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V.C The Second Virial Coefficient & van der Waals Equation 

Let us study the second virial coefficient B2, for a typical gas using eq.(V.33). As 

discussed before, the two-body potential is characterized by a hard core repulsion at short 

distances and a van der Waals attraction at large distances. To make the computations 

easier, we shall use the following approximation for the potential, 

⎞

⎠ 

⎧


+� for r < r0 

V(r) =	 , (V.37)

6

−u0 (r0/r) for r > r0 

which combines both features. The contributions of the two portions can then be calculated 

separately as, 

−�V(r) − 1b̄2 = d3τr e 
0 

(V.38)r0	
� � ⎦


+�u0 (r0 /r)6 

− 14λr 2dr(−1) + 4λr 2dr= e . 
0	 r0 

The second integrand can be approximated by κu0 (r0/r)
6 in the high temperature limit, 

κu0 ≡ 1, and leads to 

⎪
 ⎛
⎛
⎛
⎛ 

4λr3 
0 

−3 2λr3 
01 r6 

0 −
B2 = − − + 4λκu0r = (1 − κu0). (V.39)
2 3 3 3 r0 

We can define an excluded volume of � = 4λr3 
0 /3 which is 8 times the atomic volume (since 

the distance of minimum approach r0, is twice an atomic radius), to get 

u0
B2(T ) = 1 − .	 (V.40)

2 kB T 

• Remarks and observations: 

(1)	 The tail of the van der Waals attractive potential (∼ r−6) extends to very long sep­

arations. Yet, its integral in eq.(V.39) is dominated by contributions from the short 

scales r0. In this limited context, the van der Waals potential is short-ranged, and 

results in corrections to the ideal gas behavior that are analytical in density n, leading 

to the virial series. 

(2)	 By contrast, potentials that fall off with separation as 1/r3 or slower, are long-ranged. 

The integral appearing in calculation of the second virial coefficient is dominated by 

long distances, and is divergent. As a result, corrections to the ideal gas behavior can 
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not be written in the form of a virial series, and are in fact non-analytic. A good 

example is provided by the Coulomb interactions discussed in problem set 8. The 

non-analytic corrections can be obtained by summing all the ring diagrams in the 

cumulant (or cluster) expansions. 

(3)	 The second virial coefficient has dimensions of volume, and (for short-range potentials) 

is proportional to the atomic volume �. In the high temperature limit, the importance 

of corrections to ideal gas behavior can be estimated by comparing the first two terms 

of eq.(V.14), 

B2n
2 B2 Atomic volume gas density 

= �	 � . (V.41) 
n n−1 volume per particle in gas liquid density 

This ratio is roughly 10−3 for air at room temperature and pressure. The corrections 

to ideal gas behavior are thus small at low densities. On dimensional grounds, a similar 

ratio is expected for the higher order terms, B�n
�/B�−1n

�−1, in the virial series. We 

may thus suspect the convergence of the series at high enough densities (when the gas 

liquifies). 

(4)	 The virial expansion breaks down not only at high densities, but also at low temper­

atures. This is suggested by the divergences in eqs.(V.40) and (V.38) as T � 0, and 

reflects the fact that in the presence of attractive interactions the particles can lower 

their energy at low temperatures by condensing into a liquid state. 

(5)	 The truncated virial expansion, 

P � 
� � 

u0 2 = n + 1 − n + · · · ,	 (V.42)
kB T 2 kB T 

can be rearranged as


1 
� 

u0� 2 

�	
n N 

P + n = n 1 + n + · · · ∝ = . (V.43)
kB T 2	 2 1 − n�/2 V − N�/2 

This is precisely in the form of the van der Waals equation 

⎪ 
u0� 

�
N 
�2
� � 

N� 
� 

P + V −	 = NkB T, (V.44)
2 V 2 

and we can identify the van der Waals parameters, a = u0�/2 and b = �/2. 

• Physical interpretation of the van der Waals equation: Historically, van der Waals 

suggested eq.(V.44) on the basis of experimental results for the equation of state of various 
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gases, towards the end of the19th century. At that time the microscopic interactions 

between gas particles were not known, and van der Waals postulated the necessity of an 

attractive interaction between gas atoms based on the observed decreases in pressure. It 

was only later on that such interactions were observed directly, and then attributed to the 

induced dipole–dipole forces by London. The physical justification of the correction terms 

is as follows. 

