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III.C The Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy 

The full phase space density contains much more information than necessary for de­

scription of equilibrium properties. For example, knowledge of the one particle distribution 

is sufficient for computing the pressure of a gas. A one particle density refers to the ex­

pectation value of finding any of the N particles at location σq, with momentum σp, at time 

t, which is computed from the full density π as 

N 
⎦ 

p, σ p − σf1(σ q, t) = �3(σ pi)�
3(σq − σqi )


i=1

(III.15) 

� N 

pid
3qσi π(σ p, σ q, σ q2, · · · , σ qN , t).=N d3 σ p1 = σ q1 = σ p2, σ pN , σ

i=2 

To obtain the second identity above, we used the delta functions to perform one set of inte­

grals, and assumed that the density is symmetric with respect to permuting the particles. 

Similarly, a two body density can be computed from 

� N 

p1, σ p2, σ p1, σ p2, σ pN , σf2(σ q1, σ q2, t) = N(N − 1) dVi π(σ q1, σ q2, · · · , σ qN , t), (III.16) 
i=3 

where dVi = d3σpid
3qσi is the contribution of particle i to phase space volume. The general 

s-particle density is defined by 

� N
N ! � N ! 

p1, · · · , σ p1, · · · , σfs(σ qs, t) = dVi π(p,q, t) = πs(σ qs, t), (III.17)
(N − s)! (N − s)!

i=s+1 

where πs is a standard unconditional PDF for the coordinates of s particles, and πN � π. 

While πs is properly normalized to unity when integrated over all its variable, the s-particle 

density has a normalization of N !/(N−s)!. We shall use the two quantities interchangably. 

The evolution of the few-body densities is governed by the BBGKY hierarchy of 

equations attributed to Bogoliubov, Born, Green, Kirkwood, and Yvon. The simplest 

non-trivial Hamiltonian that can be studied in kinetic theory is 

N ⎪ � N 
⎦ σ 2 

⎦ 
H(p,q) = 

pi 
+ U(qσi) +

1 
V (qσi − σqj ). (III.18)

2m 2 
i=1 (i,j)=1 

This Hamiltonian provides an adequate description of a weakly interacting gas. In addition


to the classical kinetic energy of particles of mass m, it contains an external potential
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U , and a two-body interaction V, between the particles. In principle, three and higher 

body interactions should also be included for a realistic description, but they are not very 

important in the dilute gas (nearly ideal) limit. 

For evaluating the time evolution of fs, it is convenient to divide the Hamiltonian into 

H = Hs + HN −s + H� , (III.19) 

where Hs and HN −s include only interactions among each group of particles, 

� ss ⎪ 
⎦ σ 2 

⎦pn 1 
Hs = + U(qσn ) + V (qσn − σqm),

2m 2 
n=1 (n,m)=1 

(III.20) 
� NN ⎪ 

σ 2 
⎦⎦ pi 1 

HN −s = + U(qσi) + V(qσi − σqj ),
2m 2 

i=s+1 (i,j)=s+1 

while the interparticle interactions are contained in 

s N 
⎦ ⎦ 

H� = V(qσn − σqi ). (III.21) 
n=1 i=s+1 

From eq.(III.17), the time evolution of fs (or πs) is obtained as 

� N � N
φπs 

� φπ 
= dVi = dVi {π, Hs + HN −s + H�}, (III.22)

φt φt 
i=s+1 i=s+1 

where eq.(III.9) is used for the evolution of π. The three Poisson brackets in eq.(III.22) 

will now be evaluated in turn. Since the first s coordinates are not integrated, the order 

of integrations and differentiations for the Poisson bracket may be reversed, and 

� N � N 

dVi {π, Hs} = { dVi π , Hs} = {πs, Hs}. (III.23) 
i=s+1 i=s+1 

Writing the Poisson brackets explicitly, the second term of eq.(III.22) takes the form 

N ⎪ �
� N � N 

� � ⎦ φπ φHN −s φπ φHN −s
dVi {π, HN −s} = dVi · − · 

pj φσ qj φσφσ qj φσ pj
i=s+1 i=s+1 j=1 

(using eq.(III.20)) 

