
II. Probability


II.A General Definitions 

The laws of thermodynamics are based on observations of macroscopic bodies, and 

encapsulate their thermal properties. On the other hand, matter is composed of atoms 

and molecules whose motions are governed by fundamental laws of classical or quantum 

mechanics. It should be possible, in principle, to derive the behavior of a macroscopic 

body from the knowledge of its components. This is the problem addressed by kinetic 

theory in the following lectures. Actually, describing the full dynamics of the enormous 

number of particles involved is quite a daunting task. As we shall demonstrate, for dis­

cussing equilibrium properties of a macroscopic system, full knowledge of the behavior of 

its constituent particles is not necessary. All that is required is the likelihood that the 

particles are in a particular microscopic state. Statistical mechanics is thus an inherently 

probabilities description of the system. Familiarity with manipulations of probabilities is 

therefore an important prerequisite to statistical mechanics. Our purpose here is to review 

some important results in the theory of probability, and to introduce the notations that 

will be used in the rest of the course. 

The entity under investigation is a random variable x, which has a set of possible 

outcomes S ≥ {x1, x2, · · · . The outcomes may be discrete as in the case of a coin toss, }
Scoin = {head, tail}, or a dice throw, Sdice = {1, 2, 3, 4, 5, 6}, or continuous as for the 

velocity of a particle in a gas, Sα = {−→ < vx, vy , vz < →}, or the energy of an electron 

in a metal at zero temperature, Sπ = . An event is any subset of outcomes 

v 

{0 � δ � δF }
E ⇒ S, and is assigned a probability p(E), e.g. pdice({1}) = 1/6, or pdice({1, 3}) = 1/3. 

From an axiomatic point of view, the probabilities must satisfy the following conditions: 

(i)	 Positivity: p(E) � 0, i.e. all probabilities must be non-zero. 

(ii)	 Additivity: p(A or B) = p(A) + p(B), if A and B are disconnected events. 

(iii)	 Normalization: p(S) = 1, i.e. the random variable must have some outcome in S. 

From a practical point of view, we would like to know how to assign probability values 

to various outcomes. There are two possible approaches: 

(1)	 Objective probabilities are obtained experimentally from the relative frequency of the 

occurrence of an outcome in many tests of the random variable. If the random process 

is repeated N times, and the event A occurs NA times, then 

NA 
p(A) = lim . 

N �� N 
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For example, a series of N = 100, 200, 300 throws of a dice may result in N1 = 

19, 30, 48 occurrences of 1. The ratios .19, .15, .16 provide an increasingly more 

reliable estimate of the probability pdice({1}). 
(2)	 Subjective probabilities provide a theoretical estimate based on the uncertainties 

related to lack of precise knowledge of outcomes. For example, the assessment 

pdice ({1}) = 1/6, is based on the knowledge that there are six possible outcomes 

to a dice throw, and that in the absence of any prior reason to believe that the dice is 

biased, all six are equally likely. All assignments of probability in Statistical Mechanics 

are subjectively based.The consequences of such subjective assignments of probability 

have to be checked against measurements, and they may need to be modified as more 

information about the outcomes becomes available. 

II.B One Random Variable 

As the properties of a discrete random variable are rather well known, here we focus 

on continuous random variables, which are more relevant to our purposes. Consider a 

random variable x, whose outcomes are real numbers, i.e. S x = {−→ < x < →}. 
• The cumulative probability function (CPF) P (x), is the probability of an outcome with 

any value less than x, i.e. P (x) = prob.(E ⇒ [−→, x]). P (x) must be a monotonically 

increasing function of x, with P (−→) = 0 and P (+→) = 1. 

