II. Probability

II.A General Definitions

The laws of thermodynamics are based on observations of macroscopic bodies, and
encapsulate their thermal properties. On the other hand, matter is composed of atoms
and molecules whose motions are governed by fundamental laws of classical or quantum
mechanics. It should be possible, in principle, to derive the behavior of a macroscopic
body from the knowledge of its components. This is the problem addressed by kinetic
theory in the following lectures. Actually, describing the full dynamics of the enormous
number of particles involved is quite a daunting task. As we shall demonstrate, for dis-
cussing equilibrium properties of a macroscopic system, full knowledge of the behavior of
its constituent particles is not necessary. All that is required is the likelihood that the
particles are in a particular microscopic state. Statistical mechanics is thus an inherently
probabilities description of the system. Familiarity with manipulations of probabilities is
therefore an important prerequisite to statistical mechanics. Our purpose here is to review
some important results in the theory of probability, and to introduce the notations that
will be used in the rest of the course.

The entity under investigation is a random wariable x, which has a set of possible
outcomes S = {x1,x2,---}. The outcomes may be discrete as in the case of a coin toss,
Scoin = {head, tail}, or a dice throw, Sgice = {1,2,3,4,5,6}, or continuous as for the
velocity of a particle in a gas, Sy = {—00 < v, vy, v, < 00}, or the energy of an electron
in a metal at zero temperature, S, = {O <e< ep}. An event is any subset of outcomes
E C S, and is assigned a probability p(E), e.g. paice({1}) = 1/6, or paice({1,3}) = 1/3.
From an axiomatic point of view, the probabilities must satisfy the following conditions:

(i) Positivity: p(E) > 0, i.e. all probabilities must be non-zero.
(ii) Additivity: p(A or B) = p(A) + p(B), if A and B are disconnected events.
(iii) Normalization: p(S) =1, i.e. the random variable must have some outcome in S.

From a practical point of view, we would like to know how to assign probability values
to various outcomes. There are two possible approaches:

(1) Objective probabilities are obtained ezperimentally from the relative frequency of the
occurrence of an outcome in many tests of the random variable. If the random process

is repeated N times, and the event A occurs N4 times, then



For example, a series of N = 100, 200, 300 throws of a dice may result in Ny =
19, 30, 48 occurrences of 1. The ratios .19, .15, .16 provide an increasingly more
reliable estimate of the probability pgice({1})-

(2) Subjective probabilities provide a theoretical estimate based on the uncertainties
related to lack of precise knowledge of outcomes. For example, the assessment
paice({1}) = 1/6, is based on the knowledge that there are six possible outcomes
to a dice throw, and that in the absence of any prior reason to believe that the dice is
biased, all six are equally likely. All assignments of probability in Statistical Mechanics
are subjectively based.The consequences of such subjective assignments of probability
have to be checked against measurements, and they may need to be modified as more

information about the outcomes becomes available.

II.B One Random Variable

As the properties of a discrete random variable are rather well known, here we focus
on continuous random variables, which are more relevant to our purposes. Consider a
random variable 2, whose outcomes are real numbers, i.e. S, = {—00 < & < o0}.
e The cumulative probability function (CPF) P(x), is the probability of an outcome with
any value less than z, i.e. P(x) = prob.(E C [—o0,z]). P(x) must be a monotonically
increasing function of z, with P(—o0) = 0 and P(+o00) = 1.
e The probability density function (PDF) is defined by p(x) = dP(x)/dxz. Hence, p(z)dx =
prob.(E C [z,z + dx]). As a probability density, it is positive, and normalized such that

oo

prob.(S) = / dx p(z)=1. (I1.1)

— 00

Note that since p(z) is a probability density, it has no upper bound, i.e. 0 < p(x) < oco.

e The expectation value of any function F'(x), of the random variable is

(F(x)) = /oo dx p(z)F(z) . (I1.2)

—0

The function F(x) is itself a random variable, with an associated PDF of pp(f)df =
prob.(F(z) C [f, f + df]). There may be multiple solutions z;, to the equation F(z) = f,
and
(IL3)

pr(Ndr = Y pledde, = pe(f) = Y pe) | T

—La

26



The factors of |dz/dF| are the Jacobians associated with the change of variables from x
to . For example, consider p(x) = XAexp(—\|z|)/2, and the function F(x) = z2. There
are two solutions to F(z) = f, located at z+ = ++/f, with corresponding Jacobians

| 4+ f~1/2/2|. Hence,

Pp(f) = %exp (—Aﬁ) ('%)4_ ‘% ) _ )\eXpQ(—\/T)\\/T) 7

for f > 0, and pp(f) = 0 for f < 0. Note that pp(f) has an (integrable) divergence at
f=0.

