IT1.C The Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy

The full phase space density contains much more information than necessary for de-
scription of equilibrium properties. For example, knowledge of the one particle distribution
is sufficient for computing the pressure of a gas. A one particle density refers to the ex-
pectation value of finding any of the N particles at location ¢, with momentum p, at time

t, which is computed from the full density p as

N
= <_Z 83 (5 — 5,8 (7~ q>>
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(I11.15)

To obtain the second identity above, we used the delta functions to perform one set of inte-
grals, and assumed that the density is symmetric with respect to permuting the particles.

Similarly, a two body density can be computed from

N
fQ(ﬁlu {Tl?ﬁQ? CTQ? t) - N(N - ]') /H d‘/j& P(ﬁb Jluﬁ?? 6)27 e 7171\77 JN? t)7 (11116)
i=3
where dV; = d3p;d3q; is the contribution of particle i to phase space volume. The general

s-particle density is defined by

FolB 2 t) = L/ZUH‘W pP.t) = (Tt (LT
where p; is a standard unconditional PDF for the coordinates of s particles, and pny = p.
While p; is properly normalized to unity when integrated over all its variable, the s-particle
density has a normalization of N!/(N —s)!. We shall use the two quantities interchangably.

The evolution of the few-body densities is governed by the BBGKY hierarchy of
equations attributed to Bogoliubov, Born, Green, Kirkwood, and Yvon. The simplest

non-trivial Hamiltonian that can be studied in kinetic theory is

Z[p’ +U(q }Jr— Z V(G (IIT.18)

i=1 (1,5)=1

This Hamiltonian provides an adequate description of a weakly interacting gas. In addition

to the classical kinetic energy of particles of mass m, it contains an external potential
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U, and a two-body interaction V, between the particles. In principle, three and higher
body interactions should also be included for a realistic description, but they are not very
important in the dilute gas (nearly ideal) limit.

For evaluating the time evolution of f,, it is convenient to divide the Hamiltonian into
H=Hs+Hn_s+H, (I11.19)
where ‘Hy and Hy_s include only interactions among each group of particles,

s _,n _» 1 s
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(I111.20)

while the interparticle interactions are contained in

H=> > VG —&) (I11.21)

n=1 1=s+1

From eq.(II1.17), the time evolution of f, (or ps) is obtained as

N
3,05 = / H dV / I avi {p. Hoe+Hn o +H'}, (I11.22)

=s+1 1=s+1

where eq.(II1.9) is used for the evolution of p. The three Poisson brackets in eq.(I11.22)
will now be evaluated in turn. Since the first s coordinates are not integrated, the order

of integrations and differentiations for the Poisson bracket may be reversed, and

N N

/ H dVi {p,Hs} = {(/ H dV; p> JHs} = {ps, Hs}- (I11.23)
1=s+1 1=s+1

Writing the Poisson brackets explicitly, the second term of eq.(II1.22) takes the form

N
dp OHn-s Ip OHn-s
/ H dV; {/),HN S}_/ H dv; Z[@pj 36_7] a% ap] }

1=s+1 1=s+1 j=1

(using eq.(II1.20))
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The last equality is obtained after performing the integrations by part: The term multi-
plying dp/0p; has no dependence on p;, while pj/m does not depend on ¢;. The final term
in eq.(I11.22), involving the Poisson bracket with H’, is

[ T0 v o[ 20 o oe o]
, ' op; 0q; 0q; Op;

1=s+1 7j=1
N s N N s
dp V(G — ) dp V(G — dn)
= H dv; Z Ao Z — 4 Z - - Z - ,
/i—s—|—1 n=1 Opn j=s+1 94 j=s+1 op; n=1 04;

where the sum over all particles has been subdivided into the two groups. (Note that H’
in eq.(I11.21) has no dependence on the momenta.) Integration by parts shows that the
second term in the above expression is zero. The first term involves the sum of (N — s)

expressions that are equal by symmetry and simplifies to

N s
av(in_‘js+1) dp
(N—s)/||dw§j _dert) | O
: = G Ipn

e N (ITL.25)
° 8V(§n - Js—l—l) 0
:(N_S)Z/dvsﬂ = T oS /HdV;p .
n=1 9Gn Opn =542

Note that the quantity in the above square brackets is ps11. Thus, adding up eqs.(II1.23),
(I11.24), and (I11.25),

