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II.D Many Random Variables 

With more than one random variable, the set of outcomes is an N -dimensional space, 

x = . For example, describing the location and velocity of a S {−→ < x1, x2, · · · , xN < →}
gas particle requires six coordinates. 

• The joint PDF p(x), is the probability density of an outcome in a volume element 

dN x = 
�N 

dxi around the point x = . The joint PDF is normalized i=1 {x1, x2, · · · , xN }
such that 

px(S) = dN x p(x) = 1 .	 (II.32) 

If, and only if, the N random variables are independent, the joint PDF is the product of 

individual PDFs, 
N 

p(x) = pi(xi) . (II.33) 
i=1 

• The unconditional PDF describes the behavior of a subset of random variables, indepen­

dent of the values of the others. For example, if we are interested only in the location of 

a gas particle, an unconditional PDF can be constructed by integrating over all velocities 

x) = d3σv p(σat a given location, p(σ x,σv); more generally 

� N 

m) = dxi	 (II.34)p(x1, · · · , x	 p(x1, · · · , xN ) . 
i=m+1 

• The conditional PDF describes the behavior of a subset of random variables, for specified 

values of the others.	 For example, the PDF for the velocity of a particle at a particular 

x, denoted by p(σv σ x) = p(σlocation	σ x), is proportional to the joint PDF p(σv σ x,σv)/N .|	 | 
The constant of proportionality, obtained by normalizing p(σv σx), is | 

x,σv) = p(σN = d3σv p(σ x),	 (II.35) 

the unconditional PDF for a particle at σx. In general, the unconditional PDFs are obtained 

from Bayes’ Theorem as 

m xm+1, · · · , xN ) = 
p(x1, · · · , xN ) 

. (II.36)p(x1, · · · , x |	
p(xm+1, · · · , xN ) 

Note that if the random variables are independent, the unconditional PDF is equal to the 

conditional PDF. 
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• The expectation value of a function F (x), is obtained as before from


�F (x)≈ = dN x p(x)F (x) . (II.37) 

• The joint characteristic function, is obtained from the N -dimensional Fourier transfor­

mation of the joint PDF, 

⎝ � 
N 

p̃(k) = exp �−i kj xj � . (II.38) 
j=1 

The joint moments and joint cumulants are generated by ˜ p(k) respectively, as p(k) and ln ˜

� 
δ 

�n1 
� 

δ 
�n2 

� 
δ 

�nN 
n1 n2 x nN = p̃(k = 0) ,�x1 x2 · · · N ≈ δ(−ik1) δ(−ik2) 

· · · 
δ(−ikN ) 

� 
δ 

�n1 
� 

δ 
�n2 

� (II.39)
δ 

�nN 

x1 x2 x nN = ln p̃(k = 0) .� n1 n2 · · · N ≈c δ(−ik1) δ(−ik2) 
· · · 

δ(−ikN ) 

The previously described graphical relation between joint moments (all clusters of labelled 

points), and joint cumulant (connected clusters) is still applicable. For example 

= x� c x� ≈c + x�x� c , and 
� 
�x�x� 

� 
≈ � ≈

2 

� �
� � 

≈
� � (II.40)

2 2 2 x�x� = x�≈c x� ≈c + x� c 
�x� + 2 x�x� c x�≈c + x�x� . c c

� � ≈ � ≈ �

The connected correlation, x�x� c, is zero if x� and x� are independent random variables. � ≈
• The joint Gaussian distribution is the generalization of eq.(II.15) to N random variables, 

as 

1 1 � � 
p(x) = � 

(2λ)N det[C] 
exp C−1 (xm − �m)(xn − �n) , (II.41)

mn
−

2 
mn 

where C is a symmetric matrix, and C−1 is its inverse,. The simplest way to get the 

normalization factor is to make a linear transformation from the variables yj = xj − �j , 

using the unitary matrix that diagonalizes C. This reduces the normalization to that of 

the product of N Gaussians whose variances are determined by the eigenvalues of C. The 

product of the eigenvalues is the determinant det[C]. (This also indicates that the matrix 

C must be positive definite.) The corresponding joint characteristic function is obtained 

by similar manipulations, and is given by 

1 
p̃(k) = exp −ikm�m − Cmnkmkn , (II.42)

2 
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where the summation convention is used. 

