
[ ] 

∫ 

( ) 

( 

III.H Zeroth order hydrodynamics 

As a first approximation, we shall assume that in “local equilibrium,” the density f1 

at each point in space can be represented as in eq.(III.53), i.e. 

q, t) (~ u(~
p, ~f1

0(~ q, t) = 
n(~

3/2 
exp −

p − m~ q, t))
2 

. (III.90) 
q, t)) 2mkBT (~(2πmkBT (~ q, t) 

pf0 = n, and 〈~ u, as required. The choice of parameters clearly enforces d3~ 1 p/m〉0 = ~

Average values are easily calculated for the Gaussian form; in particular 

〈cαcβ〉
0 kBT 

= δαβ , (III.91) 
m 

leading to 

P 0 = nkBTδαβ , and ε =
3 
kBT. (III.92) αβ 2 

Since the density f1
0 is even in ~c, all odd expectation values vanish, and in particular 

~h0 = 0. (III.93) 

The conservation laws in this approximation take the simple forms 

 
 Dtn = −n∂αuα 
 
 
 
 1 

mDtuα = Fα − ∂α (nkBT ) . (III.94) n 
 
 
 2 
 
 DtT = − T∂αuα

3 

In the above expression, we have introduced the material derivative 

Dt ≡ [∂t + uβ∂β ] , (III.95) 

which measures the time variations of a quantity as it moves along the stream-lines set up 

by the average velocity field ~u. By combining the first and third equations, it is easy to 

get 

Dt ln nT−3/2 = 0. (III.96) 

The quantity ln nT−3/2
) 

is like a local entropy for the gas (see eq.(III.64)), which according 

to the above equation is not changed along stream-lines. The zeroth order hydrodynamics 

thus predicts that the gas flow is adiabatic. This prevents the local equilibrium solution 

of eq.(III.90) from reaching a true global equilibrium form. 
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To demonstrate that eqs.(III.94) do not describe a satisfactory approach to equilib­

rium, examine the evolution of small deformations about a stationary (~u0 = 0) state, in a 

Funiform box ( ~ = 0), by setting 

q, t) =n + ν(~n(~ q, t) 
. (III.97) 

q, t) =T + θ(~T (~ q, t) 

We shall next expand eqs.(III.94) to first order in the deviations (ν, θ, ~u). Note that to 

lowest order, Dt = ∂t+O(u), leading to the linearized zeroth order hydrodynamic equations 

 
= −n∂αuα ∂tν 

 
 
 
 kBT 

m∂tuα = − ∂αν − kB∂αθ . (III.98) n 
 
 
 
 2 
 ∂tθ = − T∂αuα

3 

• Normal modes of the system are obtained by Fourier transformations, 

( ) [ ( )] 
q dt exp i ~k · ~q − ωt A (~A ~k, ω = d3~ q, t) , (III.99) 

where A stands for any of the three fields (ν, θ, ~u). The natural vibration frequencies are 

solutions to the matrix equation 

   
0 

  
ν 0 nkβ ν 

kBω uα 
 =  kBT δαβkβ 0 

m 
δαβkβ 

 uβ 
 . (III.100) 

mn 
θ 0 2Tkβ 0 θ 

3

It is easy to check that this equation has the following modes, the first three with zero 

frequency: 

(a) Two modes describe shear flows in a uniform (n = n) and isothermal (T = T ) fluid, in 

u = f(x, t)ˆwhich the velocity varies along a direction normal to its orientation (e.g. ~ y). 

In terms of Fourier modes ~k·~uT (~k ) = 0, indicating transverse flows that are not relaxed 

in this zeroth order approximation. 

