IV.D The Ideal Gas

As discussed in chapter II, micro-states of a gas of N particles correspond to points u =
{Pi, 4}, in the 6 N-dimensional phase space. Ignoring the potential energy of interactions,

the particles are subject to a Hamiltonian

H = XN: [ﬁi . U(qj-)} , (IV.26)

where U(q) describes the potential imposed by a box of volume V. A microcanonical
ensemble is specified by its energy, volume, and number of particles, M = (E,V, N). The

joint PDF for a micro-state is

1 1 for ¢; € box, and >, p;2/2m =E (+Ag)
(IV.27)

p) =
Q(F N
(B, V,N) 0 otherwise

In the allowed micro-states, coordinates of the particles must be within the box, while
the momenta are constrained to the surface of the (hyper-)sphere Zi\il p; 2 =2mE. The
allowed phase space is thus the product of a contribution V¥ from the coordinates, with
the surface area of a 3N-dimensional sphere of radius v2mE from the momenta. (If the
microstate energies are accepted in the energy interval £+ A g, the corresponding volume
in momentum space is that of a (hyper-)spherical shell of thickness Agr = /2m/EAE.)
The area of a d-dimensional sphere is Ay = SyR4™!, where S, is the generalized solid
angle.

A simple way to calculate the d—dimensional solid angle is to consider the product of

o0 d
I; = (/ dme‘m2> = /2, (IV.28)

—

d Gaussian integrals,

Alternatively, we may consider I; as an integral over an entire d-dimensional space, i.e.

d
I;= /H dz; exp (—z7) . (IV.29)
i=1

The integrand is spherically symmetric, and we can change coordinates to R? = > x2.

Noting that the corresponding volume element in these coordinates is dV; = SyR4'dR,

Iy :/ dRS R 1e ' = %/ dyy?/? eV = % (d/2 —1)!, (IV.30)
0 0
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where we have first made a change of variables to ¥y = R?, and then used the integral
representation of n!. Equating expressions (IV.28) and (IV.30) for I; gives the final result
for the solid angle,

d/2
Sy = (61/227T7—/1)! . (IV.31)
The volume of the available phase space is thus given by
27T3N/2
Q(E,V,N) = va(sz)@N—U/QAR. (IV.32)

The entropy is obtained from the logarithm of the above expression. Using Stirling’s

formula, and neglecting terms of order of 1 or In £ ~ In N in the large N limit, results in

N N N N
S(E,V,N)=kp {Nan—f— 37111(27rmE) — 371113— 4 3N

2 2
IV.33
Ninln v AremE\ >/ ( )
= n
b 3N
Properties of the ideal gas can now be recovered from 7'dS = dE + PdV — udN,

1 08 3 Nk

— = =225 (IV.34)

T OB|y, 2 E
The internal energy E = 3NkpT /2, is only a function of T, and the heat capacity Cy =

3Nkp/2, is a constant. The equation of state is obtained from

P 0S|  Nkg

= 2 PV = NkgT. TV.
T Vl|yg V' v B (1V.35)

The unconditional probability of finding a particle of momentum p; in the gas can be

calculated from the joint PDF in eq.(IV.27), by integrating over all other variables,

N
o) = [ @ T[@aasnl(a. 5
1=2

_VQE-p2/2m, V, N -1)
- Q(E,V,N)

(IV.36)

The final expression indicates that once the kinetic energy of one particle is specified, the

remaining energy must be shared amongst the other N — 1. Using eq.(IV.32),

B I e R e
p(p1) = (S(N )2 1)! : VNWSN/Z(QmE)(BN—l)/Q (1v.37)
(om0 N |
2mE (2rmE)3/2 (3(N -1)/2 - 1)! .
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From Stirling’s formula, the ratio of (3N/2 — 1)! to (3(N — 1)/2 — 1)! is approximately
(3N/2)3/2, and in the large E limit,

p(p) = ( il )3/2 exp (_ﬁ P ) : (IV.38)

drmE 2 2mFE

This is a properly normalized Maxwell-Boltzmann distribution, which can be displayed in

its more familiar form after the substitution £ = 3NkpT/2,

. 1 P12
p(])l) = W exp (— ) . (IV.SQ)

IV.E Mixing Entropy and Gibbs’ Paradox

The expression in eq.(IV.33) for the entropy of the ideal gas has a major shortcoming in
that it is not extensive. Under the transformation (F,V, N) — (AE, AV, AN), the entropy
changes to A\(S + NkpIn)). The additional term comes from the contribution V, of the
coordinates to the available phase space. This difficulty is intimately related to the mizing
entropy of two gases. Consider two distinct gases, initially occupying volumes V; and V5
at the same temperature 7. The partition between them is removed, and they are allowed
to expand and occupy the combined volume V = V; + V5. The mixing process is clearly
irreversible, and must be accompanied by an increase in entropy, calculated as follows.

