I.G Approach to Equilibrium and Thermodynamic Potentials

Evolution of non-equilibrium systems towards equilibrium is governed by the second
law of thermodynamics. For example, in the previous section we showed that for an adia-
batically isolated system entropy must increase in any spontaneous change and reaches a
maximum in equilibrium. What about out of equilibrium systems that are not adiabati-
cally isolated and which may also be subject to external mechanical work? It is usually
possible to define other thermodynamic potentials that are extremized when the system is
in equilibrium.

Enthalpy is the appropriate function when there is no heat exchange (d@Q) = 0), and
the system comes to mechanical equilibrium with a constant external force. The minimum
enthalpy principle merely formulates the observation that stable mechanical equilibrium
is obtained by minimizing the net potential energy of the system plus the external agent.
For example, consider a spring of natural extension Ly and spring constant K, subject to
the force exerted by a particle of mass m. For an extension x = L — L, the internal energy
of the spring is Kx?/2, while there is a change of —mgx in the potential energy of the
particle. Mechanical equilibrium is obtained by minimizing Kz2/2 — mgz at an extension
Teq = mg/K. The spring at any other value of the displacement initially oscillates before
coming to rest at xoq due to friction. For general displacements x, at constant generalized
forces J, the work input to the system is dW < J-o0x. (Equality is achieved for a reversible
change, but there is generally some loss of the external work into friction.) Since d@ = 0,

using the first law, 0F < J - §x, and
0H <0, where H=F-J-x (1.30)
is the enthalpy. The variations of H in equilibrium are given by
dH =dE—-d(J-x)=TdS+J -dx—x-dJ—J-dx=TdS —x-dJ . (1.31)

The equality in eq.(1.31), and the inequality in eq.(1.30), are a possible source of confusion.
Note that eq.(1.30) refers to variations of H on approaching equilibrium as some parameter
that is not a function of state is varied (e.g. the velocity of the particle joined to the spring
in the above example). By contrast eq.(I.31) describes a relation between equilibrium
coordinates. To differentiate the two cases, I will denoted the former non-equilibrium

variations by J.
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The coordinate set (S,J) is the natural choice for describing the enthalpy, and it

follows from eq.(I.31) that
0H

- 0J;

Tr; =

. (1.32)
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Variations of the enthalpy with temperature are related to heat capacities at constant

force, for example
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Note, however, that a change of variables is necessary to express H in terms of 7', rather
than the more natural variable S.

Helmholtz Free energy is useful for isothermal transformations in the absence of

mechanical work (@W = 0). From Clausius’s theorem, the heat intake of a system at a
constant temperature T satisfies dQ)Q < T90S. Hence 6E = dQ +dW < T9S, and

0F <0, where F=E-TS (1.34)
is the Helmholtz free energy. Since
dF =dE —d(TS)=TdS +J-dx — SdT —TdS = —SdT + J - dx, (1.35)

the coordinate set (T, x) (the quantities kept constant during an isothermal transformation
with no work) is most suitable for describing the free energy. The equilibrium forces and

entropy can be obtained from

OF oOF
Ji = , S=—- = . 1.36
L j#i X
The internal energy can also be calculated from F' using
OF O(F/T)
E=F+TS=F-T —| =-T? L.37
* T |, ar |, (137)

Gibbs Free Energy applies to isothermal transformations involving mechanical work
at constant external force. The natural inequalities for work and heat input into the system
are given by dW < J-éx and dQ < T6S. Hence 0FE < TS + J - §x leading to

0G <0, where G=FE-TS-J-x (1.38)
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is the Gibbs free energy. Variations of GG are given by
dG = dE—d(TS)—d(J-x) = TdS+J-dx—SdT—-TdS—x-dJ—J-dx = —SdT—x-dJ, (1.39)

and most easily expressed in terms of (7, J).

‘ ‘ @ =0 ‘Constant T ‘
dw =0 65 >0 SF <0 |
Constant J 0H <0 0G <0 ‘

Table 2: Inequalities satisfied by thermodynamic potentials.

Table (2) summarizes the above results on thermodynamic functions. Egs.(1.30),
(I.34), and (I1.38) are examples of Legendre transformations, used to change variables
to the most natural set of coordinates for describing a particular situation. So far, we
implicitly assumed a constant number of particles in the system. In chemical reactions,
and in equilibrium between two phases, the number of particles in a given constituent
may change. The change in the number of particles necessarily involves changes in the
internal energy, which is expressed in terms of a chemical work dW = p - dN. Here
N = {Ny, Ny, ---} lists the number of particles of each species, and p = {1, po, -} the
associated chemical potentials which measure the work necessary to add additional particles
to the system. Traditionally, chemical work is treated differently from mechanical work and
is not subtracted from F in the Gibbs free energy of eq.(1.38). For chemical equilibrium
in circumstances that involve no mechanical work, the appropriate state function is the
Grand Potential given by

G=E-TS—pu-N . (1.40)

G(T, pu,x) is minimized in chemical equilibrium, and its variations in general satisfy
dG=—-SdT'—J-dx—N-du . (1.41)

