VI. Quantum Statistical Mechanics

There are limitations to the applicability of classical statistical mechanics. The need
to include quantum mechanical effects becomes specially apparent at low temperatures.
In this section we shall first demonstrate the failure of the classical results in the contexts
of heat capacities of molecular gases and solids, and the ultra-violet catastrophe in black

body radiation. We shall then reformulate statistical mechanics using quantum concepts.

VI.A Dilute Polyatomic Gases

Consider a dilute gas of polyatomic molecules. The Hamiltonian for each molecule of

n atoms is

no =2
P; = _,

where the potential energy V', contains all the information on molecular bonds. For sim-
plicity, we have assumed that all atoms in the molecule have the same mass. If the masses
are different, the Hamiltonian can be brought into the above form by rescaling the coordi-
nates ¢; by \/W (and the momenta by \/W), where m; is the mass of the i*® atom.

Ignoring the interactions between molecules, the partition function of a dilute gas is

Z(N) = N' = = {/Hdpzd i exp [—ﬁZ%—ﬁV((ﬁ,...,(j’n)]} . (VL2)

The chemical bonds that keep the molecule together are usually quite strong (ener-
gies of the order of electron volts). At typical accessible temperatures, which are much
smaller than the corresponding dissociation temperatures (=~ 10 °K), the molecule has
a well defined shape and only undergoes small deformations. The contribution of these
deformations to the one particle partition function Z;, can be computed as follows:

(a) The first step is to find the equilibrium positions, (¢7,...,q7), by minimizing the

potential V.

(b) The energy cost of small deformations about equilibrium is then obtained by setting

¢ = q; + u;, and making an expansion in powers of ,

V=V"+_ Z Z 8%&8% Ui oty p + O(u?). (VI.3)

i,7=1 a,B=1
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(Here i,j = 1,---,n, identify the atoms, and «,3 = 1,2,3 label a particular com-
ponent.) Since the expansion is around a stable equilibrium configuration, the first
derivatives are absent in eq.(VI.3), and the matrix of second derivatives is positive
definite, i.e. it has only non-negative eigenvalues.

(c) The normal modes of the molecule are obtained by diagonalizing the 3n x 3n matrix
0%V /8¢;.0q; 5. The resulting 3n eigenvalues K, indicate the stiffness of each mode.
We can change variables from the original deformations {;}, to the amplitudes {us},
of the eigenmodes. The corresponding conjugate momenta are p, = mus. Since
the transformation from {;} to {@s} is unitary (preserving the length of a vector),

.02 =>", P2, and the quadratic part of the resulting deformation Hamiltonian is

Hy = V* +Z{—ps+—s~2} (V1.4)

(Such transformations are also canonical, preserving the measure of integration in

phase space, Hz’,a dui odpi o =[], dusdps.)

The average energy of each molecule is the expectation value of the above Hamiltonian.
Since each quadratic degree of freedom classically contributes a factor of kgT/2 to the

energy,
3n+m

(H) =V* + kpT. (VL5)

Only modes with a finite stiffness can store potential energy, and m is defined as the
number such modes with non-zero K. The following symmetries of the potential force
some eigenvalues to zero:

no energy is

);
V(G + @), and the

—

(a) Translation symmetry:  Since V(¢1 + G-+, dn +€) = V(q1, +, qn
stored the center of mass coordinate @ = Yoo da/, e V(Q) = (
corresponding three values of Ky a5 are zero.

(b) Rotation symmetry: There is also no potential energy associated with rotations of
the molecule, and K,,; = 0 for the corresponding stiffnesses. The number of rota-
tional modes, 0 < r < 3, depends on the shape of the molecule; for example, a rod
shaped molecule has r = 2, as a rotation parallel to its axis does not result in a new
configuration.

The remaining m = 3n — 3 — r eigenvectors of the matrix have non-zero stiffness, and
correspond to the wvibrational normal modes. The energy per molecule, from eq.(VI.5), is
thus

6n —3 —r

(M) = ——5——kzT. (VL6)
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The corresponding heat capacities,

6n—3 —
C’V:%k& and Cp=Cy +kp =

(6n—1—7)

k L.
ks, (VL)

are temperature independent. The ratio v = Cp/Cy is easily measured in adiabatic
processes. Values of v, expected on the basis of the above argument, are listed below for

a number of different molecules.