According to eq.(IV.33), the initial entropy is

SZ-:Sl—l—Sg:le:B(lnvl—|—01)—1—N2k;3(1nV2—|—02), (IV40)
where,
4 . E. 3/2
- :m( e ,N_a> , (IV.41)

is the momentum contribution to the entropy of the a*® gas. Since E,/N, = 3kgT/2 for
a monotonic gas,

3
oo(T) = 3 In (2remakpT) . (IV.42)
The temperature of the gas is unchanged by mixing, since

3 Ei+E, Ei E» 3
kTt = —— = — = — = -kpT. V.4
PUTNGEN T NN, 27 (V49)
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The final entropy of the mixed gas is
Sf = le‘B 1n(V1 + va) + NQkB lIl(Vl + VQ) + kB(Nlal + NQO'Q). (IV44)

There is no change in the contribution from the momenta which depends only on temper-

ature. The mixing entropy,

|4 Vv N Vi Ny V,
ASmix =S¢ —85; = Nikpln — + Nokpln — = —Nkg | —In—+ —In—=|, (IV.45
M ¥ 1BHV1+ QBHVQ BNHV+NHV ( )

is solely from the contribution of the coordinates. The above expression is easily generalized
to the mixing of many components, with ASyix = —Nkg Y, (No/N)In(V,/V).

Gibbs’ Paradox is related to what happens when the two gases, initially on the two
sides of the partition, are identical with the same density, n = Ny/V; = N3/V5. Since
removing or inserting the partition does not change the state of the system, there should
be no entropy of mixing, while eq.(IV.45) does predict such a change. For the resolution of
this paradox, note that while after removing and reinserting the partition, the system does
return to its initial configuration, the actual particles that occupy the two components
are not the same. But as the particles are by assumption identical, these configurations
cannot be distinguished. In other words, while the exchange of distinct particles leads to
two configurations

| o o | e

and

[ ]
A | B A | B’
a similar exchange has no effect on identical particles, as in
o | o d o | o
———— and —F—.
A | B A | B
Therefore, we have over-counted the phase space associated with N identical parti-

cles by the number of possible permutations. As there are N! permutations leading to

indistinguishable micro-states, eq.(IV.32) should be corrected to

VN 27.(.3N/2
NI (3N/2—1)!

Q(N,E,V) = (2mE)BCN=D/2A R (IV.46)
resulting in a modified entropy,

S=kplnQ=kg[NInV —NInN + Nlne|]+ Nkgo = Nkp {In% —|—a} . (IV.47)
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As the argument of the logarithm has changed from V to V/N, the final expression is now
properly extensive. The mixing entropies can be recalculated using eq.(IV.47). For the

mixing of distinct gases,

Vv Vv %} Vs
ASMix = -85, = Nikpln — + Nokgpln — — N1kgln— — Nokgln —
Sm S-S anN1+ anN2 1BI1N1 2BnN2
V N V.  Ns
— Nikpln [ — - 21) £ Nokpln [ — - 22
1311(N1 V1>+ 23H<N2 Vg) (IV.48)

Ny, Vi Ny V,
- _ S P T P
Nkg {N n— + In ] ,

exactly as obtained before in eq.(IV.45). For the ‘mixing’ of two identical gases, with
Ny /Vi = N2 /Va = (N1 + Na2)/(V1 + Va),

i+ Vs Vi Va
ASumix =S¢ —5; = (N No)kgln ———=— — Nikpln— — Nokgln— =0. (IV.49
M f (N1 + 2)BUN1+N2 1BHN1 QBnN2 (IV.49)

Note that after taking the permutations of identical particles into account, the available
volume in the final state is VN1 N2 /N1 IN,! for distinct particles, and VN TNz /(N 4+ Ny)!
for identical particles.

e Additional comments on the microcanonical entropy:

1. In the example of two-level impurities in a solid matrix (sec.IV.C), there is no need for

the additional factor of N!, as the defects can be distinguished by their locations.

2. The corrected formula for the ideal gas entropy in eq.(IV.47) does not affect the com-
putations of energy and pressure in egs.(IV.34) and (IV.35). It is essential to obtaining an
intensive chemical potential,

08 S 5

=— 2% =3 tzks=ksn

4 B 3/2
K( mm ) (IV.50)

N 3N

3. The above treatment of identical particles is somewhat artificial. This is because
the concept of identical particles does not easily fit within the framework of classical
mechanics. To implement the Hamiltonian equations of motion on a computer, one has to
keep track of the coordinates of the IV particles. The computer will have no difficulty in
distinguishing exchanged particles. The indistinguishability of their phase spaces is in a
sense an additional postulate of classical statistical mechanics. This problem is elegantly
resolved within the framework of quantum statistical mechanics. Description of identical

particles in quantum mechanics requires proper symmetrization of the wave function. The
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corresponding quantum microstates naturally yield the N! factor, as will be shown later

on.

