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8.333: Statistical Mechanics I Re: 2005 Final Exam


Review Problems 

The final exam will take place on Wednesday December 21, from 9:00am to noon. 

All topics presented in the course will be covered, 

with emphasis on the second half. It will be a closed book exam, but you may bring a 

two–sided sheet of formulas if you wish. It may also be helpful to bring along a calculator. 

There will be a recitation with quiz review on Wednesday 12/14/05. 

The enclosed exams (and solutions) from the previous years are intended to help you 

review the material. 

******** 

Note that the first parts of each problem are easier than its last parts. Therefore, 

make sure to proceed to the next problem when you get stuck. 

You may find the following information helpful: 

Physical Constants 

Electron mass me ∝ 9.1 × 10−31Kg Proton mass mp ∝ 1.7 × 10−27Kg 

Electron Charge e ∝ 1.6 × 10−19C Planck’s constant/2β h̄ ∝ 1.1 × 10−34J s−1 

Speed of light c ∝ 3.0 × 108ms−1 Stefan’s constant δ ∝ 5.7 × 10−8W m−2K−4 

Boltzmann’s constant kB ∝ 1.4 × 10−23J K−1Avogadro’s number N0 ∝ 6.0 × 1023mol−1 

Conversion Factors 

1atm ∞ 1.0 × 105N m−2 1Å ∞ 10−10m 1eV ∞ 1.1 × 104K 

Thermodynamics 

dE = T dS+dW For a gas: dW = −P dV For a film: dW = δdA 

Mathematical Formulas 
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8.333: Statistical Mechanics I Fall 1998 Final Exam


1. Exciton dissociation in a semiconductor: By shining an intense laser beam on a semicon­

ductor, one can create a metastable collection of electrons (charge −e, and effective mass 

me ) and holes (charge +e, and effective mass mh ) in the bulk. The oppositely charged 

particles may pair up (as in a hydrogen atom) to form a gas of excitons, or they may 

dissociate into a plasma. We shall examine a much simplified model of this process. 

(a) Calculate the free energy of a gas composed of Ne electrons and Nh holes, at temper­

ature T , treating them as classical non-interacting particles of masses me and mh. 

• The canonical partition function of gas of non-interacting electrons and holes is the 

product of contributions from the electron gas, and from the hole gas, as 

1 V 
�Ne 1 V 

�Nh 

�3 ,Ze−h = ZeZh = 
Ne ! �3 

· 
Nh! he 

where �� = h/
⇒

2βm�kBT (� =e, h). Evaluating the factorials in Stirling’s approximation, 

we obtain the free energy 

Nh 
�3Fe−h = −kBT ln Ze−h = NekBT ln 

Ne 
�3 + NhkBT ln 

eV e eV h . 

(b) By pairing into an excition, the electron hole pair lowers its energy by π. [The binding 

energy of a hydrogen-like exciton is π ∝ me4/(2h̄2�2), where � is the dielectric constant, 

and m−1 = m−1 + m−1.] Calculate the free energy of a gas of Np excitons, treating them e h 

as classical non-interacting particles of mass m = me + mh. 

• Similarly, the partition function of the exciton gas is calculated as 

V 
Zp =

1 
�Np 

e−�(−Np ∂)

Np! �3 
, 

p 

leading to the free energy 

Fp = NpkBT ln 
Np 

�3 − Np�,
eV p 

where �p = h/ 2β (me + mh) kBT . 

(c) Calculate the chemical potentials µe , µh, and µp of the electron, hole, and exciton 

states, respectively. 

• The chemical potentials are derived from the free energies, through 

µe = 
εFe−h �

� = kBT ln ne�
3 ,

εNe T ,V 
e 
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µh = 
εFe−h �

� = kBT ln nh�
3 ,

εNh T,V 
h 

µp = 
εFp �

� = kBT ln np�
3 − �,

εNp T,V 
p 

where n� = N�/V (� =e, h, p). 

(d) Express the equilibrium condition between excitons and electron/holes in terms of their 

chemical potentials. 

• The equilibrium condition is obtained by equating the chemical potentials of the electron 

and hole gas with that of the exciton gas, since the exciton results from the pairing of an 

electron and a hole, 

electron + hole ησ exciton. 

Thus, at equilibrium 

µe (ne, T ) + µh (nh, T ) = µp (np, T ) , 

which is equivalent, after exponentiation, to 

�3 e−�∂ ne�
3 nh�

3 = np .e p· h 

(e) At a high temperature T , find the density np of excitons, as a function of the total 

density of excitations n ∝ ne + nh. 

• The equilibrium condition yields 

�3�3 
e h �∂ np = nenh e . 
�3 

p 

At high temperature, np ≈ ne = nh ∝ n/2, and 

� n �2�3�3 
e h �∂ h3 me + mh 

�3/2 
�∂ np = nenh e = e . 

�3 
p 2 (2βkBT )

3/2 me mh 

******** 

2. The Manning Transition: When ionic polymers (polyelectrolytes) such as DNA are 

immersed in water, the negatively charged counter-ions go into solution, leaving behind 

a positively charged polymer. Because of the electrostatic repulsion of the charges left 

behind, the polymer stretches out into a cylinder of radius a, as illustrated in the figure. 

While thermal fluctuations tend to make the ions wander about in the solvent, electrostatic 

attractions favor their return and condensation on the polymer. If the number of counter-

ions is N , they interact with the N positive charges left behind on the rod through the 
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potential U (r) = −2 (N e/L) ln (r/L), where r is the radial coordinate in a cylindrical 

geometry. If we ignore the Coulomb repulsion between counter-ions, they can be described 

by the classical Hamiltonian 

N � 
2 � � 

⎩ pi H = + 2e 2 n ln 
r

,
2m L 

i=1 

where n = N/L. 

L 

R 2a 

r 

z 

+ 
+ 
+ 

+ 

+ 

+ 

+ 

+ 

− 

− 

− 
− 

− 

− 

− 

− 

− 

− 

− 

(a) For a cylindrical container of radius R, calculate the canonical partition function Z in 

terms of temperature T , density n, and radii R and a. 

• The canonical partition function is 

�
� 

d3pid
3 N � � 

i r 
Z = i 

N !h3N 

qi 
exp −λ 

⎩ p2 

+ 2e 2 n ln 
2m L 

i=1 
� �N 

� �N 

=
2βLe 

LN ·�2e 2 n 
� R 

rdr r−2e 2 n/kB T 

N �3 
· 

a 

� �N2 2�N 

L2N e 2 n� R2(1−e n/kB T ) − a 2(1−e n/kB T )2βe 
= . 

n�3 2 (1 − e2n/kBT ) 

(b) Calculate the probability distribution function p (r) for the radial position of a counter-

ion, and its first moment �r�, the average radial position of a counter-ion. 
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• Integrating out the unspecified N momenta and N − 1 positions from the canonical 

distribution, one obtains the distribution function 

2n/kB T ) ln(r/L) e2n r1−2e 2n/kB Tre−(2e 

p (r) = 
� R = 2 1 − 

R2(1−e2n/kB T ) − a2(1−e2 n/kB T ) 
. 

2n/kB T ) ln(r/L) kBTdrre−(2e
a 

� R
(Note the normalization condition 

a drp(r) = 1.) The average position is then 

⎦ � 
� R 2kBT − 2e2 R3−2e 2n/kB T − a3−2e 2n/kB Tn 

= rp (r) dr =r�
3kBT − 2e2 R2−2e2n/kB T − a2−2e2n/kB T 

. 
n

�
a 

(c) The behavior of the results calculated above in the limit R √ a is very different at high 

and low temperatures. Identify the transition temperature, and characterize the nature of 

the two phases. In particular, how does �r� depend on R and a in each case? 

Consider first low temperatures, such that e2n/kBT > 1. In the R √ a limit, the • 

distribution function becomes 

2 n/kB Te n r1−2e 2

p (r) = 2 1 −
kBT a2(1−e2 n/kB T ) 

, 

and � To see this, either examine the above calculated average �r� in the R √ ar� ≤ a. 

limit, or notice that 
2e n 

p (r) dr = 2 1 − x 1−2e 2n/kB T dx,
kBT 

where x = r/a, immediately implying �r� ≤ a (as 
�
dxx1−2e 2n/kB T < if e2n/kBT > 1).