Monatomic He n=1 r=20 v=5/3
Diatomic O2 or CO n=2 r=2 v=9/7

Linear triatomic O-C-O n=3 r=2 ~v=15/13

Planar triatomic H/O\H n=3 r=3 v=14/12=17/6
Tetra-atomic NH; n=4 r=3 v=20/18 =10/9

Measurements of the heat capacity of dilute gases do not agree with the above pre-
dictions. For example, the value Cy /kp = 7/2, for a diatomic gas such as oxygen, is only
observed at temperatures higher than a few thousand degrees Kelvin. At room tempera-
tures, a lower value of 5/2 is observed, while at even lower temperatures of around 10°K, it
is further reduced to 3/2. The low temperature value is similar to that of a monatomic gas,
and suggests that no energy is stored in the rotational and vibrational degrees of freedom.
These observations can be explained if the allowed energy levels are quantized.

e Vibrational modes: A diatomic molecule has one vibrational mode with stiffness

K = mw?, where w is the frequency of oscillations. The classical partition function for
dp dq P mw?q?
c — - p— —_—
vib — h eXp |: ﬁ (2m + 9

(VL8)
B 1 2mm 27 ~ 2m kBT
_h\/< Ié] )(ﬁmw2>_hﬁw_ fiw

where i = h/27. The corresponding energy stored in this mode,

this mode is

(Hyin)© = _agnﬂZ = Glnéﬁﬂhw) = % = kgT, (VL.9)

comes from kpT/2 per kinetic and potential degrees of freedom. In quantum mechanics,

the allowed values of energy are quantized such that

1
Hip = hw (n + §> ) (VL10)
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with n =0,1,2,---. Assuming that the probability of each discrete level is proportional to

its Boltzmann weight (as will be justified later on), there is a normalization factor

> —Bhw
78, =3 e 1/ - ez (VL11)
vib —~ 1— e—ﬁhw : :
The high temperature limit,
lim Z¢ Lkl

5=0"VP T Bhy T hw

coincides with eq.(VIL.8)(due in part to the choice of h as the measure of classical phase
space).

The expectation value of vibrational energy is

hw e~ Phw
EY. — In(1 — —Bhwy _ ™ - . 1.12
vib aﬁ 2 + 8ﬁ Il( € ) 92 + hwl — e—Bhw (V )

The first term is the energy cost of quantum fluctuations that are present even in the zero
temperature ground state. The second term describes the additional energy due to thermal

fluctuations. The resulting heat capacity,

dES, hw \? e P
Cow=—gqr v (kBT) (1— e Phw)2’ (VL.13)

achieves the classical value of kp only at temperatures 7' > 0;,, where 6;, = hw/kp is a
characteristic temperature associated with the quanta of vibrational energy. For T' < 0,
CZL goes to zero as exp(—byin/T). Typical values of Oy, are in the range of 103 to 10*
degrees Kelvin, explaining why the classical value of heat capacity is observed only at
higher temperatures.

e Rotational modes: To account for the low temperature anomaly in the heat capacity of
diatomic molecules, we have to study the quantization of the rotational degrees of freedom.
Classically, the orientation of a diatomic molecule is specified by two angles 6 and ¢, and

its Lagrangian (equal to the kinetic energy) is
I orso 2, 0
£:§<0 + sin 0¢), (VL.14)

where I is the moment of inertia. In terms of the conjugate momenta,

oL : oL . ;
pg:@:w, p¢:d—q32181n29¢’ (VL.15)
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the Hamiltonian for rotations is

1 o L2
Hrot - 57 (pg + — s ) =7 (VIlG)

21 sin 6 21

where L is the angular momentum. From the classical partition function,

o By P
d0 d d d

(VL.17)

[ 2nI dr\ 21 kBT

- 6] h2 ) hQ ’

the stored energy is
olmz 0 Bh?