• The probability density function (PDF) is defined by p(x) ≥ dP (x)/dx. Hence, p(x)dx = 

prob.(E ⇒ [x, x + dx]). As a probability density, it is positive, and normalized such that 

prob.(S) = dx p(x) = 1 .	 (II.1) 
−� 

Note that since p(x) is a probability density, it has no upper bound, i.e. 0 < p(x) < .→
• The expectation value of any function F (x), of the random variable is 

⊂F (x)≡ = dx p(x)F (x) .	 (II.2) 
−� 

The function F (x) is itself a random variable, with an associated PDF of pF (f )df = 

prob.(F (x) ⇒ [f, f + df ]). There may be multiple solutions xi, to the equation F (x) = f , 

and 
�	 �

� dx � 
pF (f )df = p(xi)dxi , = pF (f ) = p(xi) � � . (II.3)≤	

� dF x=xii	 i 
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The factors of dx/dF are the Jacobians associated with the change of variables from x| | 
2to F . For example, consider p(x) = � exp(−� x )/2, and the function F (x) = x . There| |

are two solutions to F (x) = f , located at x± = ±
∞

f , with corresponding Jacobians 

± f −1/2/2 . Hence,| |
�

� � � � 
� � 

�

�

� 1 � � � 
PF (f ) = exp −� f � � + � 

−1 
� = 

� exp −�
∞

f
,

2 � 2
∞

f � � 2
∞

f � 2
∞

f 

for f > 0, and pF (f ) = 0 for f < 0. Note that pF (f ) has an (integrable) divergence at 

f = 0. 

Moments of the PDF are expectation values for powers of the random variable. The nth • 

moment is 
n mn ≡ = dxp(x) x n . (II.4)≥ ⊂x 

• The characteristic function, is the generator of moments of the distribution. It is simply 

the Fourier transform of the PDF, defined by 

p̃(k) = e −ikx = dxp(x) e −ikx . (II.5) 

The PDF can be recovered from the characteristic function through the inverse Fourier 

transform 

p(x) = 
1 

dkp̃(k) e +ikx . (II.6)
2� 

Moments of the distribution are obtained by expanding p̃(k) in powers of k, 

� (−ik)n 
n n p̃(k) = 

� (−ik)n 

x = ⊂x . (II.7) 
n! n! 

≡ 
n=0 n=0 

Moments of the PDF around any point x0 can also be generated by expanding 

ikx0 ˜e p(k) = e −ik(x−x0 ) = 
� (−ik)n 

⊂(x − x0)
n . (II.8) 

n! 
≡ 

n=0 

• The cumulant generating function is the logarithm of the characteristic function. Its 

expansion generates the cumulants of the distribution defined through 

� (−ik)n 

ln p̃(k) = 
n! 

⊂x n ≡c . (II.9) 
n=1 
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Relations between moments and cumulants can be obtained by expanding the logarithm 

of p̃(k) in eq.(II.7), and using 

(−1)n+1 δ
n 

ln(1 + δ) = . (II.10) 
n 

n=1 

The first four cumulants are called the mean, variance, skewness, and curtosis of the 

distribution respectively, and are obtained from the moments as 

=x≡c x≡ ,⊂ ⊂
� � � � 22 2x = x x≡ ,

c 
− ⊂

� � � � � � 3 
(II.11)

3 3x = x − 3 x 2 x≡ + 2 ⊂x≡ ,
c 

⊂
� � � � � � � � 24 4 4 
x = x − 4 x 3 x + 12 x 2 . 

c 
⊂x≡ − 3 

� 
2
�2 ⊂x≡ − 6 ⊂x≡ 

The cumulants provide a useful and compact way of describing a PDF. 