� N N N 
� ⎦ φπ φU ⎦ φV(qσj − σqk ) φπ σpj 

= dVi · + − · = 0. (III.24) 
pj φσ qj φσφσ qj φσ qj m 

i=s+1 j=s+1 k=s+1 
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The last equality is obtained after performing the integrations by part: The term multi­

plying φπ/φσ pj , while σpj has no dependence on σ pj /m does not depend on qσj . The final term 

in eq.(III.22), involving the Poisson bracket with H�, is 
� N N ⎪ 

φH� � 
� ⎦ φπ φH� φπ 

dVi · − · 
pj φσ qj φσφσ qj φσ pj

i=s+1 j=1 
� ⎡ 

� N s N N s 
� ⎦ φπ ⎦ φV(qσn − σqj ) ⎦ φπ ⎦ φV(qσj − σqn) 

= dVi � · + · ⎤ , 
pn φσ pj φσφσ qn φσ qj

i=s+1 n=1 j=s+1 j=s+1 n=1 

where the sum over all particles has been subdivided into the two groups. (Note that H� 

in eq.(III.21) has no dependence on the momenta.) Integration by parts shows that the 

second term in the above expression is zero. The first term involves the sum of (N − s) 

expressions that are equal by symmetry and simplifies to 
� N s 

� ⎦ φV(qσn − σqs+1) φπ 
(N − s) dVi · 

qn φσφσ pn
i=s+1 n=1 

� � (III.25) 
s � � N 
⎦ φV(qσn − σqs+1) φ 

=(N − s) dVs+1 · dVi π . 
qn φσφσ pn 

n=1 i=s+2 

Note that the quantity in the above square brackets is πs+1. Thus, adding up eqs.(III.23), 

(III.24), and (III.25), 
s � 

φπs 
⎦ φV(qσn − σqs+1) φπs+1 

+ {Hs, πs} = (N − s) dVs+1 · , (III.26)
φt φσ pnqn φσ

n=1 

or in terms of the densities fs, 
s � 

φfs 
⎦ φV(qσn − σqs+1) φfs+1 

+ {Hs, fs} = dVs+1 · . (III.27)
φt φσ pnqn φσ

n=1 

In the absence of interactions with other particles, the density πs for a group of 

s particles, evolves as the density of an incompressible fluid (as required by Liouville’s 

theorem), and is described by the streaming terms on the left hand side of eq.(III.26). 

However, because of interactions with the remaining N − s particles, the flow is modified 

by the collision terms on the right hand side. The collision integral is the sum of the terms 

corresponding to a potential collision of any of the particles in the group of s, with any 

of the remaining N − s particles. To describe the probability of finding the additional 

particle that collides with a member of this group, the result must depend on the joint 

PDF of s + 1 particles described by πs+1. This results in a hierarchy of equations with 

π̇1 depends on π2, π̇2 depends on π3, etc., which is at least as complicated as the original 

equation for the full phase space density. To proceed further, a reasonable approximation 

for terminating the hierarchy is needed. 
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III.D The Boltzmann Equation 

To estimate the relative importance of the different terms appearing in eqs.(III.27), 

let us examine the first two equations in the hierarchy, 
⎪	 � 

σ	 q2) φf2φ φU φ p1 φ	 φV(qσ1 − σ
− · + · f1 = dV2 · , (III.28) 

q1 φσ q1	 φσ p1φt φσ p1 m φσ	 q1 φσ

and 
⎪	 � ⎩� 

σ σφ φU φ φU φ p1 φ p2 φ φV(qσ1 − σq2 ) φ φ 
− · − · + · + · − · − f2 = 

φt φσ p1 φσ p2 m φσ q2 φσ p1 φσq1 φσ q2 φσ q1 m φσ q1 φσ p2 
⎪	 � 
φV(qσ1 − qσ3) φ φV(qσ2 − σq3) φ 

dV3	 · + · f3 . 
q1 φσ q2 φσφσ p1 φσ p2 

(III.29) 

Note that two of the streaming terms in eq.(III.29) have been combined by using 

φV(σq1 − qσ2 )/φσ q2, which is valid for a symmetric potential such that q1 = −φV(σq2 − σq1)/φσ

V(σq1 − σq2)= V(σq2 − σq1 ). 