apS . 8v(§n - Js-l—l) 8108+1
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or in terms of the densities fs,
8fs > 81}(@71 - (ZG—H) afs—i—l
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In the absence of interactions with other particles, the density ps for a group of
s particles, evolves as the density of an incompressible fluid (as required by Liouville’s
theorem), and is described by the streaming terms on the left hand side of eq.(I11.26).
However, because of interactions with the remaining N — s particles, the flow is modified
by the collision terms on the right hand side. The collision integral is the sum of the terms
corresponding to a potential collision of any of the particles in the group of s, with any
of the remaining N — s particles. To describe the probability of finding the additional
particle that collides with a member of this group, the result must depend on the joint
PDF of s 4+ 1 particles described by psi+1. This results in a hierarchy of equations with
p1 depends on ps, p2 depends on ps, etc., which is at least as complicated as the original
equation for the full phase space density. To proceed further, a reasonable approximation
for terminating the hierarchy is needed.
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ITI.D The Boltzmann Equation

To estimate the relative importance of the different terms appearing in eqs.(I11.27),

let us examine the first two equations in the hierarchy,

0 ou 0 D1 E)] / V(G — ) Ofq
— = = [ dVv- - - I11.28
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Note that two of the streaming terms in eq.(I11.29) have been combined by using
V(G — ¢2)/0q¢1= —OV(¢> — G1)/ OG>, which is valid for a symmetric potential such that
V(@r — @)= V(& — @)
e Time scales: All terms within square brackets in the above equations have dimensions
of inverse time, and we estimate their relative magnitudes by dimensional analysis, using
typical velocities and length scales. The typical speed of a gas particle at room temperature
is v &~ 102ms~!. For terms involving the external potential U, or the inter-atomic potential
potential V), an appropriate length scale can be extracted from the range of variations of
the potential.
(a) The terms proportional to
1 ou 0
w07 O
involve spatial variations of the external potential U(q’), which take place over macro-
scopic distances L. We shall refer to the associated time 77, as an extrinsic time scale,
as it can be made arbitrarily long by increasing system size. For a typical value of
L ~1073m, we get 7y ~ L/v ~ 107 %s.
(b) From the terms involving the inter-atomic potential V, we can extract two additional
time scales, which are intrinsic to the gas under study. In particular, the collision

duration

1 oV o0

=g o
is the typical time over which two particles are within the effective range d, of their
interaction. For short range interactions (including van der Waals and Lenard—Jones,

despite their power law decaying tails), d ~ 1071%mn is of the order of a typical atomic
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size, resulting in 7. ~ 107'2s. This is usually the shortest time scale in the problem.
The situation is somewhat more complicated for long range interactions, such as the
Coulomb gas in a plasma. For a neutral plasma, the Debye screening length A replaces
d in the above equation, as discussed in problems.

(c) There are also collision terms on the right hand side of eqs.(I11.27), which depend on

fs+1, and lead to an inverse time scale

1 ov 0 fs+1 / oy 0 Ps+1
Tx / oq 0p fs oq 9p  ps

The integrals are only non-zero over the volume of the inter-particle potential d. The

term fsy1/fs is related to the probability of finding another particle per unit volume,
which is roughly the particle density n = N/V ~ 102m~3. We thus obtain the mean

free time
Te 1

nd3  nvd?’

which is the typical distance a particle travels between collisions. For short range

(111.30)

Ty ~

interactions, 7« ~ 10~%s is much longer than 7., and the collision terms on the right

hand side of eqgs.(II1.27) are smaller by a factor of nd® =~ (10*6m=3)(1071%m)3 ~ 10~

The Boltzmann equation is obtained for short range interactions in the dilute regime
by exploiting 7./7x ~ nd®> < 1. (By contrast, for long range interactions such that
nd? > 1, the Vlasov equation is obtained by dropping the collision terms on the left hand
side, as discussed in problems.) From the above discussion, it is apparent that eq.(II1.28)
is different from the rest of the hierarchy: It is the only one in which the collision terms
are absent from the left hand side. For all other equations, the right hand side is smaller
by a factor of nd®, while in eq.(II1.28) it may indeed dominate the left hand side. Thus a
possible approximation scheme is to truncate the equations after the first two, by setting
the right hand side of eq.(II1.29) to zero.