1 →
On the other hand, at high temperatures (e2n/kBT < 1), the distribution function reduces 

to 
2 n/kB Te n r1−2e 2

p (r) = 2 1 −
kBT R2(1−e2n/kB T ) 

, 

and � from similar arguments. Thus, at temperature Tc = e2n/kB there is ar� ≤ R, 

transition from a “condensed” phase, in which the counter-ions are stuck on the polymer, 

to a “gas” phase, in which the counter-ions fluctuate in water at typical distances from 

the polymer which are determined by the container size. 

(d) Calculate the pressure exerted by the counter-ions on the wall of the container, at 

r = R, in the limit R √ a, at all temperatures. 

• The work done by the counter-ions to expand the container from a radius R to a radius 

R + dR is 

dW = dF = (force) dR = P (2βRL) dR, −
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leading to 
1 εF kBT εlnZ 

P = = .− 
2βRL εR 2βRL εR 

At low temperatures, T < Tc , the pressure vanishes, since the partition function is inde­

pendent of R in the limit R √ a. At T > Tc, the above expression results in 

kBT e2n 1 
P = 2N 1 − ,

2βRL kBT R

i.e. 
2e n 

P V = NkBT 1 − . 
kBT 

(e) The character of the transition examined in part (d) is modified if the Coulomb in­

teractions between counter-ions are taken into account. An approximate approach to the 

interacting problem is to allow a fraction N1 of counter-ions to condense along the polymer 

rod, while the remaining N2 = N − N1 fluctuate in the solvent. The free counter-ions are 

again treated as non-interacting particles, governed by the Hamiltonian 

N � 
2 � � 

⎩ pi H = + 2e 2 n2 ln 
r

,
2m L 

i=1 

where n2 = N2/L. Guess the equilibrium number of non-interacting ions, N2
�, and justify 

your guess by discussing the response of the system to slight deviations from N2
�. (This is 

a qualitative question for which no new calculations are needed.) 

• Consider a deviation (n2) from n�
2 ∞ N2

�/V ∞ kBT/e
2, occuring at a temperature lower 

than Tc (i.e. e2n/kBT > 1). If n2 > n�
2 , the counter-ions have a tendency to condensate 

(since e2n/kBT > 1), thus decreasing n2. On the other hand, if n2 > n�
2 , the counter-ions 

tend to “evaporate” (since e2n/kBT < 1). In both cases, the system drives the density n2 

to the (equilibrium) value of n� = kBT/e
2 . If the temperature is higher than Tc , clearly 2 

n� = n and there is no condensation. 

******** 

3. Bose gas in d dimensions: Consider a gas of non-interacting (spinless) bosons with an 

energy spectrum � = p2/2m, contained in a box of “volume” V = Ld in d dimensions. 

(a) Calculate the grand potential G = −kBT ln Q, and the density n = N/V , at a chemical 

potential µ. Express your answers in terms of d and f + 
m (z), where z = e�µ, and 

1 � xm−1 

f+ 
m (z) = dx. 

� (m) z−1 ex − 10 

(Hint: Use integration by parts on the expression for ln Q.) 
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We have • 
ni =N ⎦ � 

i 
⎩ ⎩ ⎩ 

Q = eN �µ exp −λ ni�i 

N =0 {ni } i , 
�⎩ 

�(µ−∂i )ni 
� 1 

= e = 
�(µ−∂i )1 − e

i {ni} i 

�

�( ∂ )−µwhence ln ln 1 Replacing the summation with a d dimensionaliQ −= e .i i

d 
2 

� 
− 

d
integration V ddk/ (2β)

d 
= V Sd / (2β) kd−1 dk, where Sd = 2βd/2/ (d/2 − 1)!, leads 

to 
� 

V Sd h2 k2 /2mln Q = − 
(2β)

kd−1dk ln 1 − ze−�¯ .
d 

h2k2/2m (≥ k 
� � 

The change of variable x = λ¯ = 2mx/λ/¯ h)h and dk = dx 2m/λx/2¯

results in 
V Sd 1 

� 
2m 

�d/2 � 
� � 

ln Q = − 
(2β)

d 2 ¯ λ
xd/2−1dx ln 1 − ze−x . 

h2

Finally, integration by parts yields 

Sd 
� 

2m 
�d/2 � 

xd/2V Sd 1 
� 

2m 
�d/2 � 

xd/2dx 
ze−x 

= V 
h2ln Q = 

(2β)
d d ¯ λ 1 − ze−x d h2λ 

dx
z−1 ex − 1 

, 

i.e. 
Sd 
� 

2m 
�d/2 � � 

d 
f+ −kBT ln Q = −V kBT � + 1 

+1 
(z) ,=G 

d h2λ 2 

which can be simplified, using the property � (x + 1) = x� (x), to 

V 
d 
2 

= − 
�d 
kBT f+ G 

The average number of particles is calculated as 

+1 
(z) . 

d 
2 

d 
2 

ε Sd 
� 

2m 
�d/2 � 

xd/2−1dx 
ze−x 

N = 
ε (λµ) 

ln Q =V
d h2λ 1 − ze−x 

Sd 
� 

2m 
�d/2 � � , 

d V 
f+ f+ = V (z) = (z)

h2λ �d2 2 

d 
2 

i.e. 
1 
f+ n = 

�d 
(z) .


(b) Calculate the ratio P V/E, and compare it to the classical value. 
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• We have PV = −G, while 

ε d 
E = − 

ελ 
ln Q = + 

d ln Q
= 

2 λ 
− 

2 
G. 

Thus PV/E = 2/d, identical to the classical value. 

(c) Find the critical temperature, Tc (n), for Bose-Einstein condensation. 

• The critical temperature Tc (n) is given by 

1 
n = 

�d 
+f d 
2 

1 
(1) = α


�d
d 
2 

for d > 2, i.e. 
⎦ �2/d 

h2 n 
Tc = . 

2mkB α d 
2 

(d) Calculate the heat capacity C (T ) for T < Tc (n). 

• At T < Tc , z = 1 and 

εE � d d d d V 
C (T ) = = 

d εG 
�

� 
= − 

2 2
+ 1 

G 
= + 1 kBα

εT z=1 

− 
2 εT z=1 T 2 2 �d

d 
2
+1. 

(e) Sketch the heat capacity at all temperatures. 

• 

. 

(f) Find the ratio, Cmax/C (T � →), of the maximum heat capacity to its classical limit, 

and evaluate it in d = 3 
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• As the maximum of the heat capacity occurs at the transition, 

d d V d d α 
+1 

(1) = +k fB d 
2 

d 
2
+1 

Cmax = C (Tc ) = + 1 N kB + 1 . 
2 2 2 2 αα /n d 

2d 
2 

Thus 
Cmax d α 

= + 1 
d 
2
+1 
,

2 αC (T � →) 

which evaluates to 1.283 in d = 3. 

d 
2 

(g) How does the above calculated ratio behave as d � 2? In what dimensions are your


results valid? Explain.


• The maximum heat capacity, as it stands above, vanishes as d � 2! Since f +

m (x � 1) � 

→ if m � 2, the fugacuty z is always smaller than 1. Hence, there is no macroscopic 

occupation of the ground state, even at the lowest temperatures, i.e. no Bose-Einstein 

condensation in d � 2. The above results are thus only valid for d � 2. 

******** 
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8.333: Statistical Mechanics I Fall 1999 Final Exam


1. Electron Magnetism: The conduction electrons in a metal can be treated as a gas of 

fermions of spin 1/2 (with up/down degeneracy), and density n = N/V . 

(a) Ignoring the interactions between electrons, describe (in words) their ground state. 

Calculate the fermi wave number kF, and the ground-state energy density E0/V in terms 

of the density n. 

• In the ground state, the fermi sea is filled symmetrically by spin up and spin down 

particles up to kF, where kF is related to the density through 

N 
� � kFd3k 4β V k3 

F 

2
= V 

k<kF (2β)
3 = V 

0 (2β)
k2dk =

6β2 
,3 

i.e. 

kF = 3β2 n 
�1/3 

. 

The ground-state energy is calculated as 

� 
h2k2 d3k h2¯ ¯ 4β 

E0 = 2V k5 

k<kF 
2m (2β)

3 = 2V 
2m 5 (2β)

3 F, 

and the energy density is 
h2E0 3 � 

3β2
�2/3 ¯ 5/3 = n . 