The joint cumulants of the Gaussian are then obtained from ln p̃(k) as 

, xmxn c = Cmn , (II.43)xm c = �m� ≈ � ≈

with all higher cumulants equal to zero. In the special case of {�m} = 0, all odd moments 

of the distribution are zero, while the general rules for relating moments to cumulants 

indicate that any even moment is obtained by summing over all ways of grouping the 

involved random variables into pairs, e.g. 

= CabCcd + CacCbd + Cad Cbc. (II.44)�xaxbxcxd≈ 

This result is sometimes referred to as Wick’s theorem. 

II.E Sums of Random Variables & the Central Limit Theorem 
�N

Consider the sum X = i=1 xi, where xi are random variables with a joint PDF of 

p(x). The PDF for X is 

� � N −1 

pX (x) = dN x p(x)α x − xi = dxi p (x1, · · · , xN −1, x − x1 · · · − xN −1) , 
i=1 

(II.45) 

and the corresponding characteristic function (using eq.(II.38)) is given by 

⎝ � 
N 

p̃X (k) = exp �−ik xj � = p̃ (k1 = k2 = = kN = k) . (II.46)· · · 
j=1 

Cumulants of the sum are obtained by expanding ln p̃X (k), 

N 

ln ˜ xi1 xi2 cp (k1 = k2 = = kN = k) = −ik xi1 c +
(−ik)2 N 

+ (II.47)· · · � ≈
2 

� ≈ · · · , 
i1 =1 i1 ,i2 

as 
N N 

c = xi≈c , X2
� 

= xi xj , . (II.48)c�X≈ �
c 

� ≈ · · ·
i=1 i,j 

If the random variables are independent, p(x) = pi(xi), and p̃X (k) = p̃i(k). 

The cross–cumulants in eq.(II.48) vanish, and the nth cumulant of X is simply the sum 
nof the individual cumulants, c = i=1 xi c . When all the N random variables �X n≈ �N � ≈
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nare independently taken from the same distribution p(x), this implies = N x c,c�X n≈ � ≈
generalizing the result obtained previously for the binomial distribution. For large values 

of N , the average value of the sum is proportional to N , while fluctuations around the 

mean, as measured by the standard deviation, grow only as 
⇒

N . The random variable 

y = (X − N x c)/
⇒

N , has zero mean, and cumulants that scale as yn ≤ N 1−m/2 . As c� ≈	 � ≈
N � →, only the second cumulant survives, and the PDF for y converges to the normal 

distribution , 

�N	 � ⎠ 
x 1	 yclim	 p y = i=1 xi − N � ≈

= � exp −
2 �x

2

2
. (II.49)

N �� 
⇒

N 2λ x2
c 

≈c
� ≈


(Note that the Gaussian distribution is the only distribution with only first and second 

cumulants.) 

The convergence of the PDF for the sum of many random variables to a normal 

distribution is a most important result in the context of statistical mechanics where such 

sums are frequently encountered. The central limit theorem states a more general form of 

this result: It is not necessary for the random variables to be independent, as the condition 
�N 

i1 ,···,im 
xi1 · · ·xim ≈c √ O(N m/2), is sufficient for the validity of eq.(II.49). 

II.F Rules for Large Numbers 

To describe equilibrium properties of macroscopic bodies, statistical mechanics has to 

deal with the very large number N , of microscopic degrees of freedom. Actually, taking 

the thermodynamic limit of N � → leads to a number of simplifications, some of which 

are described in this section. 

There are typically three types of N dependence encountered in the thermodynamic 

limit: 

(a)	 Intensive quantities, such as temperature T , and generalized forces, e.g. pressure P , 

and magnetic field σB, are independent of N , i.e. O(N 0). 

(b)	 Extensive quantities, such as energy E, entropy S, and generalized displacements, e.g. 
σvolume V , and magnetization M , are proportional to N , i.e. O(N 1). 

(c)	 Exponential dependence, i.e. exp(N β) , is encountered in enumerating discrete O 

micro-states, or computing available volumes in phase space. 

Other asymptotic dependencies are certainly not ruled out a priori. For example, the 

Coulomb energy of N ions at fixed density scales as Q2/R � N 5/3 . Such dependencies 

are rarely encountered in every day physics. The Coulomb interaction of ions is quickly 
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screened by counter-ions, resulting in an extensive overall energy. (This is not the case in 

astrophysical problems since the gravitational energy can not be screened. For example 

the entropy of a black hole is proportional to the square of its mass.) 

In statistical mechanics we frequently encounter sums or integrals of exponential vari­

ables. Performing such sums in the thermodynamic limit is considerably simplified due to 

the following results. 

