The linear vanishing of the heat capacity as T � 0 is a general feature of a fermi gas, valid 

in all dimensions. It has the following simple physical interpretation: The probability 

of occupying single-particle states, eq.(VII.40), is very close to a step function at small 

temperatures. Only particles within a distance of approximately kB T of the fermi energy 

can be thermally excited. This represents only a small fraction T /TF , of the total number 

of electrons. Each excited particle gains an energy of the order of kB T , leading to a 

change in the internal energy of approximately kB T N (T /TF ). Hence the heat capacity 

is given by CV = dE/dT � N kB T /TF . This conclusion is also valid for an interacting 

fermi gas. The fact that only a small number, N (T /TF ), of fermions are excited at small 

temperatures accounts for many interesting properties of fermi gases. For example, the 

magnetic susceptibility of a classical gas of N non-interacting particles of magnetic moment 

µB follows the Curie law, α → N µ2 
B /(kB T ). Since quantum mechanically, only a fraction 

of spins contributes at low temperatures, the low temperature susceptibility saturates to 

a (Pauli) value of α → N µ2 
B /(kB TF ) (see the problems for the details of this calculation.) 
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