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VII.B Canonical Formulation 

Using the states constructed in the previous section, we can calculate the canonical 

density matrix for non-interacting identical particles. In the coordinate representation we 

have 

⎛⎛ 
x}√α = βP βP � � ρ ρ ρx x , (VII.11)≈{ρ � }|ψ|{ρ ≈{ρ }|P � {k}√ψ({k})≈P{k}|{ρ 1 

x}√ 
Nα 

k} P,P �{β

where ψ({ρk}) = exp −λ 
�N 

h2k2¯ �/2m /ZN . The sum, {β β kN }
, is restricted to �=1 k1 ,k2 ,···,β

ensure that each identical particle state appears once and only once. In both the bosonic 

and fermionic subspaces, the set of occupation numbers {nβk } uniquely identify a state. 

We can, however, remove this restriction from eq.(VII.11), if we divide by the resulting 

over-counting factor (for bosons) of N !/( β nβk !), i.e., k 

⎛ ⎛ 
β nβ !k k = . 
N ! 

k} {β{β k} 

(Note that for fermions, the (−1)P factors cancel out the contributions from cases where 

any nβ is larger than one.) Therefore, k 

⎛ 
β nβ ! 1k k x x}√ = 
N ! 

· 
N ! 
� 

β nβ ! 
·≈{ρ � }|ψ|{ρ

{β
k k

k} 
� � (VII.12)

N 
⎛ βP βP � 

⎛ h2k2¯
exp −λ � x � {ρ

ZN 2m 
≈{ρ }|P � k}√≈P{ρk}|{ρx}√. 

P,P � �=1 

In the limit of large volume, the sums over {ρk} can be replaced by integrals, and using the 

plane wave representation of wavefunctions, we have 

� N � ⎬ 
h2k2 

≈{ρ � }|ψ|{ρ 1 ⎛ 
βP βP � � V d3ρk� λ¯ � x x}√ = 

ZN (N !)2 (2α)3 
exp − 

2m 
P,P � �=1 

⎞ 
�N 

⎠ exp −i �=1(
ρkP � · x� − ρkP �� · ρ

�
⎩ (VII.13) 

ρ x �
� ) ⎦ 

.× 
⎧ V N 

� 

We can order the sum in the exponent by focusing on a particular ρk-vector. Since 

f(P�)g(�) = f(λ)g(P−1λ), where λ = P� and � = P−1λ, we obtain 

k� · β x h2 k2 

≈{ρ � }|ψ|{ρ
N 

d3ρk� −iβ x
P −1 � −β

P 

� 
�
−1 −�¯

� /2m 
.x ex}√ = 

ZN (

1 
N !)2 

⎛ 
βP βP � � 

(2α)3 
P,P � �=1 

(VII.14) 
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The gaussian integrals in the square brackets are equal to


� �2 

�

1 
3 

exp 
α

xP −1 � − ρ � x 
P �−1 .− 

�2 
ρ

Setting λ = P −1� in eq.(VII.14) gives 
� ⎣ 

N 
⎛ ⎛

� �21 
x x}√ = 

ZN �3N (N !)2 
βP βP � 

exp ⎝− 
�

α 
2 

ρ x 
P 
� 

�
−1 

⎤ . (VII.15)x� − ρ
P � 

≈{ρ � }|ψ|{ρ
P,P � �=1 

= βP �−1 P= βP −1 
Finally, we set Q = P �−1P , and use the results βP , and βQ = βP � 

βP , to 

get (after performing = N !)P 

� ⎣ 
N 

⎛ ⎛ 
x x}√ = 

ZN �3N N ! 
βQ exp ⎝

α 
ρ x ⎤ . (VII.16)≈{ρ � }|ψ|{ρ 1 − 

�2 

� 
x� − ρ Q� 

� 
�2 

Q �=1 

The canonical partition function, ZN , is obtained from the normalization condition 

� N 

d3ρtr(ψ) = 1, = → x� x}√ = 1,≈{ρx}|ψ|{ρ
�=1 

as 
� ⎣ 

� N N 
� ⎛ ⎛1 2

ZN = d3ρ x� − ρx� βQ exp ⎝− 
�

α 
2 

(ρ xQ� ) ⎤ . (VII.17)
N !�3N 

�=1 Q �=1 

The quantum partition function thus involves a sum over N ! possible permutations. The 

classical result ZN = V /�3
�N 

/N !, is obtained from the term corresponding to no particle 

exchange, Q ≥ 1. The division by N ! finally justifies the factor that was (somewhat 

artificially) introduces in classical statistical mechanics to deal with the phase space of 

identical particles. However, this classical result is only valid at very high temperature 

and is modified by the quantum corrections coming from the remaining permutations. 

As any permutation involves a product of factors exp[−α(ρ x2)
2/�2], its contributions x1 − ρ

vanishes as � � 0 for T � �. 