e Moments of the PDF are expectation values for powers of the random variable. The n"

moment is
my, = (x") = /dmp(m) x". (I1.4)

e The characteristic function, is the generator of moments of the distribution. It is simply

the Fourier transform of the PDF, defined by

p(k) = <e_ikx> = /dxp(:z;) etk (I1.5)

The PDF can be recovered from the characteristic function through the inverse Fourier

transform

p(x) i/alk;]ﬁ(lf) etike, (I1.6)

:27r

Moments of the distribution are obtained by expanding p(k) in powers of k,

n=0 ' '

n=0

Moments of the PDF around any point x(y can also be generated by expanding

o) = (e M) < S () (118)

e The cumulant generating function is the logarithm of the characteristic function. Its

expansion generates the cumulants of the distribution defined through

npk) =) (_:Zf)n ("), . (IL.9)
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Relations between moments and cumulants can be obtained by expanding the logarithm

of p(k) in eq.(IL.7), and using

In(l+e) = i(—l)”“% : (I1.10)

The first four cumulants are called the mean, variance, skewness, and curtosis of the

distribution respectively, and are obtained from the moments as
(), =(2),
(2%), = (%) — (@),
(2%), = (%) = 3(2?) (z) +2()",
(%) = (a*) — 4 (a®) (2) = 3(a?)” +12(«?) (x)* — 6 ().

The cumulants provide a useful and compact way of describing a PDF.

(IL11)

An important theorem allows easy computation of moments in terms of the cumulants:

h

Represent the n'" cumulant graphically as a connected cluster of n points. The m'™ moment

is then obtained by summing all possible subdivisions of m points into groupings of smaller
(connected or disconnected) clusters. The contribution of each subdivision to the sum is
the product of the connected cumulants that it represents. Using this result the first four

moments are easily computed as
(z) =(z).,
(2%) =(a*), + (2);,
(%) = (%), +3(a®), (@) + (2);,
(z%) = (2*) +4(2®) (z), +3 (%)’ +6(a?) (&) + (x)}.

This theorem, which is the starting point for various diagrammatic computations is statis-

(IL12)

tical mechanics and field theory, is easily proved by equating the expression in egs. (I1.7)
and (I1.9) for p(k)

i (_:j!)m (a™) = exp [g:l (_:f)n <x”>c] = ];[; [(_Z{::pn (<x:!>0)pn] . (IL13)

m=0

Equating the powers of (—ik)™ on the two sides of the above expression leads to

d m! A\ P
(x >:{§}];[W<x yor (IL.14)

The sum is restricted such that > np, = m, and leads to the graphical interpretation
given above, as the numerical factor is simply the number of ways of breaking m points

into {p,} clusters of n points.
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II.C Some Important Probability Distributions

The properties of three commonly encountered probability distributions are examined
in this section.

(1) The normal (Gaussian) distribution describes a continuous real random variable z,

with
1 (x — )2
= —— II.1
pa) = e exp |- (115)
The corresponding characteristic function also has a Gaussian form,
_ > 1 (x —N)? , k202
p(k) = /_OO dz Nor exp [—T - zkm} = exp [—zk)\ ~ . (I1.16)
Cumulants of the distribution can be identified from Inp(k) = —ik\ — k202 /2, using
eq.(IL.9), as
(x), =X <a:2>c =o* <x3>c = <x4>c =-..=0 . (I1.17)

The normal distribution is thus completely specified by its two first cumulants. This makes
the computation of moments using the cluster expansion (egs.(I1.12)) particularly simple,

and
<x> =\,

<m2> — 0?4 22,
(%) =307 A + A%,
<x4> =30t 4 60%)\% + 1,

(11.18)

The normal distribution serves as the starting point for most perturbative computations
in field theory. The vanishing of higher cumulants implies that all graphical computations
involve only products of one point, and two point (known as propagators) clusters.