(a) There is a correction to the gas volume V due to the hard core exclusions. At first sight, 

it may appear surprising that the excluded volume b, in eq.(V.44) is one half of the volume 

that is excluded around each particle. This is because this factor measures a joint excluded 

volume involving all particles in phase space. In fact, the contribution of coordinates to 

the partition function of the hard-core gas can be estimated at low densities, from 

� → � 
d3τ 1 �

i qi �� � � � 1 
� 

N � 
�N 

SN = = V V − � V − 2� · · · V − (N − 1)� ∝ V − . 
N ! N ! N ! 2 

(V.45) 

The above result is obtained by adding particles one at a time, and noting that the available 

volume for the mth particle is (V − m�). At low densities, the overall effect is a reduction 

of the volume available to each particle by approximately �/2. Of course, the above result 

is only approximate, since the effects of excluded volume involving more than two particles 

are not correctly taken into account. The relatively simple form of eq.(V.45) is only exact 

at for spatial dimensions d = 1 and infinity. As proved in problems set 9, the exact 

excluded volume in d = 1 is in fact �. 

(b) The decrease in pressure P , due to attractive interactions, is somewhat harder to 

quantify. In sec.III.F, the gas pressure was related to the impacts of particles on a wall via 

⎛ 
2P = (nvx)(2mvx )

⎛
⎛ = nmvx, (V.46) 
vx <0 

where the first term is the number of collisions per unit time and area, while the second is 

the momentum imparted by each particle. For the ideal gas, the usual equation of state 

is recovered by noting that the average kinetic energy is mv2 
x /2 = kB T /2. Attractive 

interactions lead to a reduction in pressure given by 

ψP = ψn mv2 + nψ mv2 . (V.47)x x 

While different statistical ensembles give the same pressure, which is a bulk state function, 

they may lead to different behaviors at the surface. We must thus be careful, and consistent, 

in evaluation of eq.(V.47), which depends of surface properties. 
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In a canonical ensemble, the gas density is reduced at the walls. This is because the 

particles in the middle of the box experience an attractive potential V from all sides, while 

at the edge only an attractive energy of V/2 is available from half of the space. The 

resulting change in density is approximately 

ψn ∝ n e −�V/2 − e −�V ∝ κnV/2. (V.48) 

Integrating the interaction of one particle in the bulk with the rest gives 

V = d3 τr V attr.(r) n = −n�u0. (V.49) 

The change in density thus gives the pressure correction of ψP = −n2�u0/2 calculated 

in eq.(V.44). There is no correction to the kinetic energy of the particles impinging on 

the wall, since in the canonical formulation the probabilites for momentum and location 

of the particles are independent variables. The probability distribution for momentum is 

uniform in space, giving the average kinetic energy of kBT/2 for each direction of motion. 

A different explanation is presented in a kinetic formulation in which particles follow 

the deterministic Hamiltonian equations of motion. In this formulation, the impinging 

particles lose kinetic energy in approaching the wall from the surface, since they have to 

climb out of the potential well set up by the attractions of bulk particles. The reduction 

in kinetic energy is given by 

2 1 
�

mv
ψ x = n�u0. (V.50)d3 τr V attr.(r) n = − 

1 
2 2 2 

The reduced velocities lead to an increase in the surface density in this case, as the slower 

particles spend a longer time β in the vicinity of the wall! The relative change in density 

is given by 
ψn ψβ ψvx 1 ψv2 

= = − = − x 

n β vx 2 v2 
, =→ ψn = −κnV/2. (V.51) 

x 

The increase in density is precisely the opposite of the result of eq.(V.48) in the canonical 

formulation. However, with the decrease in kinetic energy calculated in eq.(V.50), it again 

leads to the correct reduction in pressure. 
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V.D Breakdown of the van der Waals equation 

As discussed in sec.I.I, mechanical stability of a gas requires the positivity of the 

isothermal compressibility, �T = −V −1 πV/πP |T . This condition can be obtained by 

examining density fluctuations in a grand canonical ensemble. The probability of finding 

N particles in a volume V is given by eq.(IV.102) as 

e�µN Z(T, N, V ) 
p(N, V ) = . (V.52)