(1) Summation of Exponential Quantities 

Consider the sum 
N

= , (II.50)EiS 
i=1 

where each term is positive, with an exponential dependence on N , 

exp(N βi) , (II.51)0 � E i � O 

and the number of terms N , is proportional to some power of N . Such a sum can be 

approximated by its largest term Emax, in the following sense. Since for each term in the 

sum, 0 � E i � Emax, 

max max . (II.52)E � S � NE

An intensive quantity can be constructed from ln S/N , which is bounded by 

ln Emax ln S ln Emax ln N
+ . (II.53)

N 
� 

N 
� 

N N 

For N ≤ N p, the ratio ln N /N vanishes in the large N limit, and 

ln S ln Emax
lim = = βmax . (II.54)

N �� N N 

(2) Saddle Point Integration 

Similarly, an integral of the form 

= dx exp N β(x) , (II.55)I

can be approximated by the maximum value of the integrand, obtained at a point xmax 

which maximizes the exponent β(x). Expanding around this point, 

1 
= dx exp N β(xmax ) − (xmax) (x − xmax)

2 + . (II.56)I
2 
|β�� | · · · 
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Note that at the maximum, the first derivative β�(xmax), is zero, while the second derivative 

β��(xmax), is negative. Terminating the series at the quadratic order results in 

dx exp 
N 

(xmax) (x − xmax)
2 ∝ 

N |β��(xmax)
e N α(xmax ), (II.57)I ∝ e N α(xmax ) − 

2 
|β�� | 2λ 

| 

where the range of integration has been extended to [−→, →]. The latter is justified since 

the integrand is negligibly small outside the neighborhood of xmax. 

There are two types of correction to the above result. Firstly, there are higher or­

der terms in the expansion of β(x) around xmax. These corrections can be looked at 

perturbatively, and lead to a series in powers of 1/N . Secondly, there may be addi­

tional local maxima for the function. A maximum at xmax
� , leads to a similar Gaus­

sian integral that can be added to eq.(II.57). Clearly such contributions are smaller by 

. Since all these corrections vanish in the thermodynamic exp{−N [β(xmax)−β(xmax 
� )]}O 

limit, 

1 � N |β��(xmax)| � 
+ O( 

N 
1 
2 
) = β(xmax)lim 

ln I 
= lim β(xmax) − ln . (II.58)

N �� N N �� 2N 2λ 

The saddle point method for evaluating integrals is the extension of the above result to 

more general integrands, and integration paths in the complex plane. (The appropriate 

extremum in the complex plane is a saddle point.) The simplified version presented above 

is sufficient for the purposes of this course. 

• Stirling’s approximation for N ! at large N can be obtained by saddle point integration. 

In order to get an integral representation of N !, start with the result 

dxe−�x =
1 

. (II.59) 
0 

Repeated differentiation of both sides of the above equation with respect to � leads to 

−�xdxxN e = 
N ! 

. (II.60)
�N +1 

0 

Although the above result only applies to integer N , it is possible to define by analytical 

continuation a function, 

−x�(N + 1) ∞ N ! = dxxN e , (II.61) 
0 
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for all N . While the integral in eq.(II.61) is not exactly in the form of eq.(II.55), it can 

still be evaluated by a similar method. The integrand can be written as exp Nβ(x) , with 

β(x) = ln x − x/N . The exponent has a maximum at xmax = N , with β(xmax) = ln N − 1, 

and β��(xmax) = −1/N2 . Expanding the integrand in eq.(II.61) around this point yields, 

� 1 � 
N ! ∝ dx exp N ln N − N − (x − N)2 ∝ NN e −N 

⇒
2λN, (II.62)

2N 

where the integral is evaluated by extending its limits to [−→, →]. Stirling’s formula is 

obtained by taking the logarithm of eq.(II.62) as, 

1 1 
ln N ! = N ln N − N + ln(2λN) + O( ). (II.63)

2 N 

II.G Information, Entropy, and Estimation 

• Information: Consider a random variable with a discrete set of outcomes S = {xi }, 
occurring with probabilities {p(i)}, for i = 1, · · · , M . In the context of information theory, 

there is a precise meaning to the information content of a probability distribution: Let us 

construct a message from N independent outcomes of the random variable. Since there are 

M possibilities for each character in this message, it has an apparent information content of 