V 5 2m 
Electrons also interact via the Coulomb repulsion, which favors a wave function which 

is antisymmetric in position space, thus keeping them apart. Because of the full (position 

and spin) antisymmetry of fermionic wave functions, this interaction may be described 

as an effective spin-spin coupling which favors states with parallel spins. In a simple 

approximation, the effect of this interaction is represented by adding a potential 

N+ N
U = � − 

,
V 

to the Hamiltonian, where N+ and N = N −N+ are the numbers of electrons with up and − 

down spins, and V is the volume. (The parameter � is related to the scattering length a by 

� = 4βh̄2a/m.) We would like to find out if the unmagnetized gas with N+ = N = N/2− 

still minimizes the energy, or if the gas is spontaneously magnetized. 

(b) Express the modified Fermi wave numbers kF+ and kF−, in terms of the densities 

n+ = N+/V and n = N−/V .− 

• From the solution to part (a), we can read off 

kF ± = 6β2 n
�1/3 

.± 

10 
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(c) Assuming small deviations n+ = n/2 + ζ and n = n/2 − ζ from the symmetric state, − 

calculate the change in the kinetic energy of the system to second order in ζ. 

• We can repeat the calculation of energy in part (a), now for two gases of spin up and 

spin down fermions, to get 

Ekin 1 h̄2 
� � �2/3 ¯ 5/3 5/3 

= k5 + k5 =
3 � 

6β2 h2 � 
n+ + n . 

V 10β2 2m F + F − 5 2m − 

Using n = n/2 ± ζ, and expanding the above result to second order in ζ, gives ± 

4 � h2 n−1/3 
� � 
ζ4

Ekin 
= 
E0 

+ 3β2
�2/3 ¯

ζ2 + O . 
V V 3 2m 

(d) Express the spin-spin interaction density in terms of ζ. Find the critical value of �c, 

such that for � > �c the electron gas can lower its total energy by spontaneously developing 

a magnetization. (This is known as the Stoner instability.) 

• The interaction energy density is 

U n n n2 

V 
= �n+n− = � 

2
+ ζ 

2 
− ζ = � − �ζ2 . 

4 

The total energy density is now given by 

h2 n−1/3 
� �E E0 + �n2/4 4 � 

3β2
�2/3 ¯

ζ2 + O ζ4= + − � . 
V V 3 2m 

When the second order term in ζ is negative, the electron gas has lower energy for finite 

ζ, i.e. it acquires a spontaneous magnetization. This occurs for 

h2 n−1/3 

� > �c = . 
4 � 

3β2
�2/3 ¯

3 2m 

(e) Explain qualitatively, and sketch the behavior of the spontaneous magnetization as a 

function of �. 

• For � > �c, the optimal value of ζ is obtained by expanding the energy density to fourth 

order in ζ. The coefficient of the fourth order term is positive, and the minimum energy is 

obtained for a value of ζ2 ≤ (� − �c). The magnetization is proportional to ζ, and hence 

grows in the vicinity of �c as 
⇒
� − �c, as sketched below 
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2. Boson magnetism: Consider a gas of non-interacting spin 1 bosons, each subject to a 

Hamiltonian 
∂ 2p 

p, sz) = 
2m 

− µ0szB ,H1(∂

where µ0 = eh̄/mc, and sz takes three possible values of (-1, 0, +1). (The orbital effect, 

p � ∂ ∂∂ p − eA, has been ignored.) 

(a) In a grand canonical ensemble of chemical potential µ, what are the average occupation 

numbers �n+(∂k)�, �n0(∂k)�, �n−(∂k)� , of one-particle states of wavenumber ∂k = ∂ h?p/¯

• Average occupation numbers of the one-particle states in the grand canonical ensemble 

of chemical potential µ, are given by the Bose-Einstein distribution 

ns(∂k) = 
�[H(s)

1 
−µ] − 1 

, (for s = −1, 0, 1) 
e 

1 
¯exp λ h2 k2 − µ0sB − λµ − 1
2m 

(b) Calculate the average total numbers {N+, N0, N−}, of bosons with the three possible 

values of sz in terms of the functions f + 
m(z). 

• Total numbers of particles with spin s are given by 

⎩ 1 
Ns = ns(∂k), =≥ Ns = 

V
d3k 

exp 
� 
λ 
� 

h2k2 − µ0sB 
� 
− λµ 

� . 

{η
(2β)3 ¯

2m − 1
k} 

After a change of variables, k ∞ x1/2 
⇒

2mkBT /h, we get 

V � � 
Ns = 

�3 
f3

+ 
/2 ze 

�µ0 sB , 

where � dx xm−1 h 
f + 

m(z) ∞ 
1 

z−1 ex − 1 
, � ∞ z ∞ e�µ. 

�(m) 0 
⇒

2βmkBT
, 
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(c) Write down the expression for the magnetization M(T, µ) = µ0(N+ − N−), and by 

expanding the result for small B find the zero field susceptibility ψ(T, µ) = εM/εB B=0 .|
• Magnetization is obtained from 

M(T, µ) = µ0 (N+ −N−) 

= µ0 
V

f3
+ 
/2 

� 
ze �µ0 B

� 
− f+ ze−�µ0 sB .3/2�3 

Expanding the result for small B gives 

f+ ze±�µ0 B ∝ f3
+ 
/2 (z[1 ± λµ0B]) ∝ f3

+ 
/2(z) ± z · λµ0B

ε
f3

+ 
/2(z).3/2 εz 

Using zdf+ 
m−1(z), we obtain m(z)/dz = f+ 

V 0 V 
M = µ0 

�3 
(2λµ0B) · f1

+ 
/2(z) = 

2µ2 

B f1
+ 
/2(z),�3kBT 

· ·

and 
� 

2µ2 V 
ψ ∞ 

εM 
�

�

� 
= 0 

�3 
f1

+ 
/2(z). kBT 

·
εB B=0 

To find the behavior of ψ(T, n), where n = N/V is the total density, proceed as follows: 

(d) For B = 0, find the high temperature expansion for z(λ, n) = e�µ, correct to second 

order in n. Hence obtain the first correction from quantum statistics to ψ(T, n) at high 

temperatures. 

• In the high temperature limit, z is small. Use the Taylor expansion for f + 
m(z) to write 

the total density n(B = 0), as 

� 3 
n(B = 0) = 

N+ + N0 + N− 
� = 

�3 
f3

+ 
/2(z)V B=0 

33 z2 z
z + + + .∝ 

�3 23/2 33/2 
· · · 

Inverting the above equation gives 

n�3 1 n�3 �2 

z = + . 
3 

− 
23/2 3 

· · ·

The susceptibility is then calculated as 

2µ2 V 
ψ = 0 

�3 
f1

+ 
/2(z),
kBT 

·

22µ2 

ψ/N = 0 1 
z +

2

z
1/2 

+ 
kBT n�3 

· · · 
� � �� � � 

2µ2 1 � �

0 = 1 + −
23

1 
/2 

+ 
n�3 

+ O n 2 . 
21/23kBT 3 
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(e) Find the temperature Tc(n,B = 0), of Bose-Einstein condensation. What happens to 

ψ(T, n) on approaching Tc(n) from the high temperature side? 

• Bose-Einstein condensation occurs when z = 1, at a density 

3 
n = 

�3 
f3

+ 
/2(1), 

or a temperature 
h2 n 

�2/3 

Tc(n) = ,
2βmkB 3 α 3/2 

where α 3/2 ∞ f3
+ 
/2(1) ∝ 2.61. Since limz�1 f1

+ 
/2(z) = →, the susceptibility ψ(T, n) diverges 

on approaching Tc(n) from the high temperature side. 

(f) What is the chemical potential µ for T < Tc(n), at a small but finite value of B? Which 

one-particle state has a macroscopic occupation number? 
k,B) − 1 

−1 • Chemical potential for T < Tc: Since ns(∂k,B) = z−1 e�Es (η is a positive 

number for all ∂k and sz , µ is bounded above by the minimum possible energy, i.e. 

for T < Tc, and B finite, ze �µ0 B = 1, = µ = −µ0B. ≥ 

Hence the macroscopically occupied one particle state has ∂k = 0, and sz = +1. 