(2) The binomial distribution: Consider a random variable with two outcomes A and B
(e.g. a coin toss) of relative probabilities p4 and pg = 1 — p4. The probability that in N
trials the event A occurs exactly N4 times (e.g. 5 heads in 12 coin tosses), is given by the

binomial distribution

N _
pN(Na) = ( NA) pAps N (I1.19)

The prefactor,

N N
(m) T NA(N =N (I1.20)

29



is just the coefficient obtained in the binomial expansion of (p4 +pp)?, and gives the num-
ber of possible orderings of N4 events A and Ng = N — N4 events B. The characteristic

function for this discrete distribution is given by

N
D (k) = (e7M) = Z NAl(N - N ),pgApg Nag=Na — (pae™™ +pp)
Nazo Al Al
(I1.21)
The resulting cumulant generating function is
Inpn(k) = Nn (pae™™* +pp) = NInp (k), (11.22)

where In py (k) is the cumulant generating function for a single trial. Hence, the cumulants
after N trials are simply IV times the cumulants in a single trial. In each trial, the allowed
values of N4 are 0 and 1 with respective probabilities pg and p4, leading to <N f‘> =pa,

for all ¢. After N trials the first two cumulants are

(Na)e=Npa , (Ni),=N(pa—p%i)=Npaps - (I1.23)

A measure of fluctuations around the mean is provided by the standard deviation, which is
the square root of the variance. While the mean of the binomial distribution scales as N,
its standard deviation only grows as v/ N. Hence, the relative uncertainty becomes smaller
for large N.

The binomial distribution is straightforwardly generalized to a multinomial distribu-
tion, when the several outcomes {A, B, ---, M} occur with probabilities {pa,pp,- -, prp}-
The probability of finding outcomes { N4, Ng,---, Ny} inatotal of N = Ny+Np - -+ Ny
trials is |

b ((Na N+ Nr}) = PR o - (1129

(3) The Poisson distribution: The classical example of a Poisson process is radioactive

decay. Observing a piece of radioactive material over a time interval T" shows that:
(a) The probability of one and only one event (decay) in the interval [t,¢ + dt| is propor-
tional to dt as dt — 0,
(b) The probabilities of events at different intervals are independent of each other.
The probability of observing exactly M decays in the interval T is given by the Poisson
distribution. It is obtained as a limit of the binomial distribution by subdividing the
interval into N = T'/dt > 1 segments of size dt. In each segment, an event occurs with

probability p = adt, and there is no event with probability ¢ = 1 — adt. As the probability
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of more than one event in dt is too small to consider, the process is equivalent to a binomial

one. Using eq.(I1.21), the characteristic function is given by
T/dt

p(k) = (pe‘ik + q)n = lim [1 + adt (e_”C — 1)}

dis0 =exp [a(e”* —1)T] . (I1.25)

The Poisson PDF is obtained from the inverse Fourier transform in eq.(IL.6) as

o0 o0 oo M
p(z) = / d exp [o (e_ik — 1) T + ika] = e_o‘T/ %eikx Z (aT) e ikM

oo 2T oo 2m - M!
(11.26)
using the power series for the exponential. The integral over k is
> dk
/_Oo gezk(‘”_M) =d(x— M), (I1.27)
leading to
ot (@)Y
par(z) = e T 0@ = M) . (I1.28)
m=0

The probability of M events is thus po7(M) = e~ T (aT)M /M!. The cumulants of the
distribution are obtained from the expansion
(=i

k n
;'), —  (M"), =aTl . (11.29)

Infar(k) =aT(e™® —1)=al >
n=1

All cumulants have the same value, and the moments are obtained from eqgs.(I1.12) as
(M) = (aT), (M?)=(aT)*+ (aT), (M*)=(aT)®+3(al)*+ (aT).  (IL30)

Example: Assuming that stars are randomly distributed in the galaxy (clearly unjustified)
with a density n, what is the probability that the nearest star is at a distance R?

Since, the probability of finding a star in a small volume dV is ndV, and they are
assumed to be independent, the number of stars in a volume V is described by a Poisson
process as in eq.(I1.28), with @ = n. The probability p(R), of encountering the first star
at a distance R is the product of the probabilities p,y (0), of finding zero stars in the
volume V = 47 R3/3 around the origin, and p,4v (1), of finding one star in the shell of
volume dV = 47 R?dR at a distance R. Both p,y(0) and p,qv (1) can be calculated from
eq.(I1.28), and

P(R)AR = poy (0) ppav (1) =e 47 E /3 o= 4mRndR g7 2 g R

4 I1.31
= p(R) =47 R*nexp (—%Rg’n) : ( )
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