III.H Zeroth order hydrodynamics

As a first approximation, we shall assume that in “local equilibrium,” the density f;
at each point in space can be represented as in eq.(I11.53), i.e.
n(q,t)

0 (F—mai(q,t))”
f(D,q,t) = (2rmkpT (1) exp [ 2mksT(q,1) ] : (1IL.90)

The choice of parameters clearly enforces [d*pf) = n, and (ﬁ/m)o = u, as required.

Average values are easily calculated for the Gaussian form; in particular

kT
0 B
o =" 5.3, I11.91
(caca) —0ap ( )
leading to

Pl =nkpTdag, and ¢= ngT. (I11.92)

Since the density fY is even in &, all odd expectation values vanish, and in particular
h’ =0. (I11.93)

The conservation laws in this approximation take the simple forms
Din = —ndyug
1
mDyta = Fo = —0a (nkpT) , (I11.94)

2
DtT = ——T@aua
3
In the above expression, we have introduced the material derivative
D; = [8t + u,gf)g] , (111.95)

which measures the time variations of a quantity as it moves along the stream-lines set up
by the average velocity field . By combining the first and third equations, it is easy to
get

Dy In <nT—3/ 2) —0. (I11.96)

The quantity In (nT_?’/ 2) is like a local entropy for the gas (see eq.(I11.64)), which according
to the above equation is not changed along stream-lines. The zeroth order hydrodynamics
thus predicts that the gas flow is adiabatic. This prevents the local equilibrium solution

of eq.(I11.90) from reaching a true global equilibrium form.
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To demonstrate that eqs.(I111.94) do not describe a satisfactory approach to equilib-
rium, examine the evolution of small deformations about a stationary (@, = 0) state, in a

—

uniform box (F = 0), by setting

{ n(q,t) =n+ v(q.1)
(111.97)

T(q.t) =T +0(q.1)

We shall next expand eqs.(I11.94) to first order in the deviations (v, 0, #). Note that to

lowest order, D; = 0;+0(u), leading to the linearized zeroth order hydrodynamic equations

O = —T0y Uy,
kgT
Oily = ——— 0V — k0,0
moyu — v B . (111.98)

2__
8t9 = ——T@aua
3
e Normal modes of the system are obtained by Fourier transformations,
A <E, w) = /d?’(?dt exp [2 <E q— wt)] A(q,t), (I11.99)

where A stands for any of the three fields (v, 6, 4). The natural vibration frequencies are

solutions to the matrix equation

wlu, | = %%Bkﬁ _() %B(Sagkg ug | - (I11.100)
0 0 2Tkg 0 0

It is easy to check that this equation has the following modes, the first three with zero

frequency:

(a) Two modes describe shear flows in a uniform (n = @) and isothermal (T = T) fluid, in
which the velocity varies along a direction normal to its orientation (e.g. @ = f(z,1)y).
In terms of Fourier modes k UT(E) = 0, indicating transverse flows that are not relaxed
in this zeroth order approximation.

(b) A third zero frequency mode describes a stationary fluid with uniform pressure P =
nkgT. While n and T may vary across space, their product is constant, insuring
that the fluid will not start moving due to pressure variations. The corresponding

eigenvector of eq.(II1.100) is

n
ve=|[ 0 |]. (II1.101)
-T
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(¢) Finally, the longitudinal velocity (@ | k) combines with density and temperature

variations in eigenmodes of the form

k|
vi=| w&) |, with  w(k) = tuvlkl, (I11.102)
3T|k|
where
5kgT
=4/ === I11.103
Ve 3 m ) ( )

is the longitudinal sound velocity. Note that the density and temperature variations
in this mode are adiabatic, i.e. the local entropy (proportional to In (nT_3/2)) is left
unchanged. We thus find that none of the conserved quantities relaxes to equilibrium
in the zeroth order approximation. Shear flow and entropy modes persist forever, while
the two sound modes have undamped oscillations. This is a deficiency of the zeroth
order approximation which is removed by finding a better solution to the Boltzmann

equation.

IT1I.I First order hydrodynamics

While f2(p,q,t) of eq.(II1.90) does set the right hand side of the Boltzmann equation
to zero, it is not a full solution, as the left hand side causes its form to vary. The left hand
side is a linear differential operator, which using the various notations introduced in the

previous sections, can be written as

L[f] = 8t—|—][£(904-|-Fai f=1D¢+ ca0a -I—F—i f (I11.104)
m OPa m Ocg

It is simpler to examine the effect of £ on In f{. which can be written as

me? 3

— —In(2mmkp). IIL.1
nT 2 n (2rmkp) (II1.105)