(g) Using the result in (f), find the spontaneous magnetization, 

M(T, n) = lim M(T, n,B). 
B�0 

• Spontaneous magnetization: Contribution of the excited states to the magnetization 

vanishes as B � 0. Therefore the total magnetization for T < Tc is due to the macroscopic 

occupation of the (k = 0, sz = +1) state, and 

M(T, n) = µ0 V n+(k = 0) 
� � 3 V 

= µ0 V n− nexcited = µ0 α 3/2 .N − 
�3 

******** 

3. The virial theorem is a consequence of the invariance of the phase space for a system 

of N (classical or quantum) particles under canonical transformations, such as a change of 

scale. In the following, consider N particles with coordinates {∂qi}, and conjugate momenta 

pi} (with i = 1, · · · , N), and subject to a Hamiltonian H ({∂ qi}).{∂ pi} , {∂
(a) Classical version: Write down the expression for classical partition function, Z ∞ Z [H]. 

Show that it is invariant under the rescaling q∂1 � �∂q1, ∂ p1/� of a pair of conjugate p1 � ∂

14 
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variables, i.e. Z [H�] is independent of �, where H� is the Hamiltonian obtained after the 

above rescaling. 

• The classical partition function is obtained by appropriate integrations over phase space 

as 
⎦ � 

1 
Z = 

N !h3N 
d3 pid

3 qi e−�H. 
i 

The rescaled Hamiltonian H� = H (∂ pi=1} , �∂p1/�, {∂ q1, {q∂i=1}) leads to a rescaled partition √ √
function 

⎦ � 
1 

Z [H�] = d3 pid
3 qi e−�H� ,

N !h3N 
i 

which reduces to 
⎦ � 

1 � � � � 
Z [H�] = �3d3 p∞ �−3d3 q∞ d3 pid

3 qi e−�H = Z, 
N !h3N 1 1 

i 

q1, ∂ p1/�.under the change of variables q∂1 
∞ = �∂ p1 

∞ = ∂

(b) Quantum mechanical version: Write down the expression for quantum partition func­

q1 , ∂ p1/�, where ∂tion. Show that it is also invariant under the rescalings q∂1 � �∂ pip1 � ∂

and ∂qi are now quantum mechanical operators. (Hint: start with the time-independent 

Schrödinger equation.) 

• Using the energy basis 
⎩ 

e−�EnZ = tr e−�H = , 
n 

where En are the energy eigenstates of the system, obtained from the Schrödinger equation 

pi} , {q∂i}) κn� = En κn� ,H ({∂ | |

where κn� are the eigenstates. After the rescaling transformation, the corresponding |
equation is 

H (∂ pi=1} , �∂ �

κ(�) �

� κ(�) .p1/�, {∂ q1, {∂qi=1 }) � n = E(�) 
nn√ √

pi = −i¯ qi, and therefore In the coordinate representation, the momentum operator is ∂ hε/ε∂

κ� ({∂qi}) = κ ({�∂ nqi}) is a solution of the rescaled equation with eigenvalue E(�) 
= En. 

Since the eigen-energies are invariant under the transformation, so is the partition function 

which is simply the sum of corresponding exponentials. 

(c) Now assume a Hamiltonian of the form 

⎩ ∂ 2pi H = + V ({q∂i}) . 
2m 

i 

15 
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Use the result that Z [H�] is independent of � to prove the virial relation 

∂ 2p1 εV 
= ∂ , 

m ε∂q1 
· q1 

where the brackets denote thermal averages. (You may formulate your answer in the 

classical language, as a possible quantum derivation is similar.) 

• Differentiating the free energy with respect to � at � = 1, we obtain 

∂ 2ε ln Z� � εH� � p1 εV 
0 = = −λ � = −λ + ∂ ,

ε� �=1 ε� �=1 

− 
m ε∂q1 

· q1 

i.e., 
∂ 2p1 εV 

= ∂ . 
m ε∂q1 

· q1 

(d) The above relation is sometimes used to estimate the mass of distant galaxies. The 

stars on the outer boundary of the G-8.333 galaxy have been measured to move with 

velocity v ∝ 200 km/s. Give a numerical estimate of the ratio of the G-8.333’s mass to its 

size. 

• The virial relation applied to a gravitational system gives 

⎪ � GMm 2mv = . 
R 

Assuming that the kinetic and potential energies of the starts in the galaxy have reached 

some form of equilibrium gives 

M v2 

× 1020kg/m. 
R 

∝ 
G 

∝ 6 

******** 
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8.333: Statistical Mechanics I Fall 2000 Final Exam


1. Freezing of He3: At low temperatures He3 can be converted from liquid to solid by 

application of pressure. A peculiar feature of its phase boundary is that (dP/dT )melting is 

negative at temperatures below 0.3 oK [(dP/dT )m 30atm oK−1 at T ∝ 0.1 oK]. We ∝ −
will use a simple model of liquid and solid phases of He3 to account for this feature. 

(a) In the solid phase, the He3 atoms form a crystal lattice. Each atom has nuclear spin 

of 1/2. Ignoring the interaction between spins, what is the entropy per particle ss, due to 

the spin degrees of freedom? 

• Entropy of solid He3 comes from the nuclear spin degeneracies, and is given by 

Ss kB ln(2N ) 
ss = = = kB ln 2. 

N N 

(b) Liquid He3 is modelled as an ideal Fermi gas, with a volume of 46Å3 per atom. What 

is its Fermi temperature TF , in degrees Kelvin? 

• The Fermi temperature for liquid 3He may be obtained from its density as 

πF h2 3N 
�2/3 

TF = = 
kB 2mkB 8βV 

(6.7 × 10−34)2 3 
�2/3 

∝ 9.2 oK. ∝
2 · (6.8 × 10−27)(1.38 × 10−23) 8β × 46 × 10−30 

(c) How does the heat capacity of liquid He3 behave at low temperatures? Write down an 

expression for CV in terms of N, T, kB , TF , up to a numerical constant, that is valid for 

T ≈ TF . 

• The heat capacity comes from the excited states at the fermi surface, and is given by 

β2 β2 T 
B TCV = kB 

β2 

kB T D(πF ) = k2 3N 
= NkB . 

6 6 2kB TF 4 TF 

(d) Using the result in (c), calculate the entropy per particle sσ, in the liquid at low 

temperatures. For T ≈ TF , which phase (solid or liquid) has the higher entropy? 

• The entropy can be obtained from the heat capacity as 

T dS 1 
� T CV dT β2 T 

CV = , sσ = = kB . 
dT 

≥ 
N 0 T 4 TF 

As T � 0, sσ � 0, while ss remains finite. This is an unusual situation in which the solid 

has more entropy than the liquid! (The finite entropy is due to treating the nuclear spins 
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as independent. There is actually a weak coupling between spins which causes magnetic 

ordering at a much lower temperature, removing the finite entropy.) 

(e) By equating chemical potentials, or by any other technique, prove the Clausius– 

Clapeyron equation (dP/dT )melting = (sσ − ss)/(vσ − vs), where vσ and vs are the volumes 

per particle in the liquid and solid phases respectively. 

• The Clausius-Clapeyron equation can be obtained by equating the chemical potentials 

at the phase boundary, 

µσ(T, P ) = µs(T, P ), and µσ(T + �T, P + �P ) = µs(T + �T, P + �P ). 

Expanding the second equation, and using the thermodynamic identities 

εµ εµ 
= S, and = −V, 

εT P εP T 

results in 
εP 

= 
sσ − ss 

. 
εT melting vσ − vs 

(f) It is found experimentally that vσ − vs = 3Å3 per atom. Using this information, plus 

the results obtained in previous parts, estimate (dP/dT )melting at T ≈ TF . 

• The negative slope of the phase boundary results from the solid having more entropy 

than the liquid, and can be calculated from the Clausius-Clapeyron relation 

λ2 
� � T 
εP 4 TF 

− ln 2 
= 
sσ − ss ∝ kB 

vσ − vs 
. 

εT melting vσ − vs 

Using the values, T = 0.1 oK, TF = 9.2 J oK, and vσ − vs = 3 Å3, we estimate 

εP × 106Pa ∗K−1 ,
εT 

∝ −2.7 
melting 

in reasonable agreement with the observations. 