N ln2 M bits; i.e. this many binary bits of information have to be transmitted to convey the 

message precisely. On the other hand, the probabilities {p(i)} limit the types of messages 

that are likely. For example, if p2 ⊂ p1, it is very unlikely to construct a message with 

more x1 than x2. In particular, in the limit of large N , we expect the message to contain 

“roughly” {Ni = Npi} occurrences of each symbol.† The number of typical messages thus 

corresponds to the number of ways of rearranging the {Ni} occurrences of {xi}, and is 

given by the multinomial coefficient 

N ! 
g = 

�M . (II.64) 
Ni!i=1 

This is much smaller than the total number of messages M n . To specify one out of g 

possible sequences requires 

M 

pi ln2 pi (for N � →), (II.65)ln2 g ∝ −N 
i=1 

† More precisely, the probability of finding any Ni that is different from Npi by more 

than ±
⇒

N becomes exponentially small in N , as N � →. 
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bits of information. The last result is obtained by applying Stirling’s approximation for 

ln N !. It can also be obtained by noting that 

� �N M Ni M 
� � � p � 

N pi1 = pi = N ! i p , (II.66)iNi ! 
∝ g 

i {Ni } i=1 i=1 

where the sum has been replaced by its largest term, as justified in the previous section. 

Shannon’s Theorem proves more rigorously that the minimum number of bits necessary 

to ensure that the percentage of errors in N trials vanishes in the N � → limit, is ln2 g. 

For any non-uniform distribution, this is less than the N ln2 M bits needed in the absence 

of any information on relative probabilities. The difference per trial is thus attributed to 

the information content of the probability distribution, and is given by 

M 

I [{pi}] = ln2 M + pi ln2 pi . (II.67) 
i=1 

• Entropy: Eq.(II.64) is encountered frequently in statistical mechanics in the context of 

mixing M distinct components; its natural logarithm is related to the entropy of mixing. 

More generally, we can define an entropy for any probability distribution as 

M 

S = p(i) ln p(i) = − ln p(i) . (II.68)− � ≈ 
i=1 

The above entropy takes a minimum value of zero for the delta–function distribution 

p(i) = αi,j , and a maximum value of ln M for the uniform distribution, p(i) = 1/M . S 

is thus a measure of dispersity (disorder) of the distribution, and does not depend on the 

values of the random variables {xi}. A one to one mapping to fi = F (xi) leaves the 

entropy unchanged, while a many to one mapping makes the distribution more ordered 

and decrease S . For example, if the two values, x1 and x2, are mapped onto the same f , 

the change in entropy is 

p1 p2
�S (x1, x2 � f ) = p1 ln + p2 ln < 0. (II.69) 

p1 + p2 p1 + p2 

• Estimation: The entropy S , can also be used to quantify subjective estimates of probabil­

ities. In the absence of any information, the best unbiased estimate is that all M outcomes 

are equally likely. This is the distribution of maximum entropy. If additional information 

is available, the unbiased estimate is obtained by maximizing the entropy subject to the 
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constraints imposed by this information. For example, if it is known that F (x) = f , we � ≈ 
can maximize 

S (�, �, {pi}) = − p(i) ln p(i) − � p(i)F (xi) − f , (II.70)p(i) − 1 − � 
i i i 

where the Lagrange multipliers � and � are introduced to impose the constraints of nor­

malization, and F (x) = f , respectively. The result of the optimization is a distribution 
� 

�
� 
≈ 

pi ≤ exp − �F (xi) , where the value of � is fixed by the constraint. This process can 

be generalized to an arbitrary number of conditions. It is easy to see that if the first n 

moments (and hence n cumulants) of a distribution are specified, the unbiased estimate is 

the exponential of an nth order polynomial. 

In analogy with eq.(II.68), we can define an entropy for a continuous random variable 

(Sx = {−→ < x < →}) as 

S = dx p(x) ln p(x) = − ln p(x) . (II.71)− � ≈ 

There are, however, problems with this definition, as for example S is not invariant under 

a one to one mapping. (After a change of variable to f = F (x), the entropy is changed 

by �|F �(x)|≈.) Since the Jacobian of a canonical transformation is unity, canonically con­

jugate pairs offer a suitable choice of coordinates in classical statistical mechanics. The 

ambiguities are also removed if the continuous variable is discretized. This happens quite 

naturally in quantum statistical mechanics where it is usually possible to work with a 

discrete ladder of states. The appropriate volume for discretization of phase space is set 

by Planck’s constant h̄. 
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