
� 

� 

� � 
� 
� 

� 

III.G Conservation Laws 

• Approach to equilibrium: We now address the third question posed in the introduction 

of how the gas reaches its final equilibrium. Consider a situation in which the gas is 

perturbed from the equilibrium form described by eq.(III.53), and follow its relaxation to 

equilibrium. There is a hierarchy of mechanisms that operate at different time scales. 

(i)	 The fastest processes are the two body collisions of particles in immediate vicinity. 

Over a time scale of the order of ρc, f2(σq1, σq2, t) relaxes to f1(σq1, t)f1(σq2, t) for separa­

tions |σq1 − qσ2| � d. Similar relaxations occur for the higher order densities fs. 

(ii)	 At the next stage, f1 relaxes to a local equilibrium from, as in eq.(III.50), over the 

time scale of the mean free time ρ×. This is the intrinsic scale set by the collision term 

on the right hand side of the Boltzmann equation. After this time interval, at each 

point we can define a local (time dependent) density by integrating over all momenta 

as 

q, t) = d3σ p, σn(σ pf1(σ q, t),	 (III.66) 

as well as a local expectation value for any operator O(σ q, t)p, σ

1 
q, t)⇒ = d3σ p, σ p, σ�O(σ	 pf1(σ q, t)O(σ q, t). (III.67) 

n(σq, t) 

(iii)	 After the densities and expectation values have relaxed to their local equilibrium forms 

in the intrinsic time scales ρc and ρ×, there is a subsequent relaxation to equilibrium 

over extrinsic time and length scales. The slow relaxation is controlled by the conserved 

quantities, which evolve according to hydrodynamic equations. 

Conserved quantities, are left unchanged by the two body collisions, i.e. satisfy 

p1, σ p2, σ p1 , σ p2 
�, σλ(σ	 q, t) + λ(σ q, t) = λ(σ � q, t) + λ(σ q, t), (III.68) 

where (σ p2) and (σ p2 
�) refer to the momenta before and after a collision respectively. p1, σ p1 

�, σ

For such quantities, we have 

p λ(σ q, t)J = d3 σ p, σ
df1 � 

= 0.	 (III.69)
dt coll. 

• Proof: Using the form of the collision integral, we have 

p2) − f1(σ
�p1	 )f1(σ

�J = d3σ p2d
2σb|σv1 − σv2| [f1(σ	 p1). (III.70)p1d

3 σ	 p1)f1(σ p2 )] λ(σ
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We now perform the same set of changes of variables that were used in the proof of the 

p1 and σH-theorem. The first step is averaging after exchange of the dummy variables σ p2, 

leading to 

1 
p2) − f1(σ

�p1 )f1(σ
�J = d3σ p2d

2σb|σv1 − σv2| [f1(σ p1) + λ(σp1d
3σ p1)f1(σ p2 )] (λ(σ p2)) . (III.71)

2 

p1, σ p1 
�, σNext, change variables from the originators (σ p2,σb), to the products (σ p2 

� ,σb �) of the 

collision. After relabeling the integration variables, the above equation is transformed to 

p1 
�)f1(σ

�J =
1 

d3 σ p2d
2σb|σv1 − σv2| [f1(σ p2 ) − f1(σ p2)] (λ(σ � p2 )) . (III.72)p1d

3σ p1)f1(σ p1 ) + λ(σ �

2 

Averaging the last two equations leads to 

1 
p2) − f1(σ

�p1 )f1(σ
�J = d3σ p2d

2σb|σv1 − σv2| [f1(σp1d
3σ p1)f1(σ p2 )]

4 (III.73) 
p2) − λ(σ �p1) + λ(σ p1 ) − λ(σ �[λ(σ p2 )] , 

which is zero from eq.(III.68). 