An important theorem allows easy computation of moments in terms of the cumulants: 
thRepresent the nth cumulant graphically as a connected cluster of n points. The m moment 

is then obtained by summing all possible subdivisions of m points into groupings of smaller 

(connected or disconnected) clusters. The contribution of each subdivision to the sum is 

the product of the connected cumulants that it represents. Using this result the first four 

moments are easily computed as 

x≡ = x≡c ,⊂ ⊂
� � � � 22 2x = x 

c 
+ ⊂x≡c , 

� � � � � � 3 
(II.12)

3 3x = x + 3 x 2
c 
⊂x≡c + ⊂x≡c ,c 

� � � � � � � 
2
�2 � �

4 4 2 4 
x = x + 4 x 3

c 
⊂x≡c + 3 x + 6 x 2

c 
⊂x≡c + ⊂x≡c . c c 

This theorem, which is the starting point for various diagrammatic computations is statis­

tical mechanics and field theory, is easily proved by equating the expression in eqs. (II.7) 

and (II.9) for p̃(k) 

� � 
 � �pn 
� 

� (−ik)n 
� � (−ik)npn xn

m n c 
� (−ik)m 

x ≡ = exp x = 
⊂ ≡

. (II.13)cm! 
⊂

n! 
⊂ ≡

pn! n! 
m=0 n=1 n pn 

Equating the powers of (−ik)m on the two sides of the above expression leads to 

� � m!m n pn x ≡ = x . (II.14)c⊂
pn !(n!)pn 

⊂ ≡
{pn } n 

The sum is restricted such that npn = m, and leads to the graphical interpretation 

given above, as the numerical factor is simply the number of ways of breaking m points 

into {pn} clusters of n points. 
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II.C Some Important Probability Distributions 

The properties of three commonly encountered probability distributions are examined 

in this section. 

(1) The normal (Gaussian) distribution describes a continuous real random variable x, 

with 
1 (x − �)2 

p(x) = exp . (II.15)∞
2�α2 

− 
2α2 

The corresponding characteristic function also has a Gaussian form, 

1 k2α2 

p̃(k) = dx exp 
(x − �)2 

− ikx = exp −ik� − . (II.16)
2−� 

∞
2�α2 

− 
2α2 

Cumulants of the distribution can be identified from ln p̃(k) = −ik� − k2α2/2, using 

eq.(II.9), as 
3 4⊂x≡ = � , x 2 = α2 , x = x = = 0 . (II.17)c c c c 

· · · 

The normal distribution is thus completely specified by its two first cumulants. This makes 

the computation of moments using the cluster expansion (eqs.(II.12)) particularly simple, 

and 
= � , ⊂x≡ 

2x = α2 + �2 , 
� � (II.18)

3x = 3α2� + �3 , 

4x = 3α4 + 6α2�2 + �4 , .· · · 

The normal distribution serves as the starting point for most perturbative computations 

in field theory. The vanishing of higher cumulants implies that all graphical computations 

involve only products of one point, and two point (known as propagators) clusters. 

(2) The binomial distribution: Consider a random variable with two outcomes A and B 

(e.g. a coin toss) of relative probabilities pA and pB = 1 − pA. The probability that in N 

trials the event A occurs exactly NA times (e.g. 5 heads in 12 coin tosses), is given by the 

binomial distribution 
N NApN (NA) = 
NA 

pA p N −NA . (II.19)B 

The prefactor, 
N N ! 
NA 

= 
NA!(N − NA)! 

, (II.20) 
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is just the coefficient obtained in the binomial expansion of (pA + pB )
N , and gives the num­

ber of possible orderings of NA events A and NB = N − NA events B. The characteristic 

function for this discrete distribution is given by 

N 
� �

� N ! NA N −NA −ikNA = −ik + pB 
�N 

p̃N (k) = e −ikNA = 
NA!(N − NA)! 

pA p e pAe .B 
NA =0 

(II.21) 

The resulting cumulant generating function is 

pN (k) = N ln pAe −ik + pB = N ln ˜ln ˜ p1(k), (II.22) 

where ln p̃1(k) is the cumulant generating function for a single trial. Hence, the cumulants 

after N trials are simply N times the cumulants in a single trial. In each trial, the allowed 

values of NA are 0 and 1 with respective probabilities pB and pA, leading to N � = pA,A 

for all π. After N trials the first two cumulants are 

2 ⊂NA≡c = NpA , N2 = N(pA − pA) = NpApB . (II.23)A c 

A measure of fluctuations around the mean is provided by the standard deviation, which is 

the square root of the variance. While the mean of the binomial distribution scales as N , 

its standard deviation only grows as 
∞

N . Hence, the relative uncertainty becomes smaller 

for large N . 