• Time scales: All terms within square brackets in the above equations have dimensions 

of inverse time, and we estimate their relative magnitudes by dimensional analysis, using 

typical velocities and length scales. The typical speed of a gas particle at room temperature 

is v ∼ 102ms−1 . For terms involving the external potential U , or the inter-atomic potential 

potential V, an appropriate length scale can be extracted from the range of variations of 

the potential. 

(a)	 The terms proportional to 
1 φU φ 

� · , 
q pρU φσ φσ

involve spatial variations of the external potential U(σq ), which take place over macro­

scopic distances L. We shall refer to the associated time ρU , as an extrinsic time scale, 

as it can be made arbitrarily long by increasing system size. For a typical value of 

L ∼ 10−3m, we get ρU ∼ L/v ∼ 10−5s. 

(b)	 From the terms involving the inter-atomic potential V, we can extract two additional 

time scales, which are intrinsic to the gas under study. In particular, the collision 

duration 
1 φV φ 

� · , 
q pρc φσ φσ

is the typical time over which two particles are within the effective range d, of their 

interaction. For short range interactions (including van der Waals and Lenard–Jones, 

despite their power law decaying tails), d ∼ 10−10m is of the order of a typical atomic 
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size, resulting in ρc ∼ 10−12s. This is usually the shortest time scale in the problem. 

The situation is somewhat more complicated for long range interactions, such as the 

Coulomb gas in a plasma. For a neutral plasma, the Debye screening length � replaces 

d in the above equation, as discussed in problems. 

(c)	 There are also collision terms on the right hand side of eqs.(III.27), which depend on 

fs+1, and lead to an inverse time scale 

1 φV φ fs+1 φV φ πs+1
� dV · � dV · N . 

ρ× φσ φσ fs φσ φσ πsq	 p q p 

The integrals are only non-zero over the volume of the inter-particle potential d3 . The 

term fs+1/fs is related to the probability of finding another particle per unit volume, 
−3which is roughly the particle density n = N/V ∼ 1026m . We thus obtain the mean 

free time 
ρc 1 

ρ× ∼ 
nd3 

∼ 
nvd2 

,	 (III.30) 

which is the typical distance a particle travels between collisions. For short range 

interactions, ρ× ∼ 10−8s is much longer than ρc, and the collision terms on the right 

hand side of eqs.(III.27) are smaller by a factor of nd3 ∼ (1026m−3)(10−10m)3 ∼ 10−4 . 

The Boltzmann equation is obtained for short range interactions in the dilute regime 

by exploiting ρc/ρ× ∼ nd3 ≈ 1. (By contrast, for long range interactions such that 

nd3 � 1, the Vlasov equation is obtained by dropping the collision terms on the left hand 

side, as discussed in problems.) From the above discussion, it is apparent that eq.(III.28) 

is different from the rest of the hierarchy: It is the only one in which the collision terms 

are absent from the left hand side. For all other equations, the right hand side is smaller 

by a factor of nd3, while in eq.(III.28) it may indeed dominate the left hand side. Thus a 

possible approximation scheme is to truncate the equations after the first two, by setting 

the right hand side of eq.(III.29) to zero. 

The left hand side of the equation for f2 includes terms proportional to both ρ−1 
U 

and ρ−1 . We shall argue that the two sets of terms can be treated independently, the c 

former acting on center of mass, and the latter acting on relative coordinates. But f2 is 

proportional to the joint PDF π2 for finding one particle at (σ q1), and another at (σ q2),p1, σ p2, σ

at the same time t. It is reasonable to expect that at distances much larger than the range 

of the potential V , the particles are independent, i.e. 

� 
π2(σp1, σq1, σp2, σq2, t) −� π1(σp1, σq1, t)π1(σp2, σq2, t), or 

(III.31) 
f2(σp1, σq1, σp2, σq2, t) −� f1(σp1, σq1, t)f1(σp2, σq2, t), for | σq2 − σq1| � d, 
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For example, imagine that the gas particles are suddenly allowed to invade an empty volume 

after the removal of a barrier. The density f1 will undergo a complicated evolution, and 

its relaxation time will be at least comparable to ρU . The two body density f2, will also 

reach its final value at a comparable time interval. However, it is expected to relax to 

a form similar to eq.(III.31) over a much shorter time of the order of ρc. At separations 

comparable to d, the behavior of f2 is governed by two particle collisions. At time intervals 

longer than ρc (but possibly shorter than ρU ), the ‘steady state’ behavior of f2 at small 

relative distances is thus obtained by equating the largest terms in eq.(III.29), i.e. 