FEiot) = — In(——) =kgT, VI.18
(B == = S () = (VL18)
as expected for two degrees of freedom. In quantum mechanics, the allowed values of
angular momentum are quantized to [2 = hgﬂ(ﬁ + 1) with £ = 0,1,2,---, and each state
has a degeneracy of 2¢ + 1 (along a selected direction, L, = —¢,---,+¢). A partition

function is now obtained for these levels as

> B0+ 1) > Orotl(L + 1)
q __ A
Zrot = ; O exp [ i (2¢+1) ;:O exp 711 (2¢+1), (VL19)

where 6,0 = h?/(2Ikp) is a characteristic temperature associated with quanta of rotational
energy. While the sum can not be analytically evaluated in general, we can study its high
and low temperature limits:

(a) For T >> 0,01, the terms in eq.(VI.19) vary slowly, and the sum can be replaced by the

integral
> Oro 1
Thm VAN —/ dx(2x 4+ 1) exp [—%]

) e - (V1.20)

0 erot
i.e. the classical result of eq.(VI.17) is recovered.
(b) For T' < 6,01, the first few terms dominate the sum, and

Jim Z, =1+ 3¢ T20roe/T 4 O 00/ T, (VI.21)

122



leading to an energy

Eloy = _3gnﬁZ ~ —% In [1 + 36_20r°t/T} ~ 6kpOrore 20t/ T . (V1.22)

The resulting heat capacity vanishes at low temperatures as

dE! 2001\ 2
Crot = d;?t = 3kg (—T t) e 20t/ T .. (VL.23)

Typical values of 8, are between 1 and 10 ° K, explaining the lower temperature shoulder
in the heat capacity measurements. At very low temperatures, the only contributions come
from the kinetic energy of the center of mass, and the molecule behaves as a monatomic
particle. (The heat capacity vanishes at even lower temperatures due to quantum statistics,

as will be discussed in the context of identical particles.)

VI.B Vibrations of a Solid

Attractive interactions between particles first lead to condensation from a gas to liquid
at low temperatures, and finally cause freezing into a solid state at even lower temperatures.
For the purpose of discussing its thermodynamics, the solid can be regarded as a very large
molecule subject to a Hamiltonian similar to eq.(VI.1), with n = N > 1 atoms. We can
then proceed with the steps outlined in the previous section.

(a) The classical ground state configuration of the solid is obtained by minimizing the po-
tential V. In almost all cases, the minimum energy corresponds to a periodic arrangement
of atoms forming a lattice. In terms of the three basis vectors, a, l;, and ¢, the locations of

atoms in a simple crystal are given by
g (l,m,n) = [ﬁd—i—mi)—l—né] =7, (VI.24)

where {¢, m,n} is a triplet of integers.

(b) At finite temperatures, the atoms may undergo small deformations

Ir =T+ U(7), (VI.25)
with a cost in potential energy of
* 1 82V — —/ 3

a,B
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(c¢) Finding the normal modes of a crystal is considerably simplified by its translational
symmetry. In particular, the matrix of second derivatives only depends on the relative

separation of two points,
0%V
07,0007 5

It is always possible to take advantage of such a symmetry to at least partially diagonalize

= Kog(F— 7). (VL27)

the matrix by using a Fourier basis,

- € ~ 7

Ua(7) = %: \/Nua(k). (VI.28)
The sum is restricted to wavevectors k inside a Brillouin zone. For example, in a cu-
bic lattice of spacing a, each component of k is restricted to the interval [—7/a,m/a).
This is because wavevectors outside this interval carry no additional information as
(ky + 2mm/a)(na) = ky(na) + 2mnm, and any phase that is a multiple of 2w does not
effect the sum in eq.(VI.28). In terms of the Fourier modes, the potential energy of defor-

mations is

1 s - S = -
V=V'+o- Y Kapli—)e* g (ke g (k). (VI1.29)
(7). (kK )

a,B
We can change variables to relative and center of mass coordinates,

— —/
p=7—7, and R= 5

by setting . .
ﬁ:ﬁ—l—g, and F’:ﬁ—g.
Eq.(VI.29) now simplifies to
V=V +— Ze (k+k")-R ZK )e' FEP2q,, (K)as(R') | . (VI.30)
kR
7ﬁ

As the sum in the first brackets is N5k+k, 0

|7 (VL31)
* 1 % NG (E Vs (k)™
V4 LS Rl (R ()
I;,oz,ﬂ



where f(aﬁ(E) = > ; Kap(p) exp(ik - 7), and ﬂﬁ(lg)* = ﬂg(—lZ) is the complex conjugate
of ug(k).

