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V.B The Cluster Expansion 

For short range interactions, specially with a hard core, it is much better to replace 

the expansion parameter V(qδ ) by f(qδ ) = exp (−�V(δq )) −1, which is obtained by summing 

over all possible number of bonds between two points on a cumulant graph. The resulting 

series is organized in powers of the density N/V , and is most suitable for obtaining a virial 

expansion, which expresses the deviations from the ideal gas equation of state in a power 

series 
� 

� �2 
� 

P N N N 
= 1 + B2(T ) + B3(T ) + · · · . (V.14)

kB T V V V 

The temperature dependent parameters, Bi(T ), are known as the virial coefficients and 

originate from the inter-particle interactions. Our initial goal is to compute these coeffi­

cients from first principles. 

To illustrate a different method of expansion, we shall perform computations in the 

grand canonical ensemble. With a macro-state M � (T, µ, V ), the grand partition function 

is given by 

Q(µ, T, V ) = e�µN Z(N, T, V ) = 
� 1 

� 
e�µ �N 

SN , (V.15)
N ! �3 

N =0	 N =0 

where 
� N 

SN = d3δqi (1 + fij ), (V.16) 
i=1 i<j 

and fij = f(δqi − δqj ). 

The 2N (N −1)/2 terms in SN can now be ordered in powers of fij as 

⎝	 � 
� N 

SN = d3δqi �1 + fij + fij fkl + · · · � . (V.17) 
i=1 i<j i<j,k<l 

An efficient method for organizing the perturbation series is to represent the various con­

tributions diagrammatically. In particular we shall apply the following conventions: 

(a) Draw N dots labelled by i = 1, · · · , N to represent the coordinates qδ1 through δqN , 

· · · . 
1 2 N 

(b)	 Each term in eq.(V.17) corresponds to a product of fij , represented by drawing lines 

connecting i and j for each fij . For example, the graph, 

• • − • • − • − • • 
· · · ,

1 2 3 4 5 6 N 
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represents the integral 

�
� ��

� ��
� � �

� � 

d3δq1 d3qδ2d
3δ q5d

3δq6 f45f56 · · · d3qδN .q3f23 d3qδ4d
3δ

As the above example indicates, the value of each graph is the product of the contri­

butions from its linked clusters. Since these clusters are more fundamental, we reformulate 

the sum in terms of them by defining a quantity b�, equal to the sum over all β-particle 

linked clusters (one-particle irreducible or not). For example 

b1 = • = d3qδ = V, (V.18) 

and 

b2 = • − • = d3qδ1d
3δq2f(δq1 − δq2). (V.19) 

There are four diagrams contributing to b3, leading to 

q2)f(δq2 − δq3) + f(δq2 − δ q1)f(δq1 − δb3 = d3qδ1 d
3δq2d

3qδ3 
� 
f(δq1 − δ q3)f(δq3 − δq1) + f(δq3 − δ q2) 

+ f(qδ1 − qδ2 )f(δq2 − δ q1) .q3)f(δq3 − δ
(V.20) 

A given N -particle graph can be decomposed to n1 1-clusters, n2 2-clusters, · · ·, n� β-

clusters, etc. Hence, 

SN = n� W ({n�}), (V.21)b� 
{n� }� � 

where the restricted sum is over all distinct divisions of N points into a set of clusters {n�}, 
⎞ 

such that � βn� = N . The coefficients W ({n�}) are the number of ways of assigning N 

particle labels to groups of n� β-clusters. For example, the divisions of 3 particles into a 

1-cluster and a 2-cluster are 

• • − • • • − • • • − • 
, , and . 

1 2 3 2 1 3 3 2 1 

All above graphs have n1 = 1 and n2 = 1, and contribute a factor of b1b2 to S3; thus 

W (1, 1) = 3. 

In general, W ({n�}) is the number of distinct ways of grouping the labels 1, . . . , N 

into bins of n� β-clusters. It can be obtained from the total number of permutations, N !, 

after dividing by the number of equivalent assignments. Within each bin of βn� particles, 

equivalent assignments are obtained by: (i) permuting the β labels in each subgroup in β! 
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ways, for a total of (β!)n� permutations; and (ii) the n�! rearrangements of the n� subgroups. 

Hence, 
N ! 

W ({n�}) = ⎛ . (V.22) 
� n�!(β!)n� 

(We can indeed check that W (1, 1) = 3!/(1!)(2!) = 3 as obtained above.) 

Using the above value of W , the expression for S N in eq.(V.21) can be evaluated. 
⎞ 

However, the restriction of the sum to configurations such that βn� = N complicates 

the evaluation. Fortunately, this restriction disappears in the expression for the grand 

partition function in eq.(V.16), 

� 1 
� 

e�µ �N 
� N ! 