⎪	 � ⎩� 
σ σp1 φ p2 φ φV(qσ1 − σq2)	 φ φ 

· + · − ·	 − f2 = 0. (III.32) 
m φσ q2 φσ	 p1 φσq1 m φσ q1 φσ p2 

q2) to have slow variations over the center of mass coordinate σWe expect f2(σq1, σ Q = (qσ1 + 

q2)/2, and large variations over the relative coordinate σq = σ q �σ q2 − σq1. Therefore, φf2/φσ

Q, and φf2/σ q1 ∼ φf2/φσφf2/φ σ q2 ∼ −φf2/φσ q, leading to 

� ⎩ � ⎩ 
φV(qσ1 − qσ2) φ φ σ p2 φp1 − σ

· − f2 = − · f2 . (III.33)
φσ p1 φσ	 q2q1 φσ p2	 m φσ

The above equation (along with the boundary conditions imposed by eq.(III.31)) describes 

a steady state situation established by collisions in the center of mass frame of two particles. 

The relaxation of f1 to equilibrium is controlled by the collision terms on the right 

hand side of eq.(III.28), which can be written as 

� ⎩ 
df1 � 

= d3σ q2 
φV(qσ1 − σq2)	 φ φ 

� p2d
3σ	 · − f2 ∼ 

�	 φσ p1 φσq1 φσ p2dt coll. 

(III.34) 
� ⎩ 

p2d
3σ

σ p2 φ 
d3σ q2 

p1 − σ
· f2 . 

m φσq2 

The first identity if obtained from eq.(III.28) by noting that the added term proportional 

to φf2/φσp2 is a complete derivative and integrates to zero, while the second equality 

follows from eq.(III.33). (Since it relies on establishing the ‘steady state’ in the relative 

coordinates, this approximation is valid as long as we examine events in time with a 

resolution longer than ρc.) 

•	 Scattering theory: The integrand in eq.(III.34) is a derivative of f2 with respect to σq 

p = σ p1, of the colliding particles. As such, it along the direction of relative motion	σ p2 − σ

can be integrated to f2(σ σ p2 
� , Q, t) − f2(σ σ p2, Q, t), where σ p2 are the p1 

� , Q, σ σ p1, Q, σ σ p1 
�, and σ
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momenta of the two particles immediately after the collision. (As we are only concerned 

with variations of f1 at length scales larger than d, we shall ignore the small differences 

in positions before and after each collision.) More precisely, this is achieved by a change 

of variables from the three components of qσ2 to a one-dimensional variable a along the 

trajectory of motion, and a two component vector σb perpendicular to it. The complicated 

curvilinear nature of this transformation need not bother us, as after the partial integration 

over a, we only need to specify the coordinates before the collision. It is customary to set 

p1 − σσb = σ0 for a head–on collision ([σ p2] ≡ [qσ1 − qσ2]). With this choice, σb is known as the 

impact vector, and 

� = d3σ p1 , σ p2 
�, σ p1, σ p2, σ

df1 � 
p2d

2σb |σv1 − σv2| [f2(σ
� q1, σ q1, t) − f2(σ q1, σ q1, t)] , (III.35)

dt coll. 

where |σv1 − σv2| = |σ p2|/m is the relative speed of the two particles. p1 − σ

It is more convenient to describe the scattering of two particles in terms of the relative 

momenta P = σ p2 and P � = σ p2 , before and after the collision. Note that σ p1 − σ σ p1 
� − σ

d2σb |σv1 − σv2| is just the flux of particles impinging on the element of area d2σb. For a given 

σ σσb, the initial momentum P is deterministically transformed to the final momentum P � . 