The different Fourier modes are thus decoupled at the quadratic order, and the task
of diagonalizing the 3N x 3N matrix of second derivatives is reduced to diagonalizing the
3 x 3 matrix Kag(]; ) separately for each k. The from of f(ag is further restricted by
the point group symmetries of the crystal. The discussion of such constraints is beyond
the intent of this section and for simplicity we shall assume that K,g(k) = 00 K (k), is
already diagonal. (For an isotropic material, this implies a specific relation between bulk
and shear moduli.)

The kinetic energy of deformations is

N

mooy Mo Py Pas L~ Py Tk
1=1 k,Oé ]C,Oé
where
o oL .
N(){ k - s = :maa k s
Pa(k) o (0) (k)

is the momentum conjugate to ﬂa(E ). The resulting deformation Hamiltonian,

o )| K;’” ao )1, (VL.33)

1
2m

H=V"+)_
Fa

describes 3N independent harmonic oscillators of frequencies wq (k) = v/ K (k)/m.

In a classical treatment, each harmonic oscillator of non-zero stiffness contributes kT
to the internal energy of the solid. At most, 6 of the 3N oscillators are expected to have
zero stiffness (corresponding to uniform translations and rotations of the crystal). Thus,
up to non-extensive corrections of order 1/N, the classical internal energy associated with
Hamiltonian (VI.33) is 3NkpT, leading to a temperature independent heat capacity of
3kp per atom. In fact, the measured heat capacity vanishes at low temperatures. We can
again relate this observation to the quantization of the energy levels of each oscillator, as
discussed in the previous section. Quantizing each harmonic mode separately, gives the

allowed values of the Hamiltonian as

1

HO =V + 3 o (F) (n,;a + 5) : (VL.34)
Fra
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where the set of integers {n; _} describes the quantum micro-state of the oscillators. Since

the oscillators are independent, their partition function,

79 — Z} e—ﬁ'Hq — ¢ PEo H Z e—ﬁhwa(ﬁ)n;;a — ¢ PFEo H [1 - e—,lﬁhwa(l_ﬂ'):| , (VL.35)

{ng.q k

k,a g o k,a

is the product of single oscillator partition functions such as eq.(VI.11). (Ey includes the
ground state energies of all oscillators in addition to V*.)

The internal energy is

E(T) = (H) = Bg+ Y hwa(F) <na(/2 )> , (VL.36)

where the average occupation numbers are given by

. %0 ne—Bhwa (K )n
(nalf)) = 2o - 5 ) ln< 1 )

S e Bhwa (F)n B 8(Bhwa 1 — o—Bhwa(k)
e—ﬂhwa(g) 1

T 1 — e—Bhwa(k) - eBhwa (k) _ 1"

(VL.37)

As a first attempt at including quantum mechanical effects, we may adopt the Einstein
model in which all the oscillators are assumed to have the same frequency wpg. This
model corresponds to atoms that are pinned to their ideal location by springs of stiffness

K = 0*V/0q¢?> = mw?,. The resulting internal energy,

hwpe Phwe
and heat capacity,
dE Tp\> e Te/T
C=—=3Nkp|— VI.39
dT B(T) (1—eTe/T)?’ (V1.59)

is simply proportional to that of a single oscillator (eqs.(VI.12) and (VI.13)). In particular,
there is an exponential decay of the heat capacity to zero with a characteristic temperature
Tr = hwg/kp. However, the experimentally measured heat capacity decays to zero much
more slowly, as T°.

