V.F Variational Methods

Perturbative methods provide a systematic way of incorporating the effect of inter-
actions, but are impractical for the study of strongly interacting systems. While the first
few terms in the virial series slightly modify the behavior of the gas, an infinite number
of terms have to be summed to obtain the condensation transition. An alternative, but
approximate, method for dealing with strongly interacting systems is the use of variational
methods.

Suppose that in an appropriate ensemble we need to calculate Z = tr <e_5H>. In the
canonical formulation, Z is the partition function corresponding to the Hamiltonian H at
temperature kT = 1/3, and for a classical system tr refers to the integral over the phase
space of N particles. However, the method is more general and can be applied to Gibbs or
Grand partition functions with the appropriate modification of the exponential factor; also
in the context of quantum systems where tr is a sum over all allowed quantum microstates.
Let us assume that calculating Z is very difficult for the (interacting) Hamiltonian H, but
that there is another Hamiltonian Hy acting on the same set of degrees of freedom for which
the calculations are easier. We then introduce a Hamiltonian H(\) = Ho + A (H — Ho),

and a corresponding partition function
Z(A) = tr{exp [-BHo — A3 (H — Ho)]}, (V.70)

which interpolates between the two as A changes from zero to one. It is then easy to prove

the convexity condition

d%1n Z())

S = (M =Ho)) =0, (v.11)

where () is an expectation value with the appropriately normalized probability.

From the convexity of the function, it immediately follows that

dinZz

InZ(A\) >InZ A
nZ(0) = Z(0) + A

(V.72)

A=0

But it is easy to see that dInZ/d\|,_, = B(Ho — H)O, where the superscript indicates

expectation values with respect to Hp. Setting A = 1, we obtain

InZ >1nZ(0)+ 8 (Ho)’ — B (H)°. (V.73)
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Eq.(V.73), known as the Gibbs inequality, is the basis for most variational estimates.
Typically, the ‘simpler’ Hamiltonian Hy (and hence the right hand side of eq.(V.73)) in-
cludes several parameters {n,}. The best estimate for In Z is obtained by finding the
maximum of the right hand side with respect to these parameters. It can now be checked
that the approximate evaluation of the grand partition function Q in the preceding sec-
tion is equivalent to a variational treatment with Hy corresponding to a gas of hard-core

particles of density n, for which (after replacing the sum by its dominant term)

InQy=puN+InZ =V |n(1+Bu—In(\) +nln (n_l - %)} . (V.74)

The difference H — H( contains the attractive portion of the two body interactions. In the
regions of phase space not excluded by the hard core interactions the gas in H is described

by a uniform density n. Hence

2

8 (Ho = 1) = BV -u, (V.75)

and

_an
ﬁP—T

> |n(1+ Bp—In(A)) +nln (n_1 — %)} + %BunQ, (V.76)

which is the same as eq.(V.66). The density n is now a parameter on the right hand side
of eq.(V.76). Obtaining the best variational estimate by maximizing with respect to n is

then equivalent to eq.(V.65).

V.G Corresponding States

We now have a good perturbative understanding of the behavior of a dilute interacting
gas at high temperatures. At lower temperatures, attractive interactions lead to conden-
sation into the liquid state. The qualitative behavior of the phase diagram is the same for
most simple gases. There is a line of transitions in the coordinates (P,T") (corresponding
to the coexistence of liquid and gas in the (V,T') plane) that terminates at a so called
critical point. 1t is thus possible to transform a liquid to a gas without encountering any
singularities. Since the ideal gas law is universal, i.e. independent of material, we may
hope that there is also a generalized universal equation of state (presumably more com-
plicated) that describes interacting gases, including liquid/gas condensation phenomena.

This hope motivated the search for a law of corresponding states, obtained by appropriate
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rescalings of state functions. The most natural choice of scales for pressure, volume, and
temperature are those of the critical point, (P, V., T,).

The van der Waals equation is an example of a generalized equation of state. Its
critical point is found by setting 0P/0V|, and 82P/8V2|T

limit of the flat coexistence portion of liquid/gas isotherms; the latter follows from the

to zero. The former is the

stability requirement k7 > 0 (see the discussion after eq.(1.72)). The coordinates of the

critical point are thus obtained from solving the following coupled equations,

( kBT a
pP= 4
v—>b w2
oP ]{ZBT 2a
— == 4+ — =0
ov | (v—b)? + v3 ' (V.77)
PP| _ 2kgT  6a _ 0
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where v = V/N is the volume per particle. The solution to these equations is

a
Pe = 27h2
ve=3b . (V.78)
8a
T, = —
kpTe 27h

Naturally, the critical point depends on the microscopic Hamiltonian (e.g. on the 2-
body interaction) via the parameters a and b. However, we can scale out such dependencies
by measuring P, T', and v in units of P., T, and v.. Setting P. = P/P., v, = v/v., and