Let us explore the consequences of this result for the evolution of expectation values 

involving λ. Substituting for the collision term in eq.(III.69) the streaming terms on the 

left hand side of the Boltzmann equation leads to 

pλ(σ q, t) φt + φ� + F� f1 = 0, (III.74)J = d3 σ p, σ
p� φ 
m φp� 

where we have introduced the notations φt ≤ φ/φt, φ� ≤ φ/φq�, and F� = −φU/φq�. We 

can manipulate the above equation into the form 

�� � � � � 

d3σ
p� φ 

p φt + φ� + F� (λf1) − f φt + 
p� 

φ� + F� 
φ

λ = 0. (III.75) 
m φp� m φp� 

The third term is zero, as it is a complete derivative. Using the definition of expectation 

values in eq.(III.67), the remaining terms can be rearranged into 

� � �⎩ � � p�
φt (n �λ⇒) + φ� n

p� 
λ − n �φtλ⇒ − n φ�λ − nF� 

φλ 
= 0. (III.76) 

m m φp� 

As discussed earlier, for elastic collisions, there are 5 conserved quantities: particle 

number, the three components of momentum, and kinetic energy. Each leads to a corre­

sponding hydrodynamic equation, as constructed below: 
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(a) Particle number: Setting λ = 1 in eq.(III.76) leads to 

φtn + φ� (nu�) = 0, (III.77) 

where we have introduced the local velocity 

σp
σu ≤ . (III.78) 

m 

This equation simply states that the time variation of the local particle density is due to 

a particle current Jσn = nσu. 

(b) Momentum: Any linear function of the momentum σp is conserved in the collision, and 

we shall explore the consequences of the conservation of 

σp
σc ≤ − σu. (III.79) 

m 

Substituting c� into eq.(III.76) leads to 

F�
φ� (n �(u� + c� ) c�⇒) + nφtu� + nφ� u� �u� + c� ⇒ − n = 0. (III.80) 

m 

Taking advantage of �c�⇒ = 0, from eqs.(III.78) and (III.79), leads to 

F� 1 
φtu� + u� φ� u� = − φ� P�� , (III.81) 

m mn 

where we have introduced the pressure tensor, 

P�� ≤ mn �c�c� ⇒ . (III.82) 

The left hand side of the equation is the acceleration of an element of the fluid dσu/dt, which 

should equal σFnet /m according to Newton’s equation. Clearly the net force has acquired 

an additional component due to the variations in the pressure tensor in the fluid. 

(c) Kinetic energy: We first introduce an average local kinetic energy 

2 2 2mc p mu
π ≤ = − σ u + , (III.83)p · σ

2 2m 2 

and then examine the conservation law obtained by setting λ equal to mc2 /2 in eq.(III.76). 

Noting that φλ = mc� φc� , we obtain 

2mc
φt(nπ) + φ� n (u� + c�) + nmφt u� �c� ⇒+ nmφ�u� �(u� + c�)c� ⇒−nF� �c�⇒ = 0. 

2 
(III.84) 
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Taking advantage of �c�⇒ = 0, the above equation is simplified to 

2mc
φt(nπ) + φ� (nu�π) + φ� n c� + P�� φ�u� = 0. (III.85)

2 

We next take out the dependence on n in the first two terms of the above equation, finding 

πφt n + nφtπ + πφ� (nu�) + nu�φ�π + φ�h� + P�� u�� = 0, (III.86) 

where we have also introduced the local heat flux 

2σh ≤ 
nm � 

c�c , (III.87)
2 

and the rate of strain tensor 

1 
u�� = (φ�u� + φ� u�) . (III.88)

2 

Eliminating the first and third terms in eq.(III.86) with the aid of eq.(III.77) leads to 

1 1 
φtπ + u�φ�π = − φ�h� − P�� u�� . (III.89) 

n n 

Clearly to solve the hydrodynamic equations for n, σu, and π, we need expressions for P�� 

and σh, which are either given phenomenologically, or calculated from the density f1, as in 

the next sections. 
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