III. Kinetic Theory of Gases

ITI.A General Definitions

e Kinetic theory studies the macroscopic properties of large numbers of particles, start-
ing from their (classical) equations of motion.

Thermodynamics describes the equilibrium behavior of macroscopic objects in terms
of concepts such as work, heat, and entropy. The phenomenological laws of thermody-
namics tell us how these quantities are constrained as a system approaches its equilibrium.
At the microscopic level, we know that these systems are composed of particles (atoms,
molecules), whose interactions and dynamics are reasonably well understood in terms of
more fundamental theories. If these microscopic descriptions are complete, we should be
able to account for the macroscopic behavior, i.e. derive the laws governing the macro-
scopic state functions in equilibrium. Kinetic theory attempts to achieve this objective.
In particular, we shall try to answer the following questions:

(1) How can we define “equilibrium” for a system of moving particles?
(2) Do all systems naturally evolve towards an equilibrium state?
(3) What is the time evolution of a system that is not quite in equilibrium?

The simplest system to study, the veritable work—horse of thermodynamics, is the
dilute (nearly ideal) gas. A typical volume of gas contains of the order of 10?3 particles.
Kinetic theory attempts to deduce the macroscopic properties of the gas from the time
evolution of the individual atomic coordinates. At any time ¢, the microstate of a system
of N particles is described by specifying the positions ¢;(t), and momenta p;(t), of all
particles. The microstate thus corresponds to a point p(t), in the 6N dimensional phase

space I’ = Hil{@,ﬁi}. The time evolution of this point is governed by the canonical

equations
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where the Hamiltonian H(p, q), describes the total energy in terms of the set of coordinates
a={q,%, ,qdn}, and momenta p = {p1,pa, -+, Pn}. The microscopic equations of
motion have time reversal symmetry, i.e. if all the momenta are suddenly reversed, p —
—p, at ¢t = 0, the particles retrace their previous trajectory, q(t) = q(—t). This follows

from the invariance of ‘H under the transformation 7'(p,q) — (—p, q).
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As formulated within thermodynamics, the macrostate M, of an ideal gas in equi-
librium is described by a small number of state functions such as E, T, P, and N. The
space of macrostates is considerably smaller than the phase space spanned by microstates.
Therefore, there must be a very large number of microstates y corresponding to the same
macrostate M.

This many to one correspondence suggests the introduction of a statistical ensemble
of microstates. Consider A copies of a particular macrostate, each described by a different
representative point p,(t), in the phase space I'. Let dN(p,q,t) equal the number of
representative points in an infinitesimal volume dI' = Hfil d3p;d3q; around the point

(p,q). A phase space density p(p,q,t) is then defined from

d. t
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This quantity can be compared with the objective probability introduced in the previous
section. Clearly [dI'p =1, and p is a properly normalized probability density function in
phase space. To compute macroscopic values for various functions O(p, q), we shall use

the ensemble averages
(©) = [ drop.a.00(p.q) (11L.)

When the exact microstate p is specified, the system is said to be in a pure state.
On the other hand, when our knowledge of the system is probabilistic, in the sense of its
being taken from an ensemble with density p(I"), it is said to belong to a mized state. It
is difficult to describe equilibrium in the context of a pure state, since p(t) is constantly
changing in time according to eqs.(I11.1). Equilibrium is more conveniently described for
mixed states by examining the time evolution of the phase space density p(t), which is

governed by the Liouville’s equation introduced in the next section.

II1.B Liouville’s Theorem

e Liouville’s Theorem states that the phase space density p(I',t), behaves like an
icompressible fluid.

Proof: Follow the evolution of dN pure states in an infinitesimal volume dI' =
vazl d3p;d3q; around the point (p,q). According to eqs.(II1.1), after an interval 6t these

states have moved to the vicinity of another point (p’,q’), where

Q' = o + 4udt + O(6t%) | pl, = pa + Padt + O(612). (I11.4)
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In the above expression, the ¢, and p, refer to any of the 6/N coordinates and momenta,
and ¢, and p, are the corresponding velocities. The original volume element dI', is in the
shape of a hypercube of sides dp, and dq,. In the time interval dt it gets distorted, and

the projected sides of the new volume element are given by

dq, =dge + gﬂdqaat +O(5t2)
o

dp!, =dpe + gﬁdpaat +O(6t2)
Pa

(I11.5)

To order of 62, the new volume element is dI” = [[~, d®p;'d3;’. From eqs.(IIL5) it
follows that for each pair of conjugate coordinates
dda | Opa

dq’ - dp. = dq,, - dp,, |1 N k) ot?) | . I11.
Q4 - dpl, = dqq - dp l+(8qa+3pa) + O( )} (I1L.6)

But since the time evolution of coordinates and momenta are governed by the canonical
egs.(I11.1), we have
G, o OH O*H OPa 0 oH 0*H
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Thus the projected area in eq.(II1.6) is unchanged for any pair of coordinates, and hence
the volume element is unaffected, dI” = dI'. All the pure states dN, originally in the
vicinity of (p,q) are transported to the neighborhood of (p’,q’), but occupy exactly the
same volume. The ratio dN'/dI is left unchanged, and p behaves like the density of an
incompressible fluid.