The discrepancy is resolved through the Debye model, which emphasizes that at low
temperatures the main contribution to heat capacity is from the oscillators of lowest fre-
quency that are the most easily excited. The lowest energy modes in turn correspond to

smallest wavevectors k = |E|, or longest wavelengths A = 27 /k. Indeed, the modes with
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k=0 simply describe pure translations of the lattice and have zero stiffness. By conti-

nuity we expect, limp K (E) = 0, and ignoring considerations of crystal symmetry, the

—0

expansion of K (k) at small wavevectors takes the form

K(k) = Bk?* + O(k*Y).

- ~ —

The odd terms are absent in the expansion, since K (k) = K (—k ) follows from K (F—7") =

K (7" — ) in real space. The corresponding frequencies at long wavelengths are

w(k) = \/ BWkQ = vk, (VI.40)

where v = \/B/m is the speed of sound in the crystal. (In a real material, Kw is not
proportional to d,4, and different polarizations of sound have different velocities.)
The quanta of vibrational modes are usually referred to as phonons. Using the dis-

persion relation in eq.(VI.40), the contribution of phonons to the internal energy is
hvk
(H?) = Eo + Z i (VL41)
k,a

With periodic boundary conditions in a box of dimensions L, x L, x L, the allowed

wavevectors are

- 2™, 21, 21N
k= z Y £ VI1.42
< L, "’ L, "L, )’ ( )

where n;, ny, and n, are integers. In the large size limit, these modes are very densely
packed, and the number of modes in a volume element 43k is

dk,  dk,  dk, 1%

AN = 27/L, 27/L, 2n/L.  (27)

37, 37,
- &k = pd*K. (V1.43)

Using the phase space density p, any sum over allowed wavevectors can be replaced by an

integral as

vhi“ooz f(k) = / &k pf (k). (VI1.44)

k

Hence, eq.(VI.41) can be re-written as

B2 Bk hok
(27)3 ePhvk —1°

(VL45)



where the integral is performed over the volume of the Brillouin zone, and the factor of 3
comes from assuming the same sound velocity for the three polarizations.

Due to its dependence on the shape of the Brillouin zone, it is not possible to give
a simple closed form expression for the energy in eq.(VI.45). However, we can examine
its high and low temperature limits. The characteristic temperature separating the two
limits,

T, — hvkmax ~ hv o

VI.46
by ke @ (VL46)

corresponds to the high frequency modes at the edge of the zone. For T' > T'p, all modes
behave classically. The integrand of eq.(VI.45) is just kpT', and since the total number
of modes is 3N = 3V fB'Z' d3k/(27)3, the classical results of E(T) = Ey 4+ 3NkgT, and
C = 3Nkp are recovered. For T' <« Tp, the factor exp(fShvk) in the denominator of
eq.(VI.45) is very large at the Brillouin zone edge. The most important contribution to
the integral comes from small k, and the error in extending the integration range to infinity
is small. After changing variables to x = Sho|k|, and using d3k = 4ra2dz/(Bhv)? due to
spherical symmetry, eq.(VI.45) gives

5T o0 3
Jlim B(T) ~ 8—V<h—) 47rl<;BT/ dz—> ]
er —
K 0 (V1.47)
7T_
10

kT
L
()

(The value of the definite integral, 7%/15 ~ 6.5, can be found in standard tables.) The

resulting heat capacity,

(VL48)

has the form C « Nkg (T/Tp)® in agreement with observations. The physical inter-
pretation of this result is the following: At temperatures T' < Tp, only a fraction of the
phonon modes can be thermally excited. These are the low frequency phonons with energy
quanta fiw(k) < kpT. The excited phonons have wavevectors |k| < k*(T) ~ (kgT/hv).
Quite generally, in d space dimensions, the number of these modes is approximately
VE*(T)? ~ V(kgT/hv)%. Each excited mode can be treated classically, and contributes
roughly kpT to the internal enmergy which thus scales as E ~ V (kT /hv)%kpT. The
corresponding heat capacity, C' ~ Vkp(kgT/hv)?, vanishes as T¢.
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VI.C Black-body Radiation

Phonons correspond to vibrations of a solid medium. There are also (longitudinal)
sound modes in liquid and gas states. However, even “empty” vacuum, can support fluc-
tuations of the electromagnetic (EM) field, photons, which can be thermally excited at
finite temperatures. The normal modes of this field are EM waves, characterized by a
wave-number E, and two possible polarizations «. (Since V - E =0 in free space, the elec-
tric field must be normal to E, and only transverse modes exist.) With appropriate choice

of coordinates, the Hamiltonian for the EM field can be written as a sum of harmonic

H:%Z{

k,a

oscillators,

-

2
pk,a‘

+ walk)? fia R )ﬂ, (VL.49)
with we (k) = ck, where ¢ is the speed of light.

