VII.B Canonical Formulation

Using the states constructed in the previous section, we can calculate the canonical
density matrix for non-interacting identical particles. In the coordinate representation we

have
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where p({k}) = exp [—ﬁ <Z;V:1 thi/Qmﬂ /Zn. The sum, ZZ{ELEQ,---,EN}’ is restricted to
ensure that each identical particle state appears once and only once. In both the bosonic
and fermionic subspaces, the set of occupation numbers {n;} uniquely identify a state.
We can, however, remove this restriction from eq.(VIIL.11), if we divide by the resulting

over-counting factor (for bosons) of N!/(]]zn;!), i.e.,

{ky  {F}
(Note that for fermions, the (—1)F factors cancel out the contributions from cases where

any ny is larger than one.) Therefore,
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In the limit of large volume, the sums over {E} can be replaced by integrals, and using the

plane wave representation of wavefunctions, we have
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We can order the sum in the exponent by focusing on a particular k-vector. Since
> f(Pa)gla) =324 f(3)g(P~1B3), where 8 = Pa and a = P~13, we obtain
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(VIL14)
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The gaussian integrals in the square brackets are equal to

)\13exp{ )7; <a:p 1a—a:P a)T.

Setting 8 = P~ 'a in eq.(VIL.14) gives
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Finally, we set Q = P’~!P, and use the results n*’ = 77P_1, and n@ = P~ P =nP'nF to

get (after performing >, = N!)
1 T
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The canonical partition function, Z, is obtained from the normalization condition

wp =1 — [ [ & (@) =1,

N
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The quantum partition function thus involves a sum over N! possible permutations. The
classical result Zy = (V/ )\3)N /N1, is obtained from the term corresponding to no particle
exchange, @ = 1. The division by N! finally justifies the factor that was (somewhat
artificially) introduces in classical statistical mechanics to deal with the phase space of
identical particles. However, this classical result is only valid at very high temperature
and is modified by the quantum corrections coming from the remaining permutations.
As any permutation involves a product of factors exp|—m(#; — #2)2/A?], its contributions
vanishes as A — 0 for T" — oo.

The lowest order correction comes from the simplest permutation which is the ex-
change of two particles. The exchange of particles 1 and 2 is accompanied by a factor of
nexp|—2m(F1 — T2)?/A2]. As each of the possible N(IN —1)/2 pairwise exchanges gives the

same contribution to Zy, we get
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For any o > 2, [ d®Z, = V; in the remaining two integrations we can use the relative,

— —

12 = Ty — T1, and center of mass coordinates to get
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From the corresponding free energy,
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the gas pressure is computed as
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Note that the first quantum correction is equivalent to a second virial coefficient of

nA?
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(VIL.22)

The resulting correction to pressure is negative for bosons, and positive for fermions. In the
classical formulation, a second virial coefficient was obtained from a two-body interaction.
The classical potential V(77) that leads to the second virial coefficient in eq.(VII.22) is

obtained from

f(F) — e—,@V(F) 1= ne—27r772/)\2’ —
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(The final approximation corresponds to high temperatures, where only the first correc-
tion is important). Thus the effects of quantum statistics at high temperatures are ap-
proximately equivalent to introducing an interaction between particles. The interaction is
attractive for bosons, repulsive for fermions, and operates over distances of the order of

the thermal wavelength .
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VII.C Grand Canonical Formulation

Calculating the partition function by performing all the sums in eq.(VIL.17) is a

formidable task. Alternatively, we can compute Zp in the energy basis as

Zn =tr (e—6H> - Z exp [_ﬁzgué’a)] = {Z}exp —BY E(kn(k)| . (VIL24)
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These sums are still difficult to perform due to the restrictions of symmetry on the allowed
values of k or {ng}: The occupation numbers {n;} are restricted to » zny = N, and
niy = 0,1,2,--- for bosons, while nz = 0 or 1 for fermions. As usual, the first constraint

can be removed by looking at the grand partition function,

QT )= "N Y exp | -8 E(k)ng
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The sums over {n;} can now be performed independently for each l;, subject to the re-
strictions on occupation numbers imposed by particle symmetry.

e For fermions, n; =0 or 1, and

Q_ = H [1 + exp (Bu — 55(15))} . (VII.26)
k
e For bosons, np =0,1,2,- -, and summing the geometric series gives
L1
o. =] [1 —exp (Bp — 55(1{:))} . (VIL27)
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The results for both cases can be presented simultaneously as

InQ, =-n) [1 —nexp (Bu— BE (E))] : (VIL28)
k
with n = —1 for fermions, and 7 = +1 for bosons.

In the grand canonical formulation, different one-particle states are occupied indepen-

dently, with a joint probability

Pn ({H(E)D = Qin [Texo [—B(S(E) — ,u)n,;] : (VIL.29)
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The average occupation number of a state of energy & (lg) is given by

0ln Q, 1
= n_ _ . VIL.30

where z = exp(fu). The average values of the particle number and internal energy are

1
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then given by
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