The left hand side of the equation for fy includes terms proportional to both 7, !

and 7,1.

We shall argue that the two sets of terms can be treated independently, the
former acting on center of mass, and the latter acting on relative coordinates. But fs is
proportional to the joint PDF ps for finding one particle at (p71, ¢1), and another at (p2, ¢2),
at the same time t. It is reasonable to expect that at distances much larger than the range

of the potential V, the particles are independent, i.e.

02(1717 @17527 @27 t) — pP1 (ﬁla lea t)ﬂl(ﬁ% 672; t)v or
(II1.31)

fQ(ﬁlail,ﬁ27§27t) —>f1(ﬁ17§17t)f1<ﬁ27§27t)7 for |§2_(71| > d7
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For example, imagine that the gas particles are suddenly allowed to invade an empty volume
after the removal of a barrier. The density f; will undergo a complicated evolution, and
its relaxation time will be at least comparable to 7. The two body density fs, will also
reach its final value at a comparable time interval. However, it is expected to relax to
a form similar to eq.(II1.31) over a much shorter time of the order of 7.. At separations
comparable to d, the behavior of fs is governed by two particle collisions. At time intervals
longer than 7. (but possibly shorter than 7i7), the ‘steady state’ behavior of fo at small
relative distances is thus obtained by equating the largest terms in eq.(II1.29), i.e.

P 0 pp 0 3Wﬁ—@)<3 3)]
AR _ B = 0. I11.32
{m 01  m 0 oG op1  Op2 f2 ( )

We expect f2(q1,¢2) to have slow variations over the center of mass coordinate Cj = (¢ +
¢>)/2, and large variations over the relative coordinate ¢ = ¢> — ¢i. Therefore, 0f2/07 >

df2/0Q, and 0fy /G ~ —0f2 /0 ~ df2/07, leading to

V(¢ — ) ( 0 d ) (ﬁl—ﬁz) s,
— . — — - = — - — . 111.33
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The above equation (along with the boundary conditions imposed by eq.(I11.31)) describes
a steady state situation established by collisions in the center of mass frame of two particles.
The relaxation of f; to equilibrium is controlled by the collision terms on the right

hand side of eq.(II1.28), which can be written as

% :/d?’ﬁngJQ 8V(Q1_q2)< 0 8_’)]02%
coll.

dt

oG op1 a Opa

. . — _ — 8
/d3p2d3QQ <p1 pz) b
m 0¢

The first identity if obtained from eq.(I11.28) by noting that the added term proportional

(I11.34)

to 0fy/0p2 is a complete derivative and integrates to zero, while the second equality
follows from eq.(I11.33). (Since it relies on establishing the ‘steady state’ in the relative
coordinates, this approximation is valid as long as we examine events in time with a
resolution longer than 7..)

e Scattering theory: The integrand in eq.(II1.34) is a derivative of fy with respect to ¢
along the direction of relative motion p'= ps — pi, of the colliding particles. As such, it
can be integrated to fo(p) Q.7 0, t) — fg(ﬁl,é,ﬁg,é, t), where p1’, and po’ are the
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momenta of the two particles immediately after the collision. (As we are only concerned
with variations of f; at length scales larger than d, we shall ignore the small differences
in positions before and after each collision.) More precisely, this is achieved by a change
of variables from the three components of ¢ to a one-dimensional variable a along the
trajectory of motion, and a two component vector b perpendicular to it. The complicated
curvilinear nature of this transformation need not bother us, as after the partial integration
over a, we only need to specify the coordinates before the collision. It is customary to set
b = 0 for a head—on collision ([p1 — 2] || [71 — @]). With this choice, b is known as the

impact vector, and

d — 71— — — — — — — — — —
% :/dSPQdelvl —'U2|[f2(p1 ,7q17p2/7q17t)_fQ(p17q17p27q17t)]7 (11135)
coll.
where |U; — U3 = |p1 — p=2|/m is the relative speed of the two particles.