******** 

2. Non-interacting bosons: Consider a grand canonical ensemble of non-interacting bosons 

with chemical potential µ. The one–particle states are labelled by a wavevector ∂q, and have 

energies E(q∂). 

q }), of finding a set of occupation numbers {nη(a) What is the joint probability P ({nη q }, of 

the one–particle states, in terms of the fugacities zηq ∞ exp [λ(µ − E(∂q))]? 
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• In the grand canonical ensemble with chemical potential µ, the joint probability of 

finding a set of occupation numbers {nηq }, for one–particle states of energies E(∂q) is given 

by the normalized bose distribution 

q }) = {1 − exp [λ(µ − E(q∂))]} exp [λ(µ − E(∂q))nηP ({nη q ] 
ηq 

q 
q ) z q

nλ

q = 0, 1, 2, · · · , q. = (1 − zη η , with nη for each ∂
ηq 

(b) For a particular ∂q, calculate the characteristic function �exp [iknη .q ]�
� �nλq • Summing the geometric series with terms growing as zη

ik , gives q e

q ]� 
1 − exp [λ(µ − E(q∂))] 1 − zη

= . 
q eik

�exp [iknη =
1 − exp [λ(µ − E(q∂)) + ik] 1 − zη

q 

(c) Using the result of part (b), or otherwise, give expressions for the mean and variance 

of nη q �q . occupation number �nη . 

• Cumulnats can be generated by expanding the logarithm of the characteristic function 

in powers of k. Using the expansion formula for ln(1 + x), we obtain 

q ]� = ln (1 − zη qln �exp [iknη q ) − ln 1 − zη 1 + ik − k2/2 + 
� � 

· · · 
zη q

= − ln 1 − ik q 
+ 
k2 zη

+ 
q 2 1 − zη

· · · 
1 − zη q 

zη k2 zη zη

�2 
q

= ik q 
+ q 

+ 
q 
− 

2 1 − zη 1 − zη
· · · 

1 − zη q q 

zη k2 zηq
= ik q 

+ .21 − zη q )
· · ·

q 
− 

2 (1 − zη

From the coefficients in the expansion, we can read off the mean and variance 

q ⎪ � zηzη 2 
q � =

1 − zη
, and nη = q 

2 .q c
�nη

q (1 − zηq )

(d) Express the variance in part (c) in terms of the mean occupation number �nη .q �
q q , we obtain • Inverting the relation relating nη to zη

�nηq �
zη = .q 

1 + �nηq � 
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Substituting this value in the expression for the variance gives 
⎪ � zη2 nη = 

(1 − 
q 

zη

= q � (1 + �nηq c 
q )

2 �nη q �) . 

(e) Express your answer to part (a) in terms of the occupation numbers {�nηq �}. 
q q , the joint probability can be reexpressed as • Using the relation between zη and nη

q qP ({nη q �)nλ (1 + �nηq }) = (�nη q �)−1−nλ . 
ηq 

(f) Calculate the entropy of the probability distribution for bosons, in terms of {�nηq �}, and 

comment on its zero temperature limit. 

• Quite generally, the entropy of a probability distribution P is given by S = −kB �ln P �. 
Since the occupation numbers of different one-particle states are independent, the corre­

sponding entropies are additive, and given by 
⎩ 

S = −kB [�nη q � − (1 + �nη q �)] .q � ln �nη q �) ln (1 + �nη

ηq 

In the zero temperature limit all occupation numbers are either 0 (for excited states) or 

infinity (for the ground states). In either case the contribution to entropy is zero, and the 

system at T = 0 has zero entropy. 

******** 

3. Hard rods: A collection of N asymmetric molecules in two dimensions may be modeled 

as a gas of rods, each of length 2l and lying in a plane. A rod can move by translation of 

its center of mass and rotation about latter, as long as it does not encounter another rod. 

Without treating the hard-core interaction exactly, we can incorporate it approximately 

by assuming that the rotational motion of each rod is restricted (by the other rods) to an 

angle χ, which in turn introduces an excluded volume � (χ) (associated with each rod). 

The value of χ is then calculated self consistently by maximizing the entropy at a given 

density n = N/V , where V is the total accessible area. 

� 

2l 

excluded 
volume 
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(a) Write down the entropy of such a collection of rods in terms of N , n, �, and A (χ), 

the entropy associated to the rotational freedom of a single rod. (You may ignore the 

momentum contributions throughout, and consider the large N limit.) 

• Including both forms of entropy, translational and rotational, leads to 
� �N � � � � 

1 N�(χ)
S = kB ln V − A(χ)N ∝ NkB ln n−1 �(χ) 

+ 1 + ln A(χ) . 
N ! 2 

− 
2 

(b) Extremizing the entropy as a function of χ, relate the density to �, A, and their 

derivatives �∞, A∞; express your result in the form n = f (�, A, �∞, A∞). 

• The extremum condition εS/εχ = 0 is equivalent to 

�∞ A∞ 
= 

2n−1 − � A
, 

where primes indicate derivatives with respect to χ. Solving for the density gives 

2A∞ 
n = . 

�A∞ + �∞A 

(c) Express the excluded volume � in terms of χ and sketch f as a function of χ ≡ [0, β], 

assuming A ≤ χ. 

• Elementary geometry yields 

� = l2 (χ + sin χ) , 

so that the equilibrium condition becomes 

n = f (χ) = 
l

2 
2 

[χ (2 + cos χ) + sin χ]−1 
, 

with the function f(χ) plotted below: 

f(�) 

n 

nc 

0 � �c � 
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(d) Describe the equilibrium state at high densities. Can you identify a phase transition 

as the density is decreased? Draw the corresponding critical density nc on your sketch. 

What is the critical angle χc at the transition? You don’t need to calculate χc explicitly, 

but give an (implicit) relation defining it. What value does χ adopt at n < nc? 

• At high densities, χ ≈ 1 and the equilibrium condition reduces to 

V 
N ∝ 

2 
;

2χl

the angle χ is as open as allowed by the close packing. The equilibrium value of χ increases 

as the density is decreased, up to its “optimal” value χc at nc, and χ (n < nc) = χc . The 

transition occurs at the minimum of f (χ), whence χc satisfies 

d 
[χ (2 + cos χ) + sin χ] = 0,

dχ

i.e. 

2 (1 + cos χc) = χc sin χc. 

Actually, the above argument tracks the stability of a local maximum in entropy (as density 

is varied) which becomes unstable at χc. There is another entropy maximum at χ = β, 

corresponding to freely rotating rods, which becomes more advantageous (i.e. the global 

equilibrium state) at a density slightly below χc. 

******** 
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8.333: Statistical Mechanics I Fall 2003 Final Exam


1. Helium 4: 4He at low temperatures can be converted from liquid to solid by application 

of pressure. An interesting feature of the phase boundary is that the melting pressure is 

reduced slightly from its T = 0oK value, by approximately 20Nm−2 at its minimum at 

T = 0.8oK. We will use a simple model of liquid and solid phases of 4He to account for 

this feature. 

(a) By equating chemical potentials, or by any other technique, prove the Clausius– 

Clapeyron equation (dP/dT )melting = (sσ − ss)/(vσ − vs), where (vσ , sσ) and (vs, ss) are the 

volumes and entropies per atom in the liquid and solid phases respectively. 

• Clausius-Clapeyron equation can be obtained by equating the chemical potentials at the 

phase boundary, 

µσ(T, P ) = µs(T, P ), and µσ(T + �T, P + �P ) = µs(T + �T, P + �P ). 

Expanding the second equation, and using the thermodynamic identities 

εµ εµ 
= S, and = −V, 

εT P εP T 

results in 
� � 
εP 

= 
sσ − ss 

. 
εT melting vσ − vs 

(b) The important excitations in liquid 4He at T < 1∗K are phonons of velocity c. Cal­

culate the contribution of these modes to the heat capacity per particle C σ 
V /N , of the 

liquid. 

The important excitations in liquid 4He at T < 1∗K are phonons of velocity c. The• 

corresponding dispersion relation is π(k) = h̄ck. From the average number of phonons in 

mode ∂k, given by n(∂k) = [exp(λh̄ck) − 1]
−1

, we obtain the net excitation energy as 

⎩ hck ¯

Ephonons = 

exp(λ¯
hck) − 1 
ηk 

4βk2dk h̄ck 
= V × 

(2β)3 exp(λ¯
(change variables to x = λh̄ck)

hck) − 1 
� �4 � 3 β2 � �4

V kB T 6 � x kB T 
hc dx = V ¯= ¯ hc ,

¯ hc2β2 hc 3! 0 ex − 1 30 ¯

where we have used 
3 β41 � x

dx = .α4 ∞ 
3! 0 ex − 1 90 
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The corresponding heat capacity is now obtained as 

dE 2β2 kB T 
�3 

CV = = V kB ,
dT 15 h̄c 

resulting in a heat capacity per particle for the liquid of 

Cσ 2β2 � �3
kB TV = kB vσ . 