Example: To illustrate the concepts of this section, consider N particles of supersaturated
steam in a container of volume V' at a temperature 7. How can we describe the approach
of steam to an equilibrium mixture with N, particles in the liquid and N particles in the

gas phase? The fixed coordinates describing this system are V', T', and N. The appropriate
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thermodynamic function from Table (2) is the Helmholtz free energy F(V,T, N), whose
variations satisfy
dF =d(E —TS)=—-SdT — PdV + udN. (1.42)

Before the system reaches equilibrium at a particular value of N, it goes through a series
of non-equilibrium states with smaller amounts of water. If the process is sufficiently slow,

we can construct an out of equilibrium value for F' as
F(V,T,N|Ny) = F,(T,Ny) + Fs(V,T,N — N), (1.43)

which depends on an additional variable N,,. (It is assumed that the volume occupied by
water is small and irrelevant.) According to eq.(1.34), the equilibrium point is obtained by

minimizing F' with respect to this variable. Since

_OF
Y 9N,

0P,

ONw, (1.44)
TV

T,V

and OF/ON |y, = p from eq.(1.42), the equilibrium condition can be obtained by equating
the chemical potentials, i.e. from ., (V,T) = pus(V,T). The identity of chemical potentials
is the condition for chemical equilibrium. Naturally, to proceed further we need expressions

for ., and ps.

I.H Useful Mathematical Results

(1) Extensivity: Including chemical work, variations of the extensive coordinates of the

system are related by (generalizing eq.(1.28))
dE =TdS +J-dx+ p-dN. (1.45)

For fixed intensive coordinates, the extensive quantities are simply proportional to size or

to the number of particles. This proportionality is expressed mathematically by
E(AS, Ax, AN) = AE(S,x,N). (1.46)

Evaluating the derivative of the above equation with respect to A at A\ = 1, results in

oF oF
S+Z&.§C2 xi—i_ZaNa

vaj#'irN «

or

08

N, = B(S,x,N). (1.47)

X,N S,X,Nﬁ#a
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The partial derivatives in the above equation can be identified from eq.(1.45) as T', J;, and
o respectively. Substituting these values into eq.(1.47) leads to the so called fundamental

equation of thermodynamics
E=TS+J-x+p-N. (1.48)

Combining the variations of eq.(1.48) with eq.(I.45) leads to a constraint between the

variations of intensive coordinates
SdT'+x-dJ+N-dpu=0, (1.49)

known as the Gibbs—Duhem relation.
Example: For a fixed amount of gas (dN = 0), variations of the chemical potential along
an isotherm can be calculated as follows. Since dT" = 0, the Gibbs-Duhem relation gives
—VdP + Ndp =0, and

dp = Lap = 7L (1.50)

N P

where we have used the ideal gas equation of state PV = NkpT. Integrating the above
equation gives

P \%
= kpTIn — = —kgTIn — 1.51
U= o+ KB HPO Ko B HVO, ( )

where (Py, Vo, io) refer to the coordinates of a reference point.

(2) Maxwell’s Relations: Combining the mathematical rules of differentiation with
thermodynamic relationships leads to several useful results. The most important of
these are Maxwell’s relations which follow from the commutative property [0,0, f(x,y) =

0y0y f(x,y)] of derivatives. For example, it follows from eq.(1.45) that

E E
OF =T, and 0 = J;. (1.52)
aS X,N 83:1 S,$j¢i,N
The joint second derivative of E is then given by
’E 0’FE oT aJ;
oL _ _ _ . (1.53)
050z,  0x;05  Oxi|g 0S|,

Since (9y/dx) = (0z/0y)~1, the above equation can be inverted to give

oS
0J;

T

(L54)

S
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Similar identities can be obtained from the variations of other state functions. Sup-
posing that we are interested in finding an identity involving 05/0x|,. We would like
to find a state function whose variations include Sd1" and Jdx. The correct choice is
dF = d(E—-TS) = —SdT + Jdx. Looking at the second derivative of F' yields the Maxwell

relation

_as| o
8:UT_3TQC'

To calculate 0S/0J |, consider d(E—TS —Jx) = —SdT —xdJ, which leads to the identity

(L55)

a5
oJ

_E)w

== (L56)
;0T

J

There are a variety of mnemonics which are supposed to help you remember and construct
Maxwell’s equations, such as Magic Squares, Jacobians, etc. I personally don’t find any of
these methods worth learning. The most logical approach is to remember the laws of ther-
modynamics and hence eq.(1.28), and to then manipulate it so as to find the appropriate
derivative using the rules of differentiation.

Example: To obtain 0u/0P|y ;- for an ideal gas, start with d(E — TS+ PV) = —SdT +
VdP + pdN. Clearly

Al 0 L - 157
oP|y, ON|p, N P (157)
as in eq.(1.50). From eq.(1.28) it also follows that
os|  _p_ O0E/0VIsy (L58)
WVlgy T OEJOS|, '

where we have used eq.(1.45) for the final identity. The above equation can be rearranged

into

a8
oV

9E
sy 08

ov

| =1, (1.59)
V,N 8E
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which is an illustration of the chain rule of differentiation.
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