4. Yet another difficulty with the expression (IV.47), resolved in quantum statistical me-
chanics, is the arbitrary constant that appears in changing the units of measurement for
q and p. The volume of phase space involves products pq, of coordinates and conjugate
momenta, and hence has dimensions of (action)”. Quantum mechanics provides the ap-
propriate measure of action in Planck’s constant h. Anticipating these quantum results,

we shall henceforth set the measure of phase space for identical particles to

N

1 3> 13>
TN = 155 1_[1d g.d>p; . (IV.51)

IV.F The Canonical Ensemble

In the microcanonical ensemble, the energy E, of a large macroscopic system is pre-
cisely specified, and its equilibrium temperature 7', emerges as a consequence (eq.(IV.7)).
However, from a thermodynamic perspective, ' and T" are both functions of state and on
the same footing. It is possible to construct a statistical mechanical formulation in which
the temperature of the system is specified and its internal energy is then deduced. This is
achieved in the canonical ensemble where the macro-states, specified by M = (T, x), allow
the input of heat into the system, but no external work. The system S, is maintained
at a constant temperature through contact with a reservoir R. The reservoir is another
macroscopic system that is sufficiently large so that its temperature is not changed due
to interactions with S. To find the probabilities p 7 x)(u), of the various micro-states of
S, note that the combined system R & S, belongs to a microcanonical ensemble of energy

Etot > Eg. As in eq.(IV.3), the joint probability of micro-states (ug @ pgr) is

1 1 for Hs(pus) + Hr(pr) = Etot
p(ps @ pr) = Qsor(Brot) : (IV.52)
SORLFTot 0 otherwise
The unconditional probability for micro-states of S is now obtained from
plps) = Y plus @ pig) - (IV.53)

{pwr}
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Once pug is specified, the above sum is restricted to micro-states of the reservoir with energy
Erot — Hs(ps). The number of the such states is related to the entropy of the reservoir,

and leads to

Or (Erot — Hs(ps))
Qser (Erot)

1
p(us) = X exp ESR(ETO‘L — Hs(us)) . (IV.54)

Since by assumption the energy of the system is insignificant compared to that of the

reservoir,
S H
S (B — Hs(13)) = Sw(Fre) — Hs(i1s) o = () — "50) (1 55)
R
Dropping the subscript S, the normalized probabilities are given by
e—BH () .

p(rx) (1) = Z(T.x) (IV.56)
The normalization,

Z(T,x) =Y e T, (IV.57)

{n}
is known as the partition function, and § = 1/kgT. (Note that probabilities similar to
eq.(IV.56) were already obtained in eqs.(IV.25), and (IV.39), when considering a portion
of the system in equilibrium with the rest of it.)
Is the internal energy FE, of the system S well defined? Unlike in a microcanonical
ensemble, the energy of a system exchanging heat with a reservoir is a random variable.
Its probability distribution p(€), is obtained by changing variables from p to H(u) in p(u),

resulting in
e_ﬁg
pE) =D p ()3 (M) — &) = “— > (H(w) — &) (IV.58)
{n} {u}

Since the restricted sum is just the number Q(&), of micro-states of appropriate energy,

Q@E)e € 1 p{S(& £ }: {9 { F(g)], (IV.59)

A

where we have set F' = £ — T'S(E), in anticipation of its relation to the Helmholtz free
energy. The probability p(£), is sharply peaked at a most probable energy E*, which

minimizes F'(£). Using the result in sec.(IL.F) for sums over exponentials,

7 = Z e_ﬁH(u) = Z 6_5F(8) ~ e PFET) (IV.60)
{n} &
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The average energy computed from the distribution in eq.(IV.59) is

—Hw 1 g Oz
(H) = ZH(M)‘?T =295 Z =55 (IV.61)

In thermodynamics, a similar expression was encountered for the energy (eq.(1.37)),

OF| 5 0 (F\ _0(8r)
E=F+TS=F— TaT TaT(T>_ T (IV.62)

Eqgs.(IV.60) and (IV.61), both suggest identifying
F(T,x)=—kgThZ(T,x). (IV.63)

However, note that eq.(IV.60) refers to the most likely energy, while the average energy
appears in eq.(IV.61). How close are these two values of the energy? We can get an idea
of the width of the probability distribution p(&), by computing the variance (H?).. This is
most easily accomplished by noting that Z () is proportional to the characteristic function

for H (with (8 replacing ik) and,

Z 27
a ZH ~AH and gﬁ =S