The lowest order correction comes from the simplest permutation which is the ex­

change of two particles. The exchange of particles 1 and 2 is accompanied by a factor of 

β exp[−2α(ρ x2)
2/�2]. As each of the possible N (N − 1)/2 pairwise exchanges gives the x1 − ρ

same contribution to ZN , we get 

� N � � � � 
1 � 

d3ρ
N (N − 1) 2α 

ZN = 
N !�3N 

x� 1 + 
2 

β exp − 
�2 

(ρ x2)
2 + · · · . (VII.18)x1 − ρ

�=1 
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⎫ 
For any � � 2, d3ρx� = V ; in the remaining two integrations we can use the relative, 

ρr12 = ρ x1, and center of mass coordinates to get x2 − ρ

1 
V N N(N − 1) −2λβ

12 /�2 rZN = 1 + β d3ρr12 e 
2 

+ 
N !�3N 2V 

· · · 
� ⎣ 

� ⎬N 
�
� �3 (VII.19)

1 V N(N − 1) 2α�2 
= ⎝1 + β + ⎤ . 
N ! �3 2V 

· 
4α 

· · · 

From the corresponding free energy, 

e V kB TN
2 �3 

F = −kB T ln ZN = −NkB T ln (VII.20)
�3 

· 
N 

− 
2V 

· 
23/2 

β + · · · , 

the gas pressure is computed as 

πF � NkB T N2kB T �3 β�3 

P = = = nkB T 1 − 
25/2 

n + . (VII.21)− 
πV � T V 

− 
V 2 

· 
25/2 

β + · · · · · · 

Note that the first quantum correction is equivalent to a second virial coefficient of 

β�3 

B2 = . (VII.22)−
25/2 

The resulting correction to pressure is negative for bosons, and positive for fermions. In the 

classical formulation, a second virial coefficient was obtained from a two-body interaction. 

The classical potential V(ρr ) that leads to the second virial coefficient in eq.(VII.22) is 

obtained from 

r ) r /�2 

f(ρr ) = e −�V(β − 1 = βe −2λβ 2 

, = 
� � 

→ 
(VII.23) 

r /�2 r /�2 V(ρr ) = −kB T ln 1 + βe −2λβ 2 ∞ −kB Tβ e −2λβ 2 

. 

(The final approximation corresponds to high temperatures, where only the first correc­

tion is important). Thus the effects of quantum statistics at high temperatures are ap­

proximately equivalent to introducing an interaction between particles. The interaction is 

attractive for bosons, repulsive for fermions, and operates over distances of the order of 

the thermal wavelength �. 
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VII.C Grand Canonical Formulation


Calculating the partition function by performing all the sums in eq.(VII.17) is a 

formidable task. Alternatively, we can compute ZN in the energy basis as 
� ⎣ 

� N � 
⎛ ⎛ ⎛ ⎛ 

ZN = tr e −�H = exp −λ E(ρk�) = exp ⎝−λ E(ρk)n(ρk)⎤ . (VII.24) 

k� } �=1 {n� β{β k } k 

These sums are still difficult to perform due to the restrictions of symmetry on the allowed 

k }: The occupation numbers {nβvalues of ρk or {nβ k } are restricted to β nβ = N , and k k 

nβ = 0, 1, 2, · · · for bosons, while nβ = 0 or 1 for fermions. As usual, the first constraint k k 

can be removed by looking at the grand partition function, 
� ⎣ 

⎛ ⎛ ⎛ 
Qα (T, µ) = e�µN exp ⎝−λ E(ρk)nβ

⎤ 
k 

N =0 {n� β
k } k (VII.25)

α 
⎛� 

= exp −λ E(ρk) − µ nβ .k 
{n� β

k } k 

The sums over {nβk } can now be performed independently for each ρk, subject to the re­

strictions on occupation numbers imposed by particle symmetry. 

• For fermions, nβk = 0 or 1, and 

Q− = 1 + exp λµ − λE(ρk) . (VII.26) 
βk 

• For bosons, nβ , and summing the geometric series gives k = 0, 1, 2, · · ·
�

� �−1 
Q+ = 1 − exp λµ − λE(ρk) . (VII.27) 

βk 

The results for both cases can be presented simultaneously as 

⎛ 
ln Qα = −β ln 1 − β exp λµ − λE(ρk) , (VII.28) 

βk 

with β = −1 for fermions, and β = +1 for bosons. 

In the grand canonical formulation, different one-particle states are occupied indepen­

dently, with a joint probability 
�� �� � � 

pα n(ρk) =
1 

exp −λ E(ρk) − µ nβ . (VII.29)kQα
βk 
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The average occupation number of a state of energy E(ρk) is given by 

≈nβ
π ln Qα 1 

= 
� � = , (VII.30)

k)k √α − 
π λE (ρk) z−1e�E (β − β 

where z = exp(λµ). The average values of the particle number and internal energy are 

then given by 
⎞

⎛ ⎛ 1 
⎨ 
⎨ Nα = ≈nβ = 

−1 e�E(β⎨ k √α 
z k) − β⎨ 

⎠ β βk k 

⎨ Eα = E (ρk)≈nβ = 
⎛ E(ρk) 

. (VII.31) 
⎛ 

⎨ 
⎨ 
⎨ 
⎧ k √α 

−1 e�E (βz k) − β
β βk k 
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