(b) A third zero frequency mode describes a stationary fluid with uniform pressure P = 

nkBT . While n and T may vary across space, their product is constant, insuring 

that the fluid will not start moving due to pressure variations. The corresponding 

eigenvector of eq.(III.100) is 
  

n 
ve =  0  . (III.101) 

−T 
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( 

(c) Finally, the longitudinal velocity (~uℓ ‖ ~k) combines with density and temperature 

variations in eigenmodes of the form 

  
n|~k| 

vl =  ω(~k)  , with ω(~k) = ±vℓ|~k|, (III.102) 
2T |~k|3

where 

5 kBT 
vℓ = , (III.103) 

3 m 

is the longitudinal sound velocity. Note that the density and temperature variations 

in this mode are adiabatic, i.e. the local entropy (proportional to ln nT−3/2 ) is left 

unchanged. We thus find that none of the conserved quantities relaxes to equilibrium 

in the zeroth order approximation. Shear flow and entropy modes persist forever, while 

the two sound modes have undamped oscillations. This is a deficiency of the zeroth 

order approximation which is removed by finding a better solution to the Boltzmann 

equation. 

III.I First order hydrodynamics 

p, ~While f1
0(~ q, t) of eq.(III.90) does set the right hand side of the Boltzmann equation 

to zero, it is not a full solution, as the left hand side causes its form to vary. The left hand 

side is a linear differential operator, which using the various notations introduced in the 

previous sections, can be written as 

Fα ∂ 
L [f ] ≡ ∂t + 

pα 
∂α + Fα 

∂
f = Dt + cα∂α + f. (III.104) 

m ∂pα m ∂cα 

It is simpler to examine the effect of L on ln f0 . which can be written as 1 

ln f1
0 = ln nT−3/2 

) 
− 

mc2 

− 
3

ln (2πmkB) . (III.105) 
2kBT 2 

Using the relation ∂(c2/2) = cβ∂cβ = −cβ∂uβ, we get 

( ) 2 
[ ] m 

L ln f1
0 =Dt ln nT−3/2 + 

mc
DtT + cαDtuα

2kBT 2 kBT 
( ) (III.106) 

∂αn 3 ∂αT mc2 m Fαcα 
+cα − + cα∂αT + cαcβ∂αuβ − . 

n 2 T 2kBT 2 kBT kBT 
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∫ 

If the quantities n, T , and uα, satisfy the zeroth order hydrodynamic eqs.(III.94), we can 

simplify the above equation to 

[( ) ( ) ]

2 
[ ∂αn 3 ∂αT Fα

L ln f1
0
] 

=0 − 
mc

∂αuα + cα 
Fα 

− 
∂αn 

− 
∂αT 

+ − − 
3kBT 2 kBT n T n 2 T kBT 
2mc m 

+ cα∂αT + cαcβuαβ 
2kBT 2 kBT 

m mc 5 cα 
= cαcβ − 

δαβ 
c 2 uαβ + 

2 

− ∂αT. 
kBT 3 2kBT 2 T 

(III.107) 

The characteristic time scale τU for L is extrinsic, and can be made much larger than 

τ×. The zeroth order result is thus exact in the limit (τ×/τU ) → 0; and corrections can be 

constructed in a perturbation series in (τ×/τU ). To this purpose, we set f1 = f1
0(1 + g), 

and linearize the collision operator as 

′ ′ p2d
2~b|~v1 − ~v2|f1

0(~ p2) [g(~ p2) − g(~ p2 )] C [f1, f1] = − d3~ p1)f1
0(~ p1) + g(~ p1 ) − g(~

(III.108) 

≡− f1
0(~p1)CL[g]. 

While linear, the above integral operator is still difficult to manipulate in general. As a 

first approximation, and noting its characteristic magnitude, we set 

CL[g] ≈ 
g

. (III.109) 
τ× 

This is known as the single collision time approximation, and from the linearized Boltz­

mann equation L[f1] = −f1
0CL[g], we obtain 

1 [ ] 
g = −τ× 

f0 
L [f1] ≈ −τ×L ln f1

0 , (III.110) 
1 

where we have kept only the leading term. Thus the first order solution is given by (using 

eq.(III.107)) 

[ ( ) ( ) ] 
δαβ 2 mc 5 cα

p, ~ p, ~f1
1(~ q, t) = f1

0(~ q, t) 1 − 
τµm

cαcβ − c uαβ − τK 

2 

− ∂αT ,
kBT 3 2kBT 2 T 

(III.111) 

where τµ = τK = τ× in the single collision time approximation. However, in writing 

the above equation, we have anticipated the possibility of τµ 6= τK which arises in more 

sophisticated treatments (although both times are still of order of τ×). 