N 15 h̄c 

(c) Calculate the low temperature heat capacity per particle C s 
V /N , of solid 4He in terms 

of longitudinal and transverse sound velocities cL, and cT . 

• The elementary excitations of the solid are also phonons, but there are now two trans­

verse sound modes of velocity cT , and one longitudinal sound mode of velocity cL. The 

contributions of these modes are additive, each similar inform to the liquid result calculated 

above, resulting in the final expression for solid heat capacity of 

Cs 2β2 � �3 � � 
kB T 2 1V = kB vs 

¯ 3 3 . 
N 15 h 

× 
cT 

+ 
cL 

(d) Using the above results calculate the entropy difference (sσ − ss), assuming a single 

sound velocity c ∝ cL ∝ cT , and approximately equal volumes per particle vσ ∝ vs ∝ v. 

Which phase (solid or liquid) has the higher entropy? 

• The entropies can be calculated from the heat capacities as 

� T Cσ 
V (T ∞)dT ∞ 2β2 kB T 

�3 

sσ(T ) = = kB vσ 
¯

,
T ∞ 45 hc0 

� T Cs 
V (T ∞)dT ∞ 2β2 kB T 

�3 
2 1 

ss(T ) = 
0 T ∞ 

= 
45 

kB vs 
¯ 3 3 . 
h 

× 
cT 

+ 
cL 

Assuming approximately equal sound speeds c ∝ cL ∝ cT ∝ 300ms−1, and specific volumes 

vσ ∝ vs ∝ v = 46Å3, we obtain the entropy difference 

4β2 kB T 
�3 

.sσ − ss kB v∝ − 
45 h̄c 

The solid phase has more entropy than the liquid because it has two more phonon excitation 

bands. 

(e) Assuming a small (temperature independent) volume difference ζv = vσ − vs, calculate 

the form of the melting curve. To explain the anomaly described at the beginning, which 

phase (solid or liquid) must have the higher density? 
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• Using the Clausius-Clapeyron equation, and the above calculation of the entropy differ­

ence, we get 
εP 

= 
sσ − ss 

=
4β2 v 

� 
kB T 

�3 

kB . 
εT melting vσ − vs 

− 
45 ζv h̄c 

Integrating the above equation gives the melting curve 

β2 v kB T 
�3 

Pmelt(T ) = P (0) − kB T. 
45 ζv h̄c 

To explain the reduction in pressure, we need ζv = vσ − vs > 0, i.e. the solid phase has 

the higher density, which is expected. 

******** 

2. Surfactant Condensation: N surfactant molecules are added to the surface of water 

over an area A. They are subject to a Hamiltonian 

N 
⎩ ∂ 2 

⎩pi 1 
+ V(∂ri − ∂rj ),H = 

2m 2 
i=1 i,j 

where ∂ri and ∂pi are two dimensional vectors indicating the position and momentum of 

particle i. 

(a) Write down the expression for the partition function Z(N, T, A) in terms of integrals 

over ∂ri and ∂pi , and perform the integrals over the momenta. 

• The partition function is obtained by integrating the Boltzmann weight over phase space, 

as 
� ⎡ 

�
�N 

pid
2∂ ⎩ p2 

⎩ 
iZ(N, T, A) = i=1 d

2 ∂ qi 
exp �−λ 

N 

2m 
− λ V(q∂i − ∂qj )⎤ ,

N !h2N 
i=1 i<j 

with λ = 1/(kB T ). The integrals over momenta are simple Gaussians, yielding 

� ⎡ 
� N 
� ⎩1 1 

Z(N, T, A) = 
�2N 

d2∂ qj )⎤ ,qi exp �−λ V(q∂i − ∂
N ! 

i=1 i<j 

where as usual � = h/
⇒

2βmkB T denotes the thermal wavelength. 

The inter–particle potential V(∂r) is infinite for separations ∂r < a, and attractive for 

|∂r | > a such that 
� 

2βrdrV(r) = −u0. a 

(b) Estimate the total non–excluded area available in the positional phase space of the 

system of N particles. 

• To estimate the joint phase space of particles with excluded areas, add them to the 

system one by one. The first one can occupy the whole area A, while the second can 
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explore only A − 2�, where � = βa2 . Neglecting three body effects (i.e. in the dilute 

limit), the area available to the third particle is (A − 2�), and similarly (A − n�) for the 

n-th particle. Hence the joint excluded volume in this dilute limit is 

A(A − �)(A − 2�) · · · (A − (N − 1)�) ∝ (A −N�/2)N , 

where the last approximation is obtained by pairing terms m and (N −m), and ignoring 

order of �2 contributions to their product. 

(c) Estimate the total potential energy of the system, assuming a constant density n = N/A. 

Assuming this potential energy for all configurations allowed in the previous part, write 

down an approximation for Z. 
¯• Assuming a uniform density n = N/A, an average attractive potential energy, U , is 

estimated as 

⎩ 11
Ū = Vattr.(q∂i − ∂qj ) = d2∂r1d

2∂r2n(∂r1)n(∂r2)Vattr.(∂r1 − ∂r2)
2 2 

i,j 

n2 N2


d2∂r Vattr.(∂ u0.
∝ 
2 
A r ) ∞ − 

2A 

Combining the previous results gives 

1 1 
Z(N, T, A) ∝ (A −N�/2)N exp 

λu0N
2 

. 
�2NN ! 2A 

(d) The surface tension of water without surfactants is δ0, approximately independent of 

temperature. Calculate the surface tension δ(n, T ) in the presence of surfactants. 

• Since the work done is changing the surface area is dW = δdA, we have dF = −T dS + 

δdA + µdN , where F = −kB T ln Z is the free energy. Hence, the contribution of the 

surfactants to the surface tension of the film is 

ε ln Z � NkB T u0N
2 

δs = − 
εA � 

= −
A −N�/2

+ 
2A2 

, 
T ,N 

which is a two-dimensional variant of the familiar van der Waals equation. Adding the 

(constant) contribution in the absence of surfactants gives 

ε ln Z � NkB T u0N
2 

δ(n, T ) = δ0 − = −
A −N�/2

+ . 
� 2A2εA T ,N 

(e) Show that below a certain temperature, Tc, the expression for δ is manifestly incorrect. 

What do you think happens at low temperatures? 
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• Thermodynamic stability requires ζδζA � 0, i.e. δ must be a monotonically increasing 

function of A at any temperature. This is the case at high temperatures where the first 

term in the equation for δs dominates, but breaks down at low temperatures when the term 

from the attractive interactions becomes significant. The critical temperature is obtained 

by the usual conditions of εδs/εA = ε2δs/εA
2 = 0, i.e. from 

⎨ εδs � NkB T u0N
2 

⎨ 
⎨ = 
⎣ εA � (A − N�/2)2 

− 
A3 

= 0 
T 

⎨ ε2δs �
� 

2NkB T 3u0N
2 

, 
⎨ 
⎨ = 
⎧ 

εA2 
T 

− 
(A − N�/2)3 

+ 
A4 

= 0 

The two equations are simultaneously satisfied for Ac = 3N�/2, at a temperature 

8u0
Tc = . 

27kB � 

As in the van der Waals gas, at temperatures below Tc, the surfactants separate into a 

high density (liquid) and a low density (gas) phase. 

(f) Compute the heat capacities, CA and write down an expression for Cβ without explicit 

evaluation, due to thesurfactants. 

• The contribution of the surfactants to the energy of the film is given by 

ε ln Z kB T u0N
2 

Es = − 
ελ 

= 2N .× 
2 

− 
2A 

The first term is due to the kinetic energy of the surfactants, while the second arises from 

their (mean-field) attraction. The heat capacities are then calculated as 

dQ � εE � 
CA = = � = NkB ,

dT � εT A A 

and 
� � � 

dQ � εE � εA � 
Cβ = = 

� − δ 
� . dT � εT εT β β β 

******** 

3. Dirac Fermions are non-interacting particles of spin 1/2. The one-particle states come 

in pairs of positive and negative energies, 

E ±(∂k) = ± m2c4 + h̄2k2c2 , 

independent of spin. 
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(a) For any fermionic system of chemical potential µ, show that the probability of finding 

an occupied state of energy µ + ζ is the same as that of finding an unoccupied state of 

energy µ − ζ. (ζ is any constant energy.) 

