
I. Thermodynamics


I.A Fundamental definitions 

• Thermodynamics is a phenomenological description of equilibrium properties of macro­

scopic systems. 

⋆ As a phenomenological description, it is based on a number of empirical observations 

which are summarized by the laws of thermodynamics. A coherent logical and mathe­

matical structure is then constructed on the basis of these observations, which leads to 

a variety of useful concepts, and to testable relationships among various quantities. The 

laws of thermodynamics can only be justified by a more fundamental (microscopic) theory 

of nature. For example, statistical mechanics attempts to obtain these laws starting from 

classical or quantum mechanical equations for the evolution of collections of particles. 

⋆ A system under study is said to be in equilibrium when its properties do not change 

appreciably with time over the intervals of interest (observation times). The dependence 

on the observation time makes the concept of equilibrium subjective. For example, window 

glass is in equilibrium as a solid over many decades, but flows like a fluid over time scales 

of millennia. At the other extreme, it is perfectly legitimate to consider the equilibrium 

between matter and radiation in the early universe during the first minutes of the big bang. 

⋆ The macroscopic system in equilibrium is characterized by a number of thermodynamic 

coordinates or state functions. Some common examples of such coordinates are pressure 

and volume (for a fluid), surface tension and area (for a film), tension and length (for 

a wire), electric field and polarization (for a dielectric), · · ·. A closed system is an ide­

alization similar to a point particle in mechanics in that it is assumed to be completely 

isolated by adiabatic walls that don’t allow any exchange of heat with the surroundings. 

By contrast, diathermic walls allow heat exchange for an open system. In addition to the 

above mechanical coordinates, the laws of thermodynamics imply the existence of other 

equilibrium state functions as described in the following sections. 
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I.B The zeroth law 

The zeroth law of thermodynamics describes the transitive nature of thermal equilib­

rium. It states: 

• If two systems, A and B, are separately in equilibrium with a third system C, then they 

are also in equilibrium with one another. 

Despite its apparent simplicity, the zeroth law has the consequence of implying the 

existence of an important state function, the empirical temperature Θ, such that systems 

in equilibrium are at the same temperature. 

Proof: Let the equilibrium state of systems A, B, and C be described by the coordinates 

{A1, A2, · · ·}, {B1, B2, · · ·}, and {C1, C2, · · ·} respectively. The assumption that A and C 

are in equilibrium implies a constraint between the coordinates of A and C, i.e. a change in 

A1 must be accompanied by some changes in {A2, · · · ; C1, C2, · · ·} to maintain equilibrium 

of A and C. Denote this constraint by 

fAC(A1, A2, · · · ; C1, C2, · · ·) = 0. (I.1) 

The equilibrium of B and C implies a similar constraint 

fBC(B1, B2, · · · ; C1, C2, · · ·) = 0. (I.2) 

Each of the above equations can be solved for C1 to yield 

C1 =FAC(A1, A2, · · · ; C2, · · ·), 
(I.3) 

C1 =FBC(B1, B2, · · · ; C2, · · ·). 

Thus if C is separately in equilibrium with A and B we must have 

FAC(A1, A2, · · · ; C2, · · ·) = FBC(B1, B2, · · · ; C2, · · ·). (I.4) 

However, according to the zeroth law there is also equilibrium between A and B, implying 

the constraint 

fAB(A1, A2, · · · ; B1, B2, · · ·) = 0. (I.5) 

Therefore it must be possible to simplify eq.(I.4) by cancelling the coordinates of C. Hence, 

the condition (I.5) for equilibrium of A and B must be expressible as 

ΘA(A1, A2, · · ·) = ΘB(B1, B2, · · ·), (I.6) 
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i.e., equilibrium is characterized by a function Θ of thermodynamic coordinates. This 

function specifies the equation of state, and isotherms of A are described by the condition 

ΘA(A1, A2, · · ·) = Θ. 

Example: Consider three systems: (A) a wire of length L with tension F , (B) a param­

agnet of magnetization M in a magnetic field B, and (C) a gas of volume V at pressure P . 

Observations indicate that when these systems are in equilibrium, the following constraints 

are satisfied between their coordinates: 

a 
P + (V − b)(L − L0) − c[F − K(L − L0)] = 0,

V 2 
( ) (I.7) a 
P + (V − b)M − dB = 0. 

V 2 

Clearly these constraints can be organized into three empirical temperature functions as 

( ) 

( a ) F B 
Θ ∝ P + (V − b) = c − K = d . (I.8) 

V 2 L − L0 M 

These are the well known equations of state describing: 

 

 

P + a/V 2)(V − b = NkBT (van der Waals gas) 
 

 

M = (Nµ 2 B)/(3kBT ) (Curie paramagnet) . (I.9) B
 

 

 

′ F = (K + DT )(L − L0) (Hook s law for rubber) 

The ideal gas temperature scale: As the above example indicates, the zeroth law 

merely states the presence of isotherms. In order to set up a practical temperature scale 

at this stage, a reference system is necessary. The ideal gas occupies an important place 

in thermodynamics and provides the necessary reference. Empirical observations indicate 

that the product of pressure and volume is constant along the isotherms of any gas that is 

sufficiently dilute. The ideal gas refers to this dilute limit of real gases, and the ideal gas 

temperature is proportional to the product. The constant of proportionality is determined 

by reference to the temperature of the triple point of the ice–water–gas system, which 

was set to 273.16 degrees Kelvin (0K) by the 10th General Conference on Weights and 

Measures in 1954. Using a dilute gas (i.e. as P → 0) as thermometer, the temperature of 

a system can be obtained from 

T (oK) ≡ 273.16 × lim (PV )system/ lim (PV )ice−water−gas . (I.10) 
P→0 P→0 
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I.C The First law 

We now consider transformations between different equilibrium states. Such transfor-

mations can be achieved by applying work or heat to the system. The first law states that 

both work and heat are forms of energy, and that the total energy is conserved. We shall 

use the following formulation: 

• The amount of work required to change the state of an otherwise adiabatically isolated 

system depends only on the initial and final states, and not on the means by which the 

work is performed, or on the intermediate stages through which the system passes. 