To find the functional form P �(| σσ P |,σb), one must integrate the equations of motion. In 

elastic collisions, the magnitude of σP is preserved, and it merely rotates to a final direction 

indicated by the angles (λ, δ) � �(σb) in spherical coordinates. Since there is a one to one 

correspondence between the impact vector σb, and the solid angle �, we make a change of 

variables between the two resulting in 

df1 � 
p2d� p1 

�, σ p2 
�, σ p1, σ p2, σ� = d3σ

dθ 
|σv1 − σv2| [f2(σ q1, σ q1, t) − f2(σ q1, σ q1, t)] . (III.36)

dt � d�coll. 

The Jacobian of this transformation dθ/d� has dimensions of area, and is known as the 

differential cross-section. It is equal to the area presented to an incoming beam which 

p1 pscatters into the solid angle �. In eq.(III.36), the out-going momenta σ � and σ2 are 

functions of σ p2, and �, obtained from the two conditions σ p� = σ p2 (conservation p1, σ p1 
� +σ p1 +σ2 

of momentum), and σ p2 = |σ p2|ˆp1 
� − σ p1 − σ � (conservation of energy), as 

⎣ σ � = σ p2 + |σ p2|ˆ⎨ p1 p1 + σ p1 − σ � /2, 
� � (III.37) 

⎨ 
⎧ σ � = σ p2 − |σ p2|ˆp2 p1 + σ p1 − σ � /2. 
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For the scattering of two hard spheres of diameter d, it is easily to show that the 

scattering angle is related to the impact parameter b by sin(λ/2) = b/d for all δ. The 

differential cross-section is then obtained from 
� ⎩ � ⎩ 

λ λ dλ d2 d2 

dθ = b db dδ = d sin d cos dδ = sin λdλ dδ = d�. 
2 2 2 4 4 

(Note that the solid angle in three dimensions is given by d� = sin λdλ dδ.) Integrating 

over all angles leads to the total cross–section of θ = �d2, which is evidently correct. The 

differential cross-section for hard spheres is independent of both λ and | σP |. This is not the 

case for soft potentials. For example, the Coulomb potential V = e2/| σQ| leads to 

� �2 
dθ me2 

= . 
d� 2| σP |2 sin2(λ/2) 

(The dependence on | σP | can be obtained by obtaining a distance of closest approach from 

| σP |2/m + e2/b ∼ 0.) 

• The Boltzmann transport equation is obtained from eq.(III.36) after one further ap­

proximation known as the assumption of molecular chaos. The approximation consists of 

replacing f2 by using eq.(III.31), leading to 

⎪ � 
σφ φU φ p1 φ 

− · + · f1 = 
φt φσ p1 m φσq1 φσ q1 

− d3 σ
dθ 

|σv1 − σv2| [f1(σ q1, t)f1(σ q1, t) − f1(σ q1, t)f1(σ q1, t)] .p2d� p1, σ p2, σ p1 , σ p2 
�, σ

d� 
(III.38) 

While the approximation f2(σq1, σq2) � f1(σq1)f1(σq2), is certainly justified for separations 

much larger than d, in eq.(III.38) it has been applied to short distances describing collisions. 

The simplification results in a closed form equation for f1 whose consequences we shall 

explore in the next section. 

The streaming terms on the left hand side of the Boltzmann equation describe the 

motion of a single particle in the external potential U . The collision terms on the right 

hand side have a simple physical interpretation: The probability of finding a particle of 

momentum σp1 at qσ1 is suddenly altered if it undergoes a collision with another particle 

of momentum σp2. The probability of such a collision is the product of kinematic factors 

described by the differential cross-section dθ/d�, the ‘flux’ of incident particles propor­

tional to |σv2 − σv1|, and the joint probability of finding the two particles, approximated by 

f1(σ p2). The first term on the right hand side of eq.(III.38) subtracts this probability p1)f1(σ
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and integrates over all possible momenta and solid angles describing the collision. The sec­

ond term, describes an addition to the probability which results from the inverse process: 

A particle can suddenly appear at (σ q1) as a result of a collision between two particles p1, σ

initially with momenta σ � and σ p1 
�, σp1 p2 

� . The cross-section, and the momenta (σ p2 
�) may 

have a complicated dependence on (σ p2) and �, determined by the specific form of the p1, σ

potential V. Remarkably, various equilibrium properties of the gas are quite independent 

of this potential. 
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