• According to Fermi statistics, the probability of occupation of a state of of energy E is 

e�(µ−E)n 

p [n(E)] = , for n = 0, 1. 
1 + e�(µ−E) 

For a state of energy µ + ζ, 

�αn �α e e 1 
p [n(µ + ζ)] = 

1 + e�α 
, =≥ p [n(µ + ζ) = 1] = 

1 + e�α 
= 

1 + e−�α 
. 

Similarly, for a state of energy µ − ζ, 

e−�αn 1 
p [n(µ − ζ)] = = p [n(µ − ζ) = 0] = 

1 + e−�α 
= p [n(µ + ζ) = 1] ,

1 + e−�α 
, ≥ 

i.e. the probability of finding an occupied state of energy µ + ζ is the same as that of 

finding an unoccupied state of energy µ − ζ. 

(b) At zero temperature all negative energy Dirac states are occupied and all positive 

energy ones are empty, i.e. µ(T = 0) = 0. Using the result in (a) find the chemical 

potential at finite temperatures T . 

• The above result implies that for µ = 0, �n(E)� + �n − E)� is unchanged for an tem­

perature; any particle leaving an occupied negative energy state goes to the corresponding 

unoccupied positive energy state. Adding up all such energies, we conclude that the total 

particle number is unchanged if µ stays at zero. Thus, the particle–hole symmetry enfrces 

µ(T ) = 0. 

(c) Show that the mean excitation energy of this system at finite temperature satisfies 

d3∂k k)
E(T ) − E(0) = 4V � 

E+ (∂
� . 

(2β)3 
exp λE+(∂k) + 1 

• Using the label +(-) for the positive (energy) states, the excitation energy is calculated 

as 
⎩ 

E(T ) −E(0) = [�n+(k)� E+ (k) + (1 − �n−(k)�) E−(k)] 
k,sz 

⎩ d3∂k k)
= 2 2 �n+(k)� E+(k) = 4V � 

E+(∂
� . 

k 
(2β)3 

exp λE+(∂k) + 1 
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(d) Evaluate the integral in part (c) for massless Dirac particles (i.e. for m = 0). 

• For m = 0, E+(k) = h̄c k , and | |

� 4βk2dk h̄ck 
E(T ) −E(0) = 4V = (set λh̄ck = x)

hck + 1 8β3 e�¯
0 

� �3 � 32V kB T � x
= kB T dx 

β2 h̄c 0 ex + 1 

7β2 kB T 
�3 

= V kB T . 
60 h̄c 

For the final expression, we have noted that the needed integral is 3!f4
−(1), and used the 

given value of f −(1) = 7β4/720.4 

(e) Calculate the heat capacity, CV , of such massless Dirac particles. 

• The heat capacity can now be evaluated as 

εE � 7β2 kB T 
�3 

CV = � = V kB . 
εT V 15 ¯� hc 

(f) Describe the qualitative dependence of the heat capacity at low temperature if the 

particles are massive. 

When m = 0, there is an energy gap between occupied and empty states, and we thus • ∈
expect an exponentially activated energy, and hence heat capacity. For the low energy 

excitations, 
h2k2¯E+ (k) ∝ mc 2 + + 
2m 

· · · , 

and thus 
2V � 

E(T ) −E(0) ∝ mc 2 e−�mc 2 4β
⇒
β 

dxx2 e−x 

β2 �3
0 

48 V 2 e−�mc 2 

= mc .⇒
β �3 

The corresponding heat capacity, to leading order thus behaves as 

C(T ) ≤ kB 
V � �2 

e−�mc 2 

λmc 2 . 
�3 

******** 
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8.333: Statistical Mechanics I Fall 2004 Final Exam


1. Neutron star core: Professor Rajagopal’s group has proposed that a new phase of QCD 

matter may exist in the core of neutron stars. This phase can be viewed as a condensate 

of quarks in which the low energy excitations are approximately 

� �2 

h2 
|∂k | − kF 

E (∂k)± = ¯± 
2M

. 

The excitations are fermionic, with a degeneracy of g = 2 from spin. 

(a) At zero temperature all negative energy states are occupied and all positive energy 

ones are empty, i.e. µ(T = 0) = 0. By relating occupation numbers of states of energies 

µ + ζ and µ − ζ, or otherwise, find the chemical potential at finite temperatures T . 

• According to Fermi statistics, the probability of occupation of a state of of energy E is 

e�(µ−E )n 

p [n(E)] = , for n = 0, 1. 
1 + e�(µ−E ) 

For a state of energy µ + ζ, 

�αn �α e e 1 
p [n(µ + ζ)] = 

1 + e�α 
, =≥ p [n(µ + ζ) = 1] = 

1 + e�α 
= 

1 + e−�α 
. 

Similarly, for a state of energy µ − ζ, 

e−�αn 1 
p [n(µ − ζ)] = = p [n(µ − ζ) = 0] = 

1 + e−�α 
= p [n(µ + ζ) = 1] ,

1 + e−�α 
, ≥ 

i.e. the probability of finding an occupied state of energy µ + ζ is the same as that of 

finding an unoccupied state of energy µ − ζ. This implies that for µ = 0, �n(E)� + �n(−E)� 
is unchanged for an temperature; for every particle leaving an occupied negative energy 

state a particle goes to the corresponding unoccupied positive energy state. Adding up all 

such energies, we conclude that the total particle number is unchanged if µ stays at zero. 

Thus, the particle–hole symmetry enforces µ(T ) = 0. 

(b) Assuming a constant density of states near k = kF , i.e. setting d3k ∝ 4βk2 
F dq with 

q = ∂k − kF , show that the mean excitation energy of this system at finite temperature is | | 

k2 

E(T ) − E(0) ∝ 2gV F dq 
exp (λ

E
E 
+

+

(

(

q

q

)

)) + 1 
. 

β2
0 
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• Using the label +(-) for the positive (energy) states, the excitation energy is calculated 

as 
⎩ 

E(T ) − E(0) = [�n+(k)� E+(k) + (1 − �n−(k)�) E−(k)] 
k,s 

⎩ d3∂k k) 
= g 2 �n+(k)� E+(k) = 2gV � 

E+(∂
� . 

k 
(2β)3 

exp λE+(∂k) + 1 

The largest contribution to the integral comes for |∂k | ∝ kF . and setting q = ( k − kF )|∂ |
and using d3k ∝ 4βk2 

F dq, we obtain 

4βk2 � 
FE(T ) −E(0) ∝ 2gV F 2 dq 

exp (λ
E
E
+

+

(

(

q

q

)

)) + 1 
= 2gV 

k

β

2

2 
0 

� 

dq 
exp (λ

E
E
+

+

(

(

q

q

)

)) + 1 
. 

8β3
0 

(c) Give a closed form answer for the excitation energy by evaluating the above integral. 

• For E+(q) = h̄2 q2/(2M), we have 

¯
E(T ) −E(0) = 2gV F dq 

h2 q
h2 q /2M = x) 

k2 � h2 q2/2M 
= (set λ¯ 2

e�¯ 2/2M + 1 β2
0 

1/2gV k2 2MkB T 
�1/2 � � xF = dx 

¯ ex + 1 β2 
kB T

h2
0 

� � � � � 
gV k2 2MkB T 

�1/2 ⇒
β 1 1 α3/2 V k2 

F = kB T
h2 2

1 − ⇒
2 

α3/2 = 1 − F kB T. 
β2 ¯

⇒
2 β � 

For the final expression, we have used the value of f −m (1), and introduced the thermal 

wavelength � = h/
⇒

2βMkB T . 

(d) Calculate the heat capacity, CV , of this system, and comment on its behavior at low 

temperature. 

Since E ≤ T 3/2 ,• 

FCV = 
εE � 

=
3 E 

=
3α3/2 

1 − 
1 V k2 

kB ≤
⇒
T . 