As a consequence, we conclude the existence of another state function, the internal 

energy, E(X). Up to a constant, E(X) can be obtained from the amount of work ΔW 

needed for an adiabatic transformation from an initial state Xi to a final state Xf , using 

ΔW = E(Xf ) − E(Xi). (I.11) 

In a generic (non–adiabatic) transformation, the amount of work does not equal to the 

change in the internal energy. The difference ΔQ = ΔE − ΔW is defined as the heat 

intake of the system from its surroundings. Clearly in such transformations, ΔQ and 

ΔW are not separately functions of state, in that they depend on external factors such 

as the means of applying work, and not only on the final states. To emphasize this, for a 

differential transformation we write 

dQ = dE − dW, (I.12) ¯ ¯

where dE = ∂iEdXi can be obtained by differentiation, while ¯ dW generally dQ and ¯i 

can not. Also note the convention that the signs of work and heat are chosen to indicate 

the energy added to the system, and not vice versa. 

A quasi-static transformation is one that is performed sufficiently slowly so that the 

system is always in equilibrium. Thus at any stage of the process, the thermodynamic 

coordinates of the system exist and can in principle be computed. For such transformations, 

the work done on the system (equal in magnitude but opposite in sign to the work done 

by the system) can be related to changes in these coordinates. Typically one can divide 

the state functions {X} into a set of generalized displacements {x}, and their conjugate 

generalized forces {J}, such that for an infinitesimal quasi-static transformation 

∑ 

d̄W = Jidxi. (I.13) 
i 
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Table [1] provides some common examples of such coordinates. Note that the displacement 

is usually an extensive quantity, i.e. proportional to system size, while the forces are 

intensive and independent of size. Also note that pressure is by convention calculated 

from the force exerted by the system on the walls, as opposed to the force on a spring 

which is exerted in the opposite direction. This is the origin of the negative sign that 

usually accompanies hydrostatic work. 

System Force Displacement 

Wire 
Film 
Fluid 

Magnet 
Dielectric 

Chemical Reaction 

Tension F 
Surface Tension S 
Pressure −P 
Magnetic Field H 
Electric Field E 
Chemical Potential µ


Length L 
Area A 
Volume V 
Magnetization M 
Polarization P 
Particle Number N 

Table 1: Generalized Forces and Displacements 

Joule’s Free Expansion Experiment: Another important property of the ideal gas 

is the behavior of its internal energy. Observations indicate that if such a gas expands 

adiabatically (but not necessarily quasi-statically), from a volume Vi to Vf , the initial and 

final temperatures are the same. Since the transformation is adiabatic (ΔQ = 0) and 

there is no external work done on the system (ΔW = 0), the internal energy of the gas 

is unchanged. Since the pressure and volume of the gas change in the process, but its 

temperature does not, we conclude that the internal energy depends only on temperature, 

i.e. E(V, T ) = E(T ). This property of the ideal gas is in fact a consequence of the form of 

its equation of state as will be proved in problem set [2]. 

¯ ¯

Response functions are the usual method for characterizing the macroscopic behav­

ior of a system. They are experimentally measured from the changes of thermodynamic 

coordinates with external probes. Some common response functions are: 

Heat Capacities are obtained from the change in temperature upon addition of heat to the 

system. Since heat is not a function of state, the path by which it is supplied must also be 

specified. For example, for a gas we can calculate the heat capacities at constant volume 

or pressure, denoted by CV = dQ/dT |V and CP = dQ/dT |P respectively. The latter is 

larger since some of the heat is used up in the work done in changes of volume: 

dQ ∣ dE − dW ∣ dE + PdV ∣ ∂E ∣ ¯ ¯
CV = = = = ,

dT ∣ dT ∣ dT ∣ ∂T V V V V 
∣ ∣ ∣ ∣ ∣ (I.14) 

dQ ∣ dE − dW ∣ dE + PdV ∣ ∂E ∣ ∂V ∣ ¯ ¯
CP = = = ∣ = ∣ + P . 

dT ∣ dT ∣ dT ∣ ∂T ∣ ∂T P P P P P 
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Force Constants measure the (infinitesimal) ratio of displacement to force and are gener­

alizations of the spring constant. Examples include the isothermal compressibility of a gas 

κT = − ∂V/∂P |T /V , and the susceptibility of a magnet χT = ∂M/∂B|T /V . From the 

equation of state of an ideal gas PV ∝ T , we obtain κT = 1/P . 

Thermal Responses probe the change in the thermodynamic coordinates with temperature. 

For example, the expansivity of a gas is given by αP = ∂V/∂T |P /V , which equals 1/T 

for the ideal gas. 

Since the internal energy of an ideal gas depends only on its temperature, ∂E/∂T |V = 

∂E/∂T |P = dE/dT , and eq.(I.14) simplifies to 

∣ 

∂V ∣ PV 
CP − CV = P ∣ = PV αP = ≡ NkB . (I.15) 

∂T ∣ TP 

The last equality follows from extensivity: for a given amount of ideal gas, the constant 

PV/T is proportional to N , the number of particles in the gas; the ratio is Boltzmann’s 

constant with a value of kB ≈ 1.4 × 10−23J0K−1 . 

6



