V.B The Cluster Expansion

For short range interactions, specially with a hard core, it is much better to replace
the expansion parameter V(q) by f(¢) = exp (—8V(¢)) — 1, which is obtained by summing
over all possible number of bonds between two points on a cumulant graph. The resulting
series is organized in powers of the density N/V, and is most suitable for obtaining a virial
expansion, which expresses the deviations from the ideal gas equation of state in a power

series

r_N 1+BQ(T)E+Bg(T) <5)2+---

— = 14
kgT V Vv |4 (V-14)

The temperature dependent parameters, B;(T'), are known as the virial coefficients and
originate from the inter-particle interactions. Our initial goal is to compute these coeffi-
cients from first principles.

To illustrate a different method of expansion, we shall perform computations in the
grand canonical ensemble. With a macro-state M = (T, u, V'), the grand partition function

is given by
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The 2V(V=1)/2 terms in Sy can now be ordered in powers of fi; as
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An efficient method for organizing the perturbation series is to represent the various con-
tributions diagrammatically. In particular we shall apply the following conventions:
(a) Draw N dots labelled by i = 1,---, N to represent the coordinates ¢; through ¢y,
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(b) Each term in eq.(V.17) corresponds to a product of f;;, represented by drawing lines

connecting ¢ and j for each f;;. For example, the graph,
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represents the integral
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As the above example indicates, the value of each graph is the product of the contri-
butions from its linked clusters. Since these clusters are more fundamental, we reformulate
the sum in terms of them by defining a quantity b,, equal to the sum over all {-particle

linked clusters (one-particle irreducible or not). For example
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and
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There are four diagrams contributing to b3, leading to

(V.20)
A given N-particle graph can be decomposed to n; 1-clusters, ny 2-clusters, ---, ny f-
clusters, etc. Hence,
Sn=Y_ [[viwned), (V.21)
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where the restricted sum is over all distinct divisions of N points into a set of clusters {n,},
such that ), ¢n, = N. The coefficients W ({n,}) are the number of ways of assigning N
particle labels to groups of ny f-clusters. For example, the divisions of 3 particles into a
1-cluster and a 2-cluster are
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All above graphs have n; = 1 and ny = 1, and contribute a factor of b1bs to Ss; thus
W(l,1) =3.

In general, W({n,}) is the number of distinct ways of grouping the labels 1,..., N
into bins of ny f-clusters. It can be obtained from the total number of permutations, N!,
after dividing by the number of equivalent assignments. Within each bin of ¢n, particles,

equivalent assignments are obtained by: (i) permuting the ¢ labels in each subgroup in ¢!
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ways, for a total of (£!)™ permutations; and (ii) the n,! rearrangements of the n, subgroups.

Hence,
N!
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(We can indeed check that W(1,1) = 3!/(1!)(2!) = 3 as obtained above.)

(V.22)

Using the above value of W, the expression for Sy in eq.(V.21) can be evaluated.
However, the restriction of the sum to configurations such that ) ,¢n, = N complicates
the evaluation. Fortunately, this restriction disappears in the expression for the grand

partition function in eq.(V.16),
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The restriction in the second sum is now removed by noting that > v _, > {(ne} 52 g N =
e b

> (e} Therefore,
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The above result has the simple geometrical interpretation that the sum over all graphs,
connected or not, equals the exponential of the sum over connected graphs. This is a
quite general result that is also related to the graphical connection between moments and
cumulants discussed in sec.I1.B.

The grand potential is now obtained from
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In eq.(V.25), the extensivity condition is used to get G = FE — TS — uN = —PV. Thus
the terms on the right hand side of the above equation must also be proportional to the

volume V. This can be explicitly verified by noting that in evaluating each b, there is an
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integral over the center of mass coordinate that explores the whole volume. For example,

= [BQdRf(( — @) =V [ d@q2f(12). Quite generally, we can set

lim b, = Vby, (V.26)
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and the pressure is now obtained from
P > 6ﬁ“ ¢ b_g
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The linked cluster theorem ensures G o< V, since if any non-linked cluster had appeared in
In Q, it would have contributed a higher power of V.

Although an expansion for the gas pressure, eq.(V.27) is quite different from eq.(V.14)
in that it involves powers of e’ rather than the density n = N/V. This difference can be

removed by solving for the density in terms of the chemical potential, using
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The equation of state can be obtained by eliminating the fugacity x = e”# /A3, between

the equations
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using the following steps:

(a) Solve for z(n) from (by = [d*q/V =1)

b
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The perturbative solution at each order is obtained by substituting the solution at the

previous order in eq.(V.30),

1 =n+ 0(n?)
T =n —bn? + O(n?) (V.31)

r3 =n —by(n —byn)? — b—3n3 +O(n*) =n —byn® + (205 — %)ng + O(n).

2
102



(b) Substitute the perturbative result for z(n) into eq.(V.29), yielding

b b
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The final result is in the form of the virial expansion of eq.(V.14),

BP =n+Y By(T)n".
=2

The first term in the series reproduces the ideal gas result. The next two corrections are
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The above example demonstrates the cancellation of the one particle reducible cluster
that appears in b3. While all clusters (reducible or not) appear in the sum for b, as
demonstrated in the previous section, only the one particle irreducible ones can appear in
an expansion in powers of density. The final expression for the ¢t virial coefficient is

(k1)

By(T) = — 7l

dy, (V.35)

where d; is defined as the sum over all one—particle-irreducible clusters of ¢ points. Note

that in terms of dy, the partition function can be organized as
mZ=mmZy+V> e (V.36)
=2

reproducing the above virial expansion from P = 9J1n Z/0V.
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