Q = 
N ! �3 

⎛ 
� n�!(β!)n� 

bn
� 

� . (V.23) 
N=0 {n�}� � 

⎞� ⎞ 
The restriction in the second sum is now removed by noting that N=0 {n� } �

⎞ = �n� ,N 
⎞ 

{n� }
. Therefore, 

⎞ 
� e�µ � �n� 

� bn� 
�� 1 e�µ�b� 

�n� 

Q = � = 
�3 n�!(β!)n� n�! �3�β! 

{n�} � {n�} � 

�� 1 
� 

e�µ �� 
�n� 

�

� 
e�µ �� 

� 
b� b� 

= 
n�! �3 β! 

= exp 
�3 β! 

(V.24) 
� {n�} � 

�

� 
e�µ �� 

� 
b� 

= exp . 
�3 β! 

�=1 

The above result has the simple geometrical interpretation that the sum over all graphs, 

connected or not, equals the exponential of the sum over connected graphs. This is a 

quite general result that is also related to the graphical connection between moments and 

cumulants discussed in sec.II.B. 

The grand potential is now obtained from 

P V 
� � 

e�µ b�
ln Q = −�G = = . (V.25)

kT �3 l! 
�=1 

In eq.(V.25), the extensivity condition is used to get G = E − T S − µN = −P V . Thus 

the terms on the right hand side of the above equation must also be proportional to the 

volume V . This can be explicitly verified by noting that in evaluating each b� there is an 
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integral over the center of mass coordinate that explores the whole volume. For example, 

b2 = d3qδ1d
3δ

� 
q2f(δq1 − δq2) = V d3qδ12f(δq12). Quite generally, we can set 

lim b� = V b̄�, (V.26)
V �� 

and the pressure is now obtained from 

P 
� � 

e�µ 
� b̄� 

= . (V.27)
kT �3 β! 

�=1 

The linked cluster theorem ensures G � V , since if any non-linked cluster had appeared in 

ln Q, it would have contributed a higher power of V . 

Although an expansion for the gas pressure, eq.(V.27) is quite different from eq.(V.14) 

in that it involves powers of e�µ rather than the density n = N/V . This difference can be 

removed by solving for the density in terms of the chemical potential, using 

λ ln Q 
� � 

e�µ V b̄�
N = = β . (V.28)

λ(�µ) �3 β! 
�=1 

The equation of state can be obtained by eliminating the fugacity x = e�µ/�3, between 

the equations 
� � 

� x� 
� x P 

n = b̄�, and = b̄�, (V.29)
(β − 1)! kT β! 

�=1 �=1 

using the following steps: 

(a) Solve for x(n) from (b̄1 = d3δq/V = 1) 

x = n − b̄2x 2 − 
b̄3 

x 3 − · · · . (V.30)
2 

The perturbative solution at each order is obtained by substituting the solution at the 

previous order in eq.(V.30), 

x1 = n + O(n 2) 

x2 = n − b̄2n 2 + O(n 3) (V.31) 

x3 = n − b̄2(n − b̄2n)2 − 
b̄3 3 b2n 2 b2 4n + O(n 4) = n − ¯ + (2 2̄ − 

b̄3 
)n 3 + O(n ). 

2 2 
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(b) Substitute the perturbative result for x(n) into eq.(V.29), yielding 

b̄3 3�P = x + 
b̄2 

x 2 + x + · · · 
2 6 

= n − b̄2n 2 b2 b̄2 
b2 3 3+ (2 2̄ − 

b̄3 
)n 3 + n 2 − 2̄n + 

b̄3 
n + · · · (V.32)

2 2 6 
4b2 = n − 

b̄2 
n 2 + ( 2̄ − 

b̄3 
)n 3 + O(n ). 

2 3


The final result is in the form of the virial expansion of eq.(V.14),


�P = n + B�(T )n � . 
�=2 

The first term in the series reproduces the ideal gas result. The next two corrections are 

� ⎠1 −�V(�B2 = − 
b̄2 

= − d3δq e q ) − 1 , (V.33)
2 2 

and 

b2 b̄3
B3 = 2̄ − 

3 
�
� �2 

� ⎠ 
−�V(�= d3qδ e q ) − 1 

�
� � � (V.34)

1 
− 3 d3qδ12d

3qδ13f(δq12)f(δq13) + d3qδ12d
3qδ13f(δq12)f(δq13)f(δq12 − δq13)

3 
1 

= − d3δ q13f(δq12)f(δq13)f(δq12 − δq13).q12d
3δ

3 

The above example demonstrates the cancellation of the one particle reducible cluster 

that appears in b3. While all clusters (reducible or not) appear in the sum for b�, as 

demonstrated in the previous section, only the one particle irreducible ones can appear in 

an expansion in powers of density. The final expression for the βth virial coefficient is 

(β − 1)
B�(T ) = − d̄�, (V.35)

β! 

where d̄� is defined as the sum over all one–particle–irreducible clusters of β points. Note 

that in terms of d̄� , the partition function can be organized as 

� n
ln Z = ln Z0 + V d̄�, (V.36)

β! 
�=2 

reproducing the above virial expansion from �P = λ ln Z/λV . 

103 


