ITI1.G Conservation Laws

o Approach to equilibrium: We now address the third question posed in the introduction
of how the gas reaches its final equilibrium. Consider a situation in which the gas is
perturbed from the equilibrium form described by eq.(I11.53), and follow its relaxation to
equilibrium. There is a hierarchy of mechanisms that operate at different time scales.

(i) The fastest processes are the two body collisions of particles in immediate vicinity.
Over a time scale of the order of 7., f2(q1, ¢, t) relaxes to f1(q1,t)f1(¢,t) for separa-
tions |1 — ¢2| > d. Similar relaxations occur for the higher order densities fs.

(i) At the next stage, f1 relaxes to a local equilibrium from, as in eq.(II1.50), over the
time scale of the mean free time 7. This is the intrinsic scale set by the collision term
on the right hand side of the Boltzmann equation. After this time interval, at each
point we can define a local (time dependent) density by integrating over all momenta

as

n(g.t) = / A (I1L.66)

as well as a local expectation value for any operator O(p, q, t)

1

- == [ ErnEano.ao. (1L67)

(iii) After the densities and expectation values have relaxed to their local equilibrium forms
in the intrinsic time scales 7. and 7y, there is a subsequent relaxation to equilibrium
over extrinsic time and length scales. The slow relaxation is controlled by the conserved
quantities, which evolve according to hydrodynamic equations.

Conserved quantities, are left unchanged by the two body collisions, i.e. satisfy

X(ﬁl? q_; t) + X(ﬁQa (77 t) = X(ﬁl /7 q_; t) + X(ﬁQ /7 q; t)? (11168)

where (P, p2) and (p)’, p2’) refer to the momenta before and after a collision respectively.

For such quantities, we have

df,

J = / Bpx (P, q,t) b7 = 0. (I11.69)

coll.

e Proof: Using the form of the collision integral, we have
7= [ ERd pdn - wl (GG - GG ). (111.70)
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We now perform the same set of changes of variables that were used in the proof of the
H-theorem. The first step is averaging after exchange of the dummy variables p; and ps,

leading to

7= 5 [ ERERETT - 5l (G E) ~ LG AE) G+ x(F). (LT

Next, change variables from the originators (571, pa, I;), to the products (p1’, pa’ b ") of the

collision. After relabeling the integration variables, the above equation is transformed to

=1 /ds L PPad?bl T — Bl [f1(B1 ) fL(B2") — FL(B) F1(B2)] (x(B ) + x(F2)) . (IIL72)

Averaging the last two equations leads to

J = i/d:” VP Pad?b| T — T [f1(51) f1(B2) — fL(B1') f1(Pa)]

[X(P1) + x(P2) — x(B1 ") — x(B2")],

(I11.73)

which is zero from eq.(II1.68).
Let us explore the consequences of this result for the evolution of expectation values
involving x. Substituting for the collision term in eq.(II1.69) the streaming terms on the

left hand side of the Boltzmann equation leads to

J = / d>px (P, 4, t) {at 20 + F, > Do } fi= (I11.74)

where we have introduced the notations 9y = 0/0t, 0, = 9/0q., and F, = —0U/0q,. We

can manipulate the above equation into the form

(63 8 (6% 8
/435 O+ 220, + Fo= | (xfi) — F |00+ 220, + Fu—— | xt =0.  (IILT75)
m 8pa m 8pa

The third term is zero, as it is a complete derivative. Using the definition of expectation

values in eq.(II1.67), the remaining terms can be rearranged into
Do Da ox \
Ot (n (X)) + Ou (n <EX>> n(Ox) —n < - 8ax> nk, <8pa> =0. (ITI1.76)

As discussed earlier, for elastic collisions, there are 5 conserved quantities: particle
number, the three components of momentum, and kinetic energy. Each leads to a corre-

sponding hydrodynamic equation, as constructed below:
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(a) Particle number: Setting x = 1 in eq.(IIL.76) leads to
On + 0y (nugy,) = 0, (IT1.77)

where we have introduced the local velocity

i= <%> . (I11.78)

This equation simply states that the time variation of the local particle density is due to
a particle current j;l = na.
(b) Momentum: Any linear function of the momentum p'is conserved in the collision, and

we shall explore the consequences of the conservation of

e=L g (IIL.79)
m
Substituting ¢, into eq.(I11.76) leads to
Fy
g (n((ug + cg) ca)) + NOtuq + ndguq (ug + cg) — no— = 0. (IT1.80)

Taking advantage of (c,) = 0, from eqgs.(I11.78) and (II1.79), leads to

F, 1

Ot Jge, = — — —03 P53, I11.81
ta + updptia = —= — ——0plap (II1.81)
where we have introduced the pressure tensor,

P,g =mn {cqcg) . (I11.82)

The left hand side of the equation is the acceleration of an element of the fluid diu/dt, which
should equal Fet /m according to Newton’s equation. Clearly the net force has acquired
an additional component due to the variations in the pressure tensor in the fluid.

(c) Kinetic energy: We first introduce an average local kinetic energy

mc? p? mu?
(N _ (P ppe T 11,
€ < 5 > <2m P-4+ 5 > , (I11.83)

and then examine the conservation law obtained by setting x equal to mc?/2 in eq.(II1.76).

Noting that Ox = mcgdcg, we obtain

O(ne) + 0a (n <(ua + Ca>m_(:2>) +nmdyug (cg) +nmdatus (e + ca)cs) —nFa (ca) = 0.

2
(I11.84)
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Taking advantage of (¢, ) = 0, the above equation is simplified to

2
Ot (ne) 4+ 0y (Nune) + Oq (n <ca%>) + PopOoug = 0. (IT1.85)

We next take out the dependence on n in the first two terms of the above equation, finding
€0¢n + noie + €0y (NUq) + NUaO0n€ + Onha + Paptias =0, (I11.86)

where we have also introduced the local heat flux

hi= 5 (cad®). (IT1.87)
and the rate of strain tensor
1
Uaf = B (8au5 + qua) . (111.88)

Eliminating the first and third terms in eq.(II1.86) with the aid of eq.(II.77) leads to

1 1

O + UpOpe = —58aha — —P,puag. (111.89)

n
Clearly to solve the hydrodynamic equations for n, @, and €, we need expressions for P,z

and E, which are either given phenomenologically, or calculated from the density fi, as in

the next sections.
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