It is more convenient to describe the scattering of two particles in terms of the relative
momenta P = ) — ps and P = 7’ — Py ’, before and after the collision. Note that
a2b |07 — U] is just the flux of particles impinging on the element of area d2b. For a given
I;, the initial momentum P is deterministically transformed to the final momentum P
To find the functional form P'(|P|,b), one must integrate the equations of motion. In
elastic collisions, the magnitude of Pis preserved, and it merely rotates to a final direction
indicated by the angles (6, ¢) = Q(b) in spherical coordinates. Since there is a one to one
correspondence between the impact vector l;, and the solid angle €2, we make a change of

variables between the two resulting in

= /d3p2dﬂ Elvl — Wl [fo(pr, @1, 02" @1, t) — f2(Ph, G4, P2, 1, 1)) . (TI1.36)
coll.

df:
dt

The Jacobian of this transformation do/df2 has dimensions of area, and is known as the
differential cross-section. It is equal to the area presented to an incoming beam which

/

scatters into the solid angle Q. In eq.(III.36), the out-going momenta p;’ and pf are

functions of p, a2, and €2, obtained from the two conditions p; '+pY = p1 +p>2 (conservation

of momentum), and 7, — ph = |p1 — 72| (conservation of energy), as

Pl = <I71 + p2 + |ph —272|Q> /2,

) (I11.37)
' = (B + 52— 17 - 2210) /2.
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For the scattering of two hard spheres of diameter d, it is easily to show that the
scattering angle is related to the impact parameter b by sin(6/2) = b/d for all ¢. The

differential cross-section is then obtained from

0\ do d? d?

do = bdbdg = dsin (2 ) deos (L) Y ap = L sinododp = L aq.
2 2) 2 4 4

(Note that the solid angle in three dimensions is given by d€2 = sinfdf d¢.) Integrating
over all angles leads to the total cross—section of o = 7d?, which is evidently correct. The
differential cross-section for hard spheres is independent of both 6 and |f_5 |. This is not the

case for soft potentials. For example, the Coulomb potential V = e2/ |C§| leads to

2
d_a B me>
ds 2|P|2sin?(0/2) )

(The dependence on |f’ | can be obtained by obtaining a distance of closest approach from
|P?/m +¢*/b~0,)

e The Boltzmann transport equation is obtained from eq.(I11.36) after one further ap-

proximation known as the assumption of molecular chaos. The approximation consists of

replacing fo by using eq.(I11.31), leading to

[5 G op
—/d3p2d9 2|0 = Rl LA@, @ 0 [P, 4 1) = [l G ) A2 6, 1))

(II1.38)

While the approximation fo(q1,¢2) — f1(q1)f1(G), is certainly justified for separations

0 ou 0 D’ 0
+]£'—_. fi=
m  Oq

much larger than d, in eq.(I11.38) it has been applied to short distances describing collisions.
The simplification results in a closed form equation for f; whose consequences we shall
explore in the next section.

The streaming terms on the left hand side of the Boltzmann equation describe the
motion of a single particle in the external potential U. The collision terms on the right
hand side have a simple physical interpretation: The probability of finding a particle of
momentum p; at ¢; is suddenly altered if it undergoes a collision with another particle
of momentum p5. The probability of such a collision is the product of kinematic factors
described by the differential cross-section do/d2, the ‘flux’ of incident particles propor-
tional to |U2 — ¥1|, and the joint probability of finding the two particles, approximated by
f1(P1) f1(P2). The first term on the right hand side of eq.(II1.38) subtracts this probability
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and integrates over all possible momenta and solid angles describing the collision. The sec-
ond term, describes an addition to the probability which results from the inverse process:
A particle can suddenly appear at (p1,q1) as a result of a collision between two particles
initially with momenta p} " and p>’. The cross-section, and the momenta (p;’,p>’) may
have a complicated dependence on (p7,p2) and 2, determined by the specific form of the
potential V. Remarkably, various equilibrium properties of the gas are quite independent

of this potential.
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