The binomial distribution is straightforwardly generalized to a multinomial distribu­

tion, when the several outcomes {A, B, · · · , M} occur with probabilities {pA, pB , · · · , pM }. 
The probability of finding outcomes {NA, NB , · · · , NM } in a total of N +NM = NA +NB · · ·
trials is 

pN ({NA, NB , · · · , NM }) = 
N ! NA NB NMp M . (II.24)A pBNA!NB ! NM ! 

· · ·p · · ·
(3) The Poisson distribution: The classical example of a Poisson process is radioactive 

decay. Observing a piece of radioactive material over a time interval T shows that: 

(a) The probability of one and only one event (decay) in the interval [t, t + dt] is propor­

tional to dt as dt � 0, 

(b) The probabilities of events at different intervals are independent of each other. 

The probability of observing exactly M decays in the interval T is given by the Poisson 

distribution. It is obtained as a limit of the binomial distribution by subdividing the 

interval into N = T/dt √ 1 segments of size dt. In each segment, an event occurs with 

probability p = �dt, and there is no event with probability q = 1 −�dt. As the probability 
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of more than one event in dt is too small to consider, the process is equivalent to a binomial 

one. Using eq.(II.21), the characteristic function is given by 

� � � � � 
p̃(k) = pe −ik + q 

�n 
= lim 1 + �dt e −ik − 1 

��T /dt 
= exp �(e −ik − 1)T . (II.25) 

dt�0 

The Poisson PDF is obtained from the inverse Fourier transform in eq.(II.6) as 

� (�T )M 
� � � � 

−�T dk ikx −ikM p(x) = 
dk 

exp � e −ik − 1 T + ikx = e 
� � 

e 
� 

e ,
2� −� 2� M !−� M =0 

(II.26) 

using the power series for the exponential. The integral over k is 

dk
e ik(x−M ) = λ(x − M ) , (II.27)

2�−� 

leading to 
� (�T )M 

p�T (x) = e −�T λ(x − M ) . (II.28)
M ! 

m=0 

The probability of M events is thus p�T (M ) = e−�T (�T )M /M !. The cumulants of the 

distribution are obtained from the expansion 

ln p̃�T (k) = �T (e −ik − 1) = �T 
� (−ik)n 

, = ⊂M n ≡c = �T . (II.29) 
n! 

≤ 
n=1 

All cumulants have the same value, and the moments are obtained from eqs.(II.12) as 

⊂M ≡ = (�T ), M 2 = (�T )2 + (�T ), M 3 = (�T )3 + 3(�T )2 + (�T ). (II.30) 

Example: Assuming that stars are randomly distributed in the galaxy (clearly unjustified) 

with a density n, what is the probability that the nearest star is at a distance R? 

Since, the probability of finding a star in a small volume dV is ndV , and they are 

assumed to be independent, the number of stars in a volume V is described by a Poisson 

process as in eq.(II.28), with � = n. The probability p(R), of encountering the first star 

at a distance R is the product of the probabilities pnV (0), of finding zero stars in the 

volume V = 4�R3/3 around the origin, and pndV (1), of finding one star in the shell of 

volume dV = 4�R2dR at a distance R. Both pnV (0) and pndV (1) can be calculated from 

eq.(II.28), and 

−4�R2 ndR 4�R2p(R)dR = pnV (0) pndV (1) =e −4�R3 n/3 e ndR, 

=≤ p(R) =4�R2 n exp − 
4

3 
�

R3 n . 
(II.31) 
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