Q 

Since for a gas ln Q = −κG = PV/kB T , eqs.(IV.103) and (IV.104) simplify to 

π(ln Q) πP 
≈N⇒c = N = = V 

π(κµ) πµ 

⎛
⎛
⎛
⎛

⎞ 
⎨⎨⎨⎠ , 

T ,V 
(V.53)⎛

⎛
⎛
⎛


π2(ln Q) πN 
≈N2 ⇒c = = 

π≈N⇒c 
= kB T

⎨⎨⎨⎧
 . 
π(κµ)2 π(κµ) πµ T ,V 

Dividing the two equations, and using the chain rule, results in 

≈N2⇒c kB T πN 
= 

N V πP 

⎛
⎛
⎛
⎛


⎛
⎛
⎛
⎛


⎛
⎛
⎛
⎛


kB T πN πV 
= − = nkB T�T . (V.54)

V πV πP T ,V P,T N,T 

The positivity of �T is thus tied to that of the variance of N . A stable value of N 

corresponds to a maximum of the probability p(N, V ), i.e. a positive compressibility. A 

negative �T actually corresponds to a minimum in p(N, V ) implying that the system is least 

likely to be found at such densities. Fluctuations in density will then occur spontaneously 

and change the density to a stable value. 

Any approximate equation of state, such as the van der Waals equation, must at 

least satisfy the stability requirements. However, the van der Waals isotherms contain a 

portion with − πP/πV |T < 0, for temperatures less than a critical value Tc. The negative 

compressibility implies an instability towards forming domains of lower and higher density, 

i.e. phase separation. The attractive interactions in real gases do indeed result in a liquid– 

gas phase separation at low temperatures. The isotherms then include a flat portion, 

πP/πV |T = 0, at the coexistence of the two phases. Can the (unstable) van der Waals 

isotherms be used to construct the phase diagram of a real gas? 

One way of doing so is by the following Maxwell construction: The variations of the 

chemical potential µ(T, P ), along an isotherm are obtained by integrating eq.(V.53), as 

V 
� P V (T, P →)

dµ = dP, =→ µ(T, P ) = µ(T, PA) + dP → . (V.55)
N PA 

N 
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Since the van der Waals isotherms for T < Tc are non-monotonic, there is a range of 

pressures that correspond to three different values, {µ�}, of the chemical potential. The 

possibility of several values of µ at a given temperature and pressure indicates phase 

coexistence. In equilibrium, the number of particles in each phase N�, adjusts so as 

to minimize the Gibbs free energy G = 
� 

� µ�N�. Clearly, the phase with lowest µ� 

will acquire all the particles. A phase transition occurs when two branches of allowed 

chemical potentials intersect. From eq.(V.55), the critical pressure Pc, for this intersection 

is obtained from the condition 

� Pc 

dP →V (T, P →) = 0. (V.56) 
Pc 

A geometrical interpretation of the above result is that Pc corresponds to a pressure that 

encloses equal areas of the non-monotonic isotherm on each side. The Maxwell construction 

approach to phase condensation is somewhat unsatisfactory, as it relies on integrating a 

clearly unphysical portion the van der Waals isotherm. A better approach that makes the 

approximations involved more apparent is presented in the next section. 

V.E Mean Field Theory of Condensation 

In principle, all properties of the interacting system, including phase separation, 

are contained within the thermodynamic potentials that can be obtained by evaluating 

Z(T, N) or Q(T, µ). Phase transitions, however, are characterized by discontinuities in 

various state functions and must correspond to the appearance of singularities in the par­

tition functions. At first glance, it is somewhat surprising that any singular behavior 

should emerge from computing such well behaved integrals (for short-ranged interactions) 

as � ⎣ 
� �N 

d3τ � p2 �
iZ(T, N, V ) = i=1 pid

3τqi 
exp ⎝−κ 

N 

− κ V (qτi − τqj )⎤ . (V.57)
N !h3N 2m 

i=1 i<j 

Instead of evaluating the integrals perturbatively, we shall now set up a reasonable ap­

proximation scheme. The contributions of the hard core and attractive portions of the 

potential are again treated separately, and the partition function approximated by 

1 1 �
¯Z(T, N, V ) ∝ 

�3N 
V V − � · · · V − (N − 1)� exp(−κU ). (V.58)

