VII.D Non-relativistic Gas

Quantum particles are further characterized by a spin s. In the absence of a magnetic
field different spin states have the same energy, and a spin degeneracy factor, g = 2s + 1,
multiplies eqs.(VIL.28)—(VIIL.31). In particular, for a non-relativistic gas in three dimen-
sions (£(k) = h%k2/2m, and Y=V /S d3k /(27)3) these equations reduce to
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To simplify these equations, we change variables to z = Sh*k?/(2m), so that
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Substituting into eqs.(VII1.32) gives
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We now define two sets of functions by
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For non-integer arguments, the function m! = T'(m + 1) is defined by the integral

Jy- dza™e™®. In particular, from this definition it follows that (1/2)! = \/7/2, and
(3/2)! = (3/2)\/7/2. Eqgs.(VIL.33) now take the simple form
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These results completely describe the thermodynamics of ideal quantum gases as a function
of z. To find the equation of state P,(n,,T), we need to solve for z in terms of density.
This requires knowledge of the behavior of the functions f7 (z).

The high temperature, low density (non-degenerate) limit will be examined first. In

this limit, z is small, and
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We thus find (self-consistently) that f(z), and hence n,(z) and P,(z), are indeed small
as z — 0. Egs.(VIL.35) in this limit give,
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The first of the above equations can be solved perturbatively, by the recursive procedure

of substituting the solution up to a lower order, as
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Substituting this solution into the second leads to
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The pressure of the quantum gas can thus be obtained from the virial expansion,
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The second virial coefficient By = —nA3/(2%/%), agrees with eq.(VIL.22) computed in

P, = nykpT (VIL39)

the canonical ensemble for ¢ = 1. The natural (dimensionless) expansion parameter is
ny,A?/g, and quantum mechanical effects become important when n,A\* > g; the quantum
degenerate limit. The behavior of fermi and bose gases is very different in this degenerate
limit of low temperatures and high densities, and the two cases will be discussed separately

in the following sections.

VII.E The Degenerate Fermi Gas

At zero temperature, the fermi occupation number,

1
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is one for £ (l;) < i, and zero otherwise. The limiting value of u at zero temperature is
called the fermi energy, £ p, and all one-particle states of energy less than £ p are occupied,
forming a fermi sea. For the ideal gas with £(k) = h?k2/(2m), there is a corresponding

fermi wavenumber kr, calculated from
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In terms of the density n = N/V,
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Note that while in a classical treatment the ideal gas has a large density of states at
T =0 (from Qctassical = VY /N!), the quantum fermi gas has a unique ground state with
Q = 1. Once the one-particle momenta are specified (all k for |k| < kr), there is only one
anti-symmetrized state, as constructed in eq.(VIL.7).

To see how the fermi sea is modified at small temperatures, we need the behavior of

fm(2) for large z which, after integration by parts, is
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Since the fermi occupation number changes abruptly from one to zero, its derivative in the
above equation is sharply peaked. We can expand around this peak by setting x = In 241,

and extending the range of integration to —oo < t < +o00, as
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Using the (anti-) symmetry of the integrand under ¢ — —t, and un-doing the integration

by parts yields,
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Inserting the above into eq.(VIL.43), and using tabulated values for the integrals f; (1),

leads to the Sommerfeld expansion,
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In the degenerate limit, the density and chemical potential are related by
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The lowest order result reproduces the expression in eq.(VIL.41) for the fermi energy,
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Inserting the zero temperature limit into eq.(VIL.45) gives the first order correction,
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The appropriate dimensionless expansion parameter is (kpT/Er). Note that the fermion
chemical potential y = kpT'lnz, is positive at low temperatures, and negative at high
temperatures (from eq.(VIL.38)). It changes sign at a temperature proportional to £ p/kp.

The low temperature expansion for the pressure is
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where Pr = (2/5)n€F if the fermi pressure. Unlike its classical counterpart, the fermi gas
at zero temperature has finite pressure and internal energy.

The low temperature expansion for the internal energy is obtained easily from

eq.(VIL.47) using
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where we have introduced the fermi temperature Tp = Ep/kp. Eq.(VIL.48) leads to a low
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temperature heat capacity,
2 2
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The linear vanishing of the heat capacity as T — 0 is a general feature of a fermi gas, valid
in all dimensions. It has the following simple physical interpretation: The probability
of occupying single-particle states, eq.(VI1.40), is very close to a step function at small
temperatures. Only particles within a distance of approximately kT of the fermi energy
can be thermally excited. This represents only a small fraction T'/Tr, of the total number
of electrons. Each excited particle gains an energy of the order of kT, leading to a
change in the internal energy of approximately kTN (T /Tr). Hence the heat capacity
is given by Cy = dE/dT ~ NkgT/Tr. This conclusion is also valid for an interacting
fermi gas. The fact that only a small number, N(T/TF), of fermions are excited at small
temperatures accounts for many interesting properties of fermi gases. For example, the
magnetic susceptibility of a classical gas of N non-interacting particles of magnetic moment
pp follows the Curie law, x o« Nu% /(kgT). Since quantum mechanically, only a fraction
of spins contributes at low temperatures, the low temperature susceptibility saturates to

a (Pauli) value of x o« Nu%/(kgTr) (see the problems for the details of this calculation.)

150