69 



∫ 

∫ 

〈( ) 〉 

[ ] 

( ) 

〈 

〈 〈( ) 

( ) 

pf1 = 
∫ 

d3~It is easy to check that d3~ 1 pf0 = n, and thus various local expectation 1 

values are calculated to first order as 

〈O〉1 =
1 

d3~
0 

pOf1
0(1 + g) = 〈O〉 + 〈gO〉0 + · · · . (III.112) 

n 

The calculation of averages over products of cα’s, distributed according to the Gaussian 

weight of f1
0, is greatly simplified by the use of Wick’s theorem, which states that expecta­

tion value of the product is the sum over all possible products of paired expectation values, 

for example 
( )2

kBT 
= (δαβδγδ + δαγδβδ + δαδδβγ) . (III.113) 〈cαcβcγcδ〉0 m 

(Expectation values involving a product of an odd number of cα’s are zero by symmetry.) 

Using this result, it is easy to verify that 

〈 pα 
〉1 ∂βT mc2 5 

= uα − τK − cαcβ = uα. (III.114) 
m T 2kBT 2 

The pressure tensor at first order is given by 

〈 ( )〉0
δµν 2P 1 =nm 〈cαcβ〉

1 
= nm 〈cαcβ〉

0 − 
τµm

cαcβ cµcν − cαβ kBT 3 
(III.115) 

δαβuγγ 
=nkBTδαβ − 2nkBTτµ uαβ − . 

3 

(Using the above result, we can further verify that ε1 = mc2/2 
〉1 

= 3kBT/2, as before.) 

Finally, the heat flux is given by 

mc2 
〉1 

nmτK ∂βT mc2 

− 
5 

cαcβc 2 
〉0 

h1 
α =n cα = − 

2 2 T 2kBT 2 (III.116) 
5 nk2 TτK 

= − B ∂αT. 
2 m 

At this order, we find that spatial variations in temperatures generate a heat flow that 

tends to smooth them out, while shear flows are opposed by the off-diagonal terms in the 

pressure tensor. These effects are sufficient to cause relaxation to equilibrium, as can be 

seen by examining the linearized hydrodynamic equations. There is now a contribution to 

Dtuα ≈ ∂tuα, given by 

δ1 (∂tuα) ≡ 
1 

∂βδ1Pαβ ≈ − 
µ 1 

∂α∂β + δαβ∂γ∂γ uβ , (III.117) 
mn mn 3 
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where we have introduced the viscosity coefficient µ ≡ kBTnτµ. Similarly, there is a first 

order correction to the equation for DtT ≈ ∂tθ, which is given by 

2K 
δ1 (∂tθ) ≡ − 

2 
∂αhα ≈ − ∂α∂αθ, (III.118) 

3kBn 3kBn 

where K = (5k2 TnτK)/(2m) is the coefficient of thermal conductivity of the gas. B

After Fourier transformation, the matrix equation (III.100) is modified to 

  
  0  nδαβkβ 0ν ( ) ν 

 kBT kB 

ω  uα 
 = 

 mn 
δαβkβ −i µ k2δαβ + 

kα

3 
kβ δαβkβ 



 uβ 
 . (III.119) mn m 

θ −i2Kk2 θ0 2Tδαβkβ 3kBn3

It is simple to verify that the longitudinal normal models (~k · ~uT = 0) have a frequency 

ωT = −i
µ

k2 . (III.120) 
mn 

The imaginary frequency implies that these modes are damped over a characteristic 
2time τT (k) ∼ 1/|ωT | ∼ (λ)2/(τµv ), where λ is the corresponding wavelength, and 

v ∼ kBT/m is a typical gas particle velocity. We see that the characteristic time scales 

grow as the square of the wavelength, which is characteristic of diffusive processes. Sim­

ilarly, the entropy mode become diffusive, while the longitudinal sound modes turn into 

damped oscillations. It is this damping that guarantees the, albeit slow, approach of the 

gas to its final uniform and stationary equilibrium state. 
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