εT V 2 T 2β 
⇒

2 � 

This is similar to the behavior of a one dimensional system of bosons (since the density 

of states is constant in q as in d = 1). Of course, for any fermionic system the density of 

states close to the Fermi surface has this character. The difference with the usual Fermi 

systems is the quadratic nature of the excitations above the Fermi surface. 

******** 

2. Critical point behavior: The pressure P of a gas is related to its density n = N/V , and 

temperature T by the truncated expansion 

c 3P = kB T n − 
b
n 2 + n ,

2 6 
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where b and c are assumed to be positive temperature independent constants. 

(a) Locate the critical temperature Tc below which this equation must be invalid, and 

the corresponding density nc and pressure Pc of the critical point. Hence find the ratio 

kBTcnc/Pc. 

• Mechanical stability of the gas requires that any spontaneous change in volume should be 

opposed by a compensating change in pressure. This corresponds to ζP ζV < 0, and since 

ζn = −(N/V 2)ζV , any equation of state must have a pressure that is an increasing func­

tion of density. The transition point between pressure isotherms that are monotonically 

increasing functions of n, and those that are not (hence manifestly incorrect) is obtained 

by the usual conditions of dP/dn = 0 and d2P/dn2 = 0. Starting from the cubic equation 

of state, we thus obtain 
dP c 2 =kBTc − bnc + n = 0 

2 cdn 
d2P

. 

dn2 
= − b + cnc = 0 

From the second equation we obtain nc = b/c, which substituted in the first equation 

gives kBTc = b2/(2c). From the equation of state we then find Pc = b3/(6c2), and the 

dimensionless ratio of 
kBTcnc 

= 3. 
Pc 

1 δV (b) Calculate the isothermal compressibility �T = V δP T 
, and sketch its behavior as a − 

function of T for n = nc. 

• Using V = N/n, we get 

�T (n) = − 
1 εV � 

=
1 εP 

�

�

−1 

= 
� 
n 
� 
kBT − bn + cn 2/2 

��−1 
. 

V εP T n εn T 

For n = nc, �T (nc) ≤ (T − Tc)
−1, and diverges at Tc. 

(c) On the critical isotherm give an expression for (P − Pc) as a function of (n − nc). 

• Using the coordinates of the critical point computed above, we find 

b2 c 3P − Pc = 
b3 

+ n − 
b
n 2 + n− 

6c2 2c 2 6 
c b b2 b3 

3 = n − 3 n 2 + 3 
2 
n − 

36 c c c
c 3 

= (n − nc) . 
6 

(d) The instability in the isotherms for T < Tc is avoided by phase separation into a liquid 

of density n+ and gas of density n−. For temperatures close to Tc, these densities behave 
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as n± ∝ nc (1 ± ζ). Using a Maxwell construction, or otherwise, find an implicit equation 

for ζ(T ), and indicate its behavior for (Tc − T ) � 0. (Hint: Along an isotherm, variations 

of chemical potential obey dµ = dP/n.) 

• According to the Gibbs–Duhem relation, the variations of the intensive variables are 

related by SdT − V dP + N dµ = 0, and thus along an isotherm (dT = 0) dµ = dP/n = 

εP/εn T dn/n. Since the liquid and gas states are in coexistence they should have the |
same chemical potential. Integrating the above expression for dµ from n− to n+ leads to 

the so-called Maxwell construction, which reads 

n+ dP 
� nc (1+α) 

0 = µ(n+) − µ(n−) = = dn 
kBT − bn + cn2/2 

. 
nn

− nc (1−α) n 

Performing the integrals gives the equation 

1 + ζ c � � 
0 = kBT ln 

1 − ζ 
− bnc(2ζ) + n 2 (1 + ζ)2 − (1 − ζ)2 = kBT ln 

1 + ζ − 2kBTcζ, 
4 c 1 − ζ 

where for the find expression, we have used nc = b/c and kBTc = b2/(2c). The implicit 

equation for ζ is thus 

T 1 + ζ T � � 
ζ = ln

1 − ζ 
∝ 
Tc 

ζ − ζ3 + . 
2Tc 

· · · 

The leading behavior as (Tc − T ) � 0 is obtained by keeping up to the cubic term, and 

given by 
Tc 
.ζ ∝ 1 − 

T 

******** 

3. Relativistic Bose gas in d dimensions: Consider a gas of non-interacting (spinless) 

bosons with energy � = c p|∂ |, contained in a box of “volume” V = Ld in d dimensions. 

(a) Calculate the grand potential G = −kBT ln Q, and the density n = N/V , at a chemical 

potential µ. Express your answers in terms of d and f + 
m (z), where z = e�µ, and 

1 � xm−1 

f + 
m (z) = dx. 

(m − 1)! z−1 ex − 10 

(Hint: Use integration by parts on the expression for ln Q.) 

We have • 
ni =N ⎦ � 

i 
⎩ ⎩ ⎩ 

Q = eN�µ exp −λ ni�i 

N=0 {ni } i , 
�⎩ 

�(µ−∂i )ni 
� 1 

= e = 
�(µ−∂i )1 − e

i {ni} i 
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whence ln Q = ln 1 − e�(µ−∂i )
� 
. Replacing the summation with a d dimensionali i 

� 
− 

d d
integration 

0

�
V ddk/ (2β) = V Sd/ (2β)

�
kd−1dk, where Sd = 2βd/2/ (d/2 − 1)!,

0 

leads to 
V Sd 

� 
� 

hck ln Q = − 
(2β) 0 

kd−1 dk ln 1 − ze−�¯ .
d 

The change of variable x = λh̄ck results in 

� �d � 
V Sd kB T � 

� � 
ln Q = − 

(2β)
d hc 0 

x d−1dx ln 1 − ze−x . 
¯

Finally, integration by parts yields 

� �d � dV Sd 1 kB T Sd kB T � x
ln Q = 

� 

x ddx 
ze−x 

= V 

� �d � 
dx
z−1ex − 1 

,
¯(2β)

d d hc 0 1 − ze−x d hc 0 

leading to 
� �d

Sd kB T G = −kB T ln Q = −V
d hc 

kB T d!fd
+
+1 (z) , 

which can be somewhat simplified to 

V βd/2d! 
= −kB TG 

�d (d/2)! 
fd

+
+1 (z) , 

c 

where �c ∞ hc/(kB T ). The average number of particles is calculated as 

N = 
εG 

= −λz εG 
= 
V βd/2d! 

f+ (z) ,− 
εµ εz �d (d/2)! d 

c 

where we have used zεfd+1(z)/εz = fd (z). Dividing by volume, the density is obtained as 

1 βd/2d! 
n = f+ (z) .d�d (d/2)!c 

(b) Calculate the gas pressure P , its energy E, and compare the ratio E/(P V ) to the 

classical value. 

• We have P V = −G, while 

ε ln Q � 
E = − 

ελ 
� = +d 

ln Q
= −dG. 

� λ z 

Thus E/(P V ) = d, identical to the classical value for a relativistic gas. 
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(c) Find the critical temperature, Tc (n), for Bose-Einstein condensation, indicating the 

dimensions where there is a transition. 

• The critical temperature Tc (n) is given by 

1 βd/2d! 1 βd/2d! 
n = f+ (z = 1) = αd. 

�d (d/2)! d �d (d/2)!c c 

This leads to 
hc n(d/2)! 

�1/d 

Tc = . 
βd/2d!αdkB 

However, αd is finite only for d > 1, and thus a transition exists for all d > 1. 

(d) What is the temperature dependence of the heat capacity C (T ) for T < Tc (n)? 

• At T < Tc , z = 1 and E = dG ≤ T d+1, resulting in −

εE � E V 
C (T ) = � = (d + 1) = −d(d + 1) 

G 
= d(d + 1) 

�d 
kB 

βd/2d! 
αd+1 ≤ T d . 

εT � T T (d/2)!z=1 c 

(e) Evaluate the dimensionless heat capacity C(T )/(NkB ) at the critical temperature 

T = Tc, and compare its value to the classical (high temperature) limit. 

• We can divide the above formula of C(T � Tc), and the one obtained earlier for N(T � 

Tc), and evaluate the result at T = Tc (z = 1) to obtain 

C(Tc) d(d + 1)αd+1 
= . 

NkB αd 

In the absence of quantum effects, the heat capacity of a relativistic gas is C/(NkB ) = d; 

this is the limiting value for the quantum gas at infinite temperature. 

******** 
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