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VII. Ideal Quantum Gases


VII.A Hilbert Space of Identical Particles 

In chapter IV, we discussed the Gibbs paradox for the mixing entropy of gases of 

identical particles. This difficulty was overcome by postulating that the phase space for N 

identical particles must be divided by N !, the number of permutations. This is not quite 

satisfactory as the classical equations of motion implicitly treat the particles as distinct. 

In quantum mechanics, by contrast, the identity of particles appears at the level of allowed 

states in Hilbert space. For example, the probability of finding two identical particles 

at positions ψ x2 is �(ψx1 and ψ x1, ψ . Since the exchange of particles 1 and 2 leads to | x2)|2 

| x2)|2 | x1)
2x1, ψ = �(ψthe same configurations, we must have �(ψ x2, ψ . For a single-valued |

function, this leads to two possibilities: 

�(1, 2)√ = + �(2, 1)√, or �(1, 2)√ = −|�(2, 1)√ . (VII.1)| | |

The Hilbert space used to describe identical particles is thus restricted to obey certain 

symmetries. 

For a system of N identical particles, there are N ! permutations P , forming a group 

SN . There are several ways for representing a permutation; e.g., P (1 2 3 4) = (3 2 4 1) 

for N = 4 can alternatively be indicated by 

⎝ � 
1 2 3 4 

P = � � . (VII.2) 
3 2 4 1 

Any permutation can be obtained from a sequence of two particle exchanges. For example, 

the above permutation is obtained by the exchanges (1,3) and (1,4) performed in sequence. 

The parity of a permutation is defined as 

+1 if P involves to an even number of exchanges, e.g. (1 2 3) � (2 3 1) 
.(−1)P � −1 if P involves an odd number of exchanges, e.g. (1 2 3) � (2 1 3) 

(Note that if lines are drawn connecting the initial an final locations of each integer in 

eq.(VII.2), the parity is (−1) raised to the number of intersections of these lines.) 

The action of permutations on an N–particle quantum state leads to a representation 

of the permutation group in Hilbert space. Requiring the wave-function to be single valued, 

and to give equal probabilities under particle exchange, restricts the representation to be 
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either fully symmetric or anti-symmetric. This allows for two types of identical particles 

in nature: 

(1) Bosons correspond to the fully symmetric representation such that 

P �(1, · · · , N)√ = + .| |�(1, · · · , N)√

(2) Fermions correspond to the fully anti-symmetric representation such that 

P .|�(1, · · · , N)√ = (−1)P |�(1, · · · , N)√

Of course, the Hamiltonian for identical particles must itself be symmetric, i.e. PH = 

. However, for a given H, there are many eigen-states with different symmetries under H
permutations. To select the correct set of eigen-states, in quantum mechanics the statistics 

of the particles (bosons or fermions) is specified independently. For example, consider N 

non-interacting particles in a box of volume V , with a Hamiltonian 

N � �N 
� � h2¯ 2 = = � . (VII.3)H�H −

2m
⇒ 

�=1 �=1 

Each H� can be separately diagonalized, with plane wave states {|ψk √} and corresponding 

energies E(ψk ) = h̄2k2/2m. Using sums and products of these one–particle states, we can 

construct the following–N particle states: 

(1) The product Hilbert space is obtained by simple multiplication of the one–body states, 

i.e. 

ψ kN √� � ψ kN √. (VII.4)|k1, · · · , ψ |k1√ · · · |ψ

In the coordinate representation, 

N
1 ≡ψ xN 

ψ kN √� = 
V N/2 

exp i ψk� · ψx� , (VII.5)x1, · · · , ψ |k1, · · · , ψ
�=1 

and 
N 
� h2¯ψ kN √� = k2 ψ kN √�. (VII.6)H|k1, · · · , ψ

2m � |k1, · · · , ψ
�=1 

But the product states do not satisfy the symmetry requirements for identical particles, 

and we must find the appropriate subspaces of correct symmetry. 
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(2) The fermionic subspace is constructed as 
1 ψψ = ⎛ (−1)P P kN √�, (VII.7)|k1, · · · , ψkN √− 
N− P 

|k1, · · · , ψ

where the sum is over all N ! permutations. Clearly, if any one–particle label ψk, appears 

more than once in the above list, the result is zero and there is no anti-symmetrized 

state. Anti-symmetrization is possible only when all the N values of ψk� are different. 

In this case, there are N ! terms in the above sum, and N− = N ! is necessary to ensure 

normalization. For example, a two–particle anti-symmetrized state is 
ψ ψk2, ψk1√) |ψk1, ψk2√− =

(|k1, ψk2√ − |
.→

2 

(If not otherwise indicated, | ψk1, · · · , ψkN √ refers to the product state.) 

(3) Similarly, the bosonic subspace is constructed as 
1ψ kN √+ = ⎛ P ψ kN √�. (VII.8)|k1, · · · , ψ
N+ P 

|k1, · · · , ψ

In this case, there are no restrictions on the allowed values of ψk. A particular one– 

particle state may be repeated nα k kk times in the list, with α nα = N . As we shall prove 

shortly, proper normalization requires N+ = N ! α nα !. For example, a correctlyk k 

normalized 3–particle bosonic state is constructed from two one–particle states �√,|
and one one–particle state �√ as (n� = 2, n� = 1, and N+ = 3!2!1! = 12) |

1 
���√+ = (| →

12 
|�√|�√|�√ + |�√|�√|�√ + |�√|�√|�√ + |�√|�√|�√ + |�√|�√|�√ + |�√|�√|�√) 

1 
= →

3
(|�√|�√|�√ + |�√|�√|�√ + |�√|�√|�√) . 

• It is convenient to discuss bosons and fermions simultaneously by defining 
⎞1 

= ⎛ ψ with α = +1 for bosons 
. (VII.9)|{ψk}√� 

N� P 

αP P |{k}√, −1 for fermions 
⎠ � 

Each state is uniquely specified by a set of occupation numbers nα , such that α nα = N ,k k k 

and 

(1) For fermions, |{ψk}√− = 0, unless nαk = 0 or 1, and N− = N ! k nα ! = N !.k 

(2) For bosons, any ψk may be repeated nαk times, and the normalization is calculated from 
� N ! 

= +≡{ψk}|{ψk}√+ 
N

1 

+ 
≡P {ψk}|P � {ψk}√ = 

N+ 
≡{ψk}|P {ψk}√

P,P � P 
� (VII.10)

N ! α nα ! � 
k k = = 1, N+ = N ! nα ! .kN+ 

� 
k 

(The term≡{ψ k}√ is zero unless the permuted ψk’s are identical to the original set, k}|P {ψ
which happens α nαk ! times.) k 
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