N ! 
Excluded volume effects 
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¯Here U represents an average attraction energy, obtained by assuming a uniform density 

n = N/V , as 

1 1
Ū d3τr1d

3τVattr.(qτi − qτj ) = r2n(τr1)n(τr2)Vattr.(τr1 − τr2)= 
2 2 

i,j (V.59)
2 N2 

attr.(τr ) ∞ − u. 
2V 

n
d3τr V∝ V 

2 

The parameter u describes the net effect of the attractive interactions. Substituting into 

eq.(V.58) leads to the following approximation for the partition function 

(V −N�/2)N � 
κuN2 

Z(T, N, V ) ∝ exp .
 (V.60)
N !�3N 2V 

From the resulting free energy, 

uN2 

F = −kB T ln Z = −NkB T ln(V −N�/2) + NkB T ln(N/e) + 3NkB T ln � − , (V.61)
2V 

we obtain the expression for the pressure in the canonical ensemble as 

Pcan = − 
πF

πV


⎛
⎛
⎛
⎛


uN2NkB T 
− . (V.62)= 

V −N�/2T ,N 2V 2 

Remarkably, the uniform density approximation reproduces the van der Waals equa­

tion of state. However, the self-consistency of this approximation can now be checked. 

As long as �T is positive, eq.(V.54) implies that the variance of density vanishes for large 
2
� 

= kB Tn
2�T /V .volumes as But �T diverges at Tc, and at lower temperatures its n


c 

negativity implies an instability towards density fluctuations as discussed in the previous 

section. When condensation occurs, there is phase separation into high (liquid) and low 

(gas) density states, and the uniform density assumption becomes manifestly incorrect. 

This difficulty is circumvented in the grand canonical ensemble. Once the chemical poten­

tial is fixed, the number of particles (and hence density) in this ensemble is automatically 

adjusted to that of the appropriate phase. 

As the assumption of a uniform density is correct for both the liquid and gas phases, 

we can use the approximations of eqs.(V.59) and (V.60) to estimate the grand partition 

function 

Q(T, µ, V ) =
 e�µN Z(T, N, V ) ∝ 

� 
V κuN2 

exp N ln − + + �N , (V.63)
N 2 2V 

N =0 N =0 
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where � = 1 + κµ − ln(�3). As in any sum over exponentials in N , the above expression 

is dominated by a particular value of particle number (hence density), and given by 

� � � 
V � 

� 
κuN2 � � 

Q(T, µ, V ) ∝ exp max N� + N ln − + . (V.64)
N 2 2V N 

Hence, the grand canonical expression for the gas pressure is obtained from 

ln Q
κPg.c = = max[�(n)]n, (V.65)

V 

where 
2�(n) = n� + n ln 

� 

n −1 − 
� 
� 

+ 
κu

n . (V.66)
2 2


The possible values of density are obtained from d�/dn|n� 
= 0, and satisfy


� 
� 
� 

1−1� = − ln n� − + − κun�. (V.67)
2 1 − n��/2 

The above equation in fact admits multiple solutions n� for the density. Substituting the 

resulting � into eq.(V.65) leads after some manipulation to 

� 
n�kBT u 2 

� 

Pg.c. = max − n� = max[Pcan(n�)]�, (V.68)
1 − n��/2 2 

i.e. the grand canonical and canonical values of pressure are identical at a particular 

density. However, if eq.(V.67) admits multiple solutions for the density at a particular 

chemical potential, the correct density is uniquely determined as the one that maximizes 

the canonical expression for pressure (or for �(n)). 

The mechanism for the liquid–gas phase transition is therefore the following. The 

sum in eq.(V.63) is dominated by two large terms at the liquid and gas densities. At 

a particular chemical potential, the stable phase is determined by the larger of the two 

terms. The phase transition occurs when the dominant term changes upon varying the 

temperature. In mathematical form 

⎞ 
κV Pgas for T > T � 

⎠ 
�V Pgas 

�
ln Q = lim ln 

� 
e �V Pliquid + e = . (V.69)

V �� ⎧ 
κV Pliquid for T < T � 

The origin of the singularity in density can thus be traced to the thermodynamic limit of 

V � �. There are no phase transitions in finite systems! 
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