The incompressibility condition p(p’,q’,t + 0t) = p(p,q,t), can be written in differ-

ential form as

dp  9p X[ Opa  Op Oqa B
it ot +; ape ot " og ot )= (TIL.8)

Note the distinction between dp/0t and dp/dt: The former partial derivative refers to the
changes in p at a particular location in phase space, while the latter total derivative follows
the evolution of a volume of fluid as it moves in phase space. Substituting from eq.(II1.1)

into eq.(I11.8) leads to

8p:§:(ap‘87{_ap.87{

ot o 0¢a  Oqa apa>:{p’H}’ (L)

a=1
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where we have introduced the Poisson bracket of two functions in phase space as

3N
3 dA OB DA OB\ _
{A4,B} = ;—1: (8pa F apa) = —{B, A}. (I11.10)

Consequences of Liouville’s Theorem:
(1) Under the operation of time reversal symmetry, T'(p,q,t) — (—p,q, —t), the Poisson
bracket changes sign, and eq.(II1.9) implies that the density reverses its evolution, i.e.
p(p;q,t) = p(—p,q, —t).
(2) The time evolution of the ensemble average in eq.(II1.3) is given by (using eq.(IIL.9))

M:/drap(p’q’ P, q) Z/df@ (‘9’) L 8H).

dt ot Opa 0Go  O0qn Opa
(I11.11)
The partial derivatives of p in the above equation can be removed by using the method
of integration by parts, i.e. [ fp’ = — [ pf’ since p vanishes on the boundaries of the

integrations. Therefore

N 00 OH 00 OH 92H O*H
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a=1 pOé Qa Qa pOé pOé Qa Qa pa (111.12)

- [ drpto.n) = .oy,

(3) If the members of the ensemble correspond to an equilibrium macroscopic state, the
ensemble averages must be independent of time. This can be achieved by a stationary

density, Opeq/0t = 0, i.e. by requiring
{peqs H} = 0. (II1.13)

A possible solution to the above equation is peq(p,q) = p(H(p,q)), since {p(H), H} =
p'(H){H,H} = 0. This solution implies that the value of p is constant on surfaces of
constant energy H, in phase space. This is indeed the basic assumption of statistical
mechanics. For example, in the microcanonical ensemble, the total energy F, of an isolated
system is specified. All members of the ensemble are then located on the surface H(p, q) =
E in phase space. Eq.(II1.9) implies that a uniform density of points on this surface is
stationary in time. The assumption of statistical mechanics is that the macrostate is indeed
represented by such a uniform density of microstates. This is equivalent to replacing the

objective measure of probability in eq.(I11.2) with a subjective one.
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There may be additional conserved quantities associated with the Hamiltonian which
satisfy {L,,H} = 0. In the presence of such quantities, a stationary density exists for any
function of the form peq(p,a) = p(H(p,q), L1(p,q), L2(p,q), - -). Clearly, the value of

L,, is not changed during the evolution of the system, since
dLn(p,a) _ Ly (P(t +dt),q(t +dt)) — L, (P(t), a(t))

dt dt
_% 0Ly Opo , OLy 4o
= \Opa Ot Oga O (IT1.14)
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= — LTL; = .
Opa 0¢a  0qq apa) {Ln, 1} =0

a=1
Hence, the functional dependence of p.q on these quantities merely indicates that all ac-
cessible states, i.e. those that can be connected without violating any conservation law,
are equally likely.
(4) The above postulate for pe, answers the first question posed at the beginning of
this chapter. However, in order to answer the second question, and to justify the basic
assumption of statistical mechanics, we need to show that non-stationary densities converge
onto the stationary solution peq. This contradicts the time reversal symmetry noted in (1)
above: For any solution p(t) converging to peq, there is a time reversed solution that
diverges from it. The best that can be hoped for, is to show that the solutions p(t) are in
the neighborhood of p.q the majority of the time, so that ¢time averages are dominated by
the stationary solution. This brings us to the problem of ergodicity, which is whether it is
justified to replace time averages with ensemble averages. In measuring the properties of
any system, we deal with only one representative of the equilibrium ensemble. However,
most macroscopic properties do not have instantaneous values and require some form
of averaging. For example, the pressure P exerted by a gas results from the impact of
particles on the walls of the container. The number and momenta of these particles varies
at different times and different locations. The measured pressure reflects an average over
many characteristic microscopic times. If over this time scale the representative point of
the system moves around and uniformly samples the accessible points in phase space, we
may replace the time average with the ensemble average. For a few systems it is possible
to prove an ergodic theorem, which states that the representative point comes arbitrarily
close to all accessible points in phase space after a sufficiently long time. However, the
proof usually works for time intervals that grow exponentially with the number of particles
N, and thus exceeds by far any reasonable time scale over which the pressure of a gas is
typically measured. Thus the proofs of the ergodic theorem have so far little to do with

the reality of macroscopic equilibrium.
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