Inf0 = In <nT—3/2) -

Using the relation d(c?/2) = cgdcg = —cgdug, we get

L [ln f{)] =D;In (nT_3/2> + 2/€ T2 DtT—i- i TcaDtua
. (I11.106)
+c Gant _ 3 0aT + Ca0aT + CaC30a Faca
“\n 27T 2kpT? " kT“ﬁ b kpT
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If the quantities n, T, and u,, satisfy the zeroth order hydrodynamic eqgs.(I11.94), we can

simplify the above equation to

2
£l A1) =0 gt o | (o = 22 - BT (20T e

3kpT?2 ksT n T n 2T ) kgT
ch m
+2kBT2 CaO0,T + kBTcaclguag

m daB o mc? 5\ Ca
_ oCg — —£ o — — | —=0,T.
k:BT(C @3 C)“ﬂ+<2kBT 2)T

The characteristic time scale 7y for L is extrinsic, and can be made much larger than

(111.107)

T« . The zeroth order result is thus exact in the limit (7 /7)) — 0; and corrections can be
constructed in a perturbation series in (7 /7r7). To this purpose, we set f; = f2(1 + g),

and linearize the collision operator as

Clfi, fi] = — /d3ﬁ2d25|171 — G| L (P1) L (P2) [9(P1) + 9(P2) — 9(BL") — 9(P2")]

= - f{(#)Crlg).

(I11.108)

While linear, the above integral operator is still difficult to manipulate in general. As a

first approximation, and noting its characteristic magnitude, we set

Crlgl ~ L. (IT1.109)

Tx

This is known as the single collision time approximation, and from the linearized Boltz-

mann equation L[f1] = —fYCr[g], we obtain
! 0
g=—Tx Fﬁ [f1] = =7« L [In f7] (I11.110)
1

where we have kept only the leading term. Thus the first order solution is given by (using

eq.(I11.107))

1/ - 0/= = Tum 0af 2 mc? b Ca
t) = t) |1 — 0CB — —— B — - = 0T,
flwat) = a1 [ T (C -3¢ > Hap — TK (ZkBT 2) T
(ITL.111)

where 7, = 7 = 7« in the single collision time approximation. However, in writing
the above equation, we have anticipated the possibility of 7, # Tk which arises in more

sophisticated treatments (although both times are still of order of 7).
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It is easy to check that [d®pfl = [d®pf{ = n, and thus various local expectation

values are calculated to first order as

1 ,
(O) = - /d?’pOff(l +9)=(0)° + (gO)° + ---. (I11.112)
The calculation of averages over products of ¢, ’s, distributed according to the Gaussian
weight of f?, is greatly simplified by the use of Wick’s theorem, which states that expecta-
tion value of the product is the sum over all possible products of paired expectation values,

for example

kT \>
(CaCacyCs)y = (i) (8305 + G085 + 00503) - (IIL.113)

m

(Expectation values involving a product of an odd number of ¢,’s are zero by symmetry.)

Using this result, it is easy to verify that

pa\' 05T mc? 5 _
<E> = Ua ~ TK 5 hnT 2 CalB ) = Uq. (I11.114)

The pressure tensor at first order is given by

8,0 0
<cac[3>0 — ]:;“—n; <ca05 (cuc,, — %62)> ]
B

da
=nkpTdn3 — 2nkpT'T, <ua5 — ﬁguw) .

P.s=nm <cac5>1 =nm

(I11.115)

(Using the above result, we can further verify that ' = <m62/2>1 = 3kpT/2, as before.)
Finally, the heat flux is given by

me2\ ! nmTi 0T me? 5 0
Bl — )y == B — 2 ) eqepc?
a n<c 2 > 2 T <(2k:BT 2> C"C>

- _ §@&XT.
2 m

(I11.116)

At this order, we find that spatial variations in temperatures generate a heat flow that
tends to smooth them out, while shear flows are opposed by the off-diagonal terms in the
pressure tensor. These effects are sufficient to cause relaxation to equilibrium, as can be
seen by examining the linearized hydrodynamic equations. There is now a contribution to

Dtua ~ 8tua, given by
t o mn 16} af mi 3 a 6 aﬁ YYy B; .
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where we have introduced the viscosity coefficient p = kBTﬁTM. Similarly, there is a first

order correction to the equation for D, T ~ 0,0, which is given by

2 2K
5L (00) = ——"—ohe ~ —— 8,00, 1111
(at ) Bk‘Bn@ Sk’Bﬁa 0 ( 8)
where K = (5k%TnTK)/(2m) is the coefficient of thermal conductivity of the gas.

After Fourier transformation, the matrix equation (II1.100) is modified to

» 0 ﬁdagkg 0 Y
ol o | = | L dapks —izs (K0ap+52) E20ugky | (s |, (IL119)
0 7 2Kk 0
0 5 T0asks ~i3n

It is simple to verify that the longitudinal normal models (E -dp = 0) have a frequency

wr = —i—— k2. (II1.120)
mn

The imaginary frequency implies that these modes are damped over a characteristic
time 77(k) ~ 1/|lwr| ~ (N)?/(r,0%), where X is the corresponding wavelength, and
v~ \/m is a typical gas particle velocity. We see that the characteristic time scales
grow as the square of the wavelength, which is characteristic of diffusive processes. Sim-
ilarly, the entropy mode become diffusive, while the longitudinal sound modes turn into
damped oscillations. It is this damping that guarantees the, albeit slow, approach of the

gas to its final uniform and stationary equilibrium state.

71