T, =T/T., a reduced version of the van der Waals equation is obtained as

8 T 3
p=_ 2 :
3v.—1/3 02 (V.79)

T

We have thus constructed a universal (material independent) equation of state. Since the
original van der Waals equation depends only on two two parameters, eqs.(V.78) predict

a universal dimensionless ratio,

P.v,. 3
ieT. 3 0.375. (V.80)

Experimentally, this ratio is found to be in the range of 0.28 to 0.33. The van der Waals

equation is thus not a good candidate for the putative universal equation of state.
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We can attempt to construct a generalized equation empirically by using three inde-
pendent critical coordinates, and finding P, = p, (v, T,) from the collapse of experimental
data. Such an approach has some limited success in describing similar gases, e.g. the
sequence of noble gases Ne, Xe, Kr, etc. However, different types of gases (e.g. diatomic,
ionic, etc.) show rather different behaviors. This is not particularly surprising given the
differences in the underlying Hamiltonians. We know rigorously from the virial expansion
that perturbative treatment of the interacting gas does depend on the details of the mi-
croscopic potential. Thus the hope of finding a universal equation of state for all liquids
and gases has no theoretical or experimental justification; each case has to be studied
separately starting from its microscopic Hamiltonian. It is thus quite surprising that the
collapse of experimental data does in fact work very well in the vicinity of the critical

point, as described in the next section.

V.H Critical Point Behavior

To account for the universal behavior of gases close to their critical point, let us
examine the isotherms in the vicinity of (P, v.,T.). For T > T, a Taylor expansion of
P(T,v) in the vicinity of v., for any T gives,

1 93P

(v—ve) 4= | (v—ve)*4---. (V.81)
T 6 0v3 |,

oP 1 9P
P(T,’l}) —P(T,'Uc)—i—% T('U—'UC>+§ W

Since OP/0v|, and 9?P/dv?|,, are both zero at T, the expansion of the derivatives around

the critical point gives

?|
T

P(T,v) = P. + (T — T.) + O [(T — T)?]

oP| )
ggn%_—MT—fJ+OKT—ﬂ)L
92pP (V.82)
02 T,v, =T -T) + O[T -T)7],
03P
503 - =—c+ O[T -T.)],

where a, b, and ¢ are material dependent constants. The stability condition, d Pév < 0,
requires a > 0 (for T > T.) and ¢ > 0 (for T' = T¢), but provides no information on the
sign of b. If an analytical expansion is possible, the isotherms of any gas in the vicinity of

its critical point must have the general form,
b
P(T,v) = Pc—i—a(T—TC)—a(T—TC)(v—vC)+§(T—Tc)(v—vc)2— g(v—vc)3+~ . (V.83)
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Note that the third and fifth terms are of comparable magnitude for (T — T,) ~ (v — v.)?.
The fourth (and higher order terms) can then be neglected when this condition is satisfied.
e The analytic expansion of eq.(V.83) results in the following predictions for behavior
close to the critical point:
(a) The gas compressibility diverges on approaching the critical point from the high tem-
perature side, along the critical isochore (v = v,.) as,

1 9P| 1

i Tv)=—— — = V.84
Tf;lj (T ve) ve OV |p vea(T —T¢) ( )

(b) The critical isotherm (T = T.) behaves as
c 3
P—_Pc——(?}—'l)c) (V85)

(¢) Eq.(V.83) is manifestly inapplicable to T' < T,.. However, we can try to extract infor-
mation for the low temperature side by applying the Maxwell construction to the unstable
isotherms. Actually, dimensional considerations are sufficient to show that on approaching
T. from the low temperature side, the specific volumes of the coexisting liquid and gas

phases approach each other as

lim (vgas — Viiquid) < (Te — T)1/2. (V.86)
T—T;

The liquid—gas transition for 7' < T, is accompanied by a discontinuity in density,
and the release of latent heat L. This kind of transition is usually referred to as first
order or discontinuous. The difference between the two phases disappears as the line of
first order transitions terminates at the critical point. The singular behavior at this point
is attributed to a second order or continuous transition. Eq.(V.83) follows from no more
than the constraints of mechanical stability, and the assumption of analytical isotherms.
Although there are some unknown coefficients, eqs.(V.85)—(V.86) predict universal forms
for the singularities close to the critical point and can be compared to experimental data.
The experimental results do indeed confirm the general expectations of singular behavior,
and there is universality in the results for different gases which can be summarized as

(a) The compressibility diverges on approaching the critical point as

lim k(T,v.) x (T'—T,)" 7, with y~13 . (V.87)
T—TF
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(b) The critical isotherm behaves as
(P—P.) x (v—u.)°, with §~50 . (V.88)
(c) The difference between liquid and gas densities vanishes close to the critical point as

Hm (pliquid — Pgas) X M (Vgas — Vliquia) o< (T — T)?, with B~03 . (V.89)
T—T; T—T,

These results clearly indicate that the assumption of analyticity of the isotherms,
leading to eq.(V.83), is not correct. The exponents J, v, and (§ appearing in eqs.(V.88)—
(V.89) are known as critical indices. Understanding the origin, universality, and numerical
values of these exponents is the a fascinating subject explored in the modern theory of

critical phenomena.
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