With periodic boundary conditions, the allowed wavevectors in a box of size L are
k= 21(ng, ny,n,)/L where {ng,n,,n,} are integers. However, unlike phonons, there is
no Brillouin zone limiting the size of E, and these integers can be arbitrarily large. The
lack of such a restriction leads to the wultraviolet catastrophe in a classical treatment: As
there is no limit to the wavevector, assigning kg7 per mode leads to an infinite energy
stored in the high frequency modes. (The low frequencies are cut off by the finite size of
the box.) It was indeed to resolve this difficulty that Planck suggested that the allowed

values of EM energy must be quantized according to the Hamiltonian

| .
H? = Z hek (na(k:) + 5) , with n.(k)=0,1,2,---. (VL.50)
k.o

As for phonons, the internal energy is calculated from

1 e~ Phek 2V 3~ hck
k,a

The zero—point energy is actually infinite, but as only energy differences are measured, it is

usually ignored. The change of variables to x = Shck allows us to calculate the excitation

E*  he (kT 4/°° dz x
Vo w2\ hc 0 e*—1

7T2 ]fBT 3
= (%20 e

energy,

(VI.52)
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The EM radiation also exerts a pressure on the walls of the container. From the

partition function of the Hamiltonian (VI.50),

. o 1 e—ﬁhck/Z
{na(k)} F.a
the free energy is
Bhck she
F:—kBTan:kBTZ[ 5 tn(l—e fhek)
B kror (VL.54)
d®k [hck
=2V | —— | — 4+ kgTln (1 — e Phek) |
/(2@3[2*3 nit-e )}

The pressure due to the photon gas is

OF A3k
P=—""| —=_— | = [hck+2kpTIn (1 — e Phck
V| /(2703[6+ pin (1 =)
kT [
=P, — 32 / dk k%1n (1 — e_mwk) (integrate by parts)
w2 Jo 3 s (VL55)
T o0 — C
— P+ ka /O dk % % (compare with eq.(VIL.51))
1 FE
p— P —_— .
"3V

Note that there is also an infinite zero—point pressure P,. Differences in this pressure lead
to the Casimir force between conducting plates, which is measurable.

The extra pressure of 1/3 times the energy density can be compared to that of a gas
of relativistic particles. (As shown in the problem sets, a dispersion relation, & o |p|*,
leads to a pressure, P = (s/d)(E/V) in d dimensions.) Continuing with the analogy to a
gas of particles, if a hole is opened in the container wall, the escaping energy flux per unit
area and per unit time is 5

¢ ={cy) v (VL.56)
All photons have speed ¢, and the average of the component of the velocity perpendicular

to the hole can be calculated as

1 [T/ c
(c1) =ecx ey 27 sin 6df cos 6 = 7 (VL57)
resulting in
1 E  n% k1!
— 2 T . VL58
IV T 60 e (VL58)
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The result, ¢ = oT*, is the Stephan—Boltzmann law for blackbody radiation, and

L
60 K32

~ 5.67 x 107*Wm ™ 2°K~*, (V1.59)

is Stephan’s constant. Blackbody radiation has a characteristic frequency dependence: Let
E(T)/V = [ dk&E(k,t), where

hic k3

g(va) - P e,@hck — 17

(V1.60)

is the energy density in wavevector k. The flux of emitted radiation in the interval [k, k+dk]
is I(k,T)dk, where
c he2 13 ckpTk?/4n for k < k*(T)
I(k,T) = Zg<k’T) = 42 oPhck 1 . (VL61)
e B he2k3e=Phek [4n2?  for k> k*(T)

The characteristic wavevector k*(T) ~ kpT/hc separates quantum and classical regimes.

It provides the upper cutoff that eliminates the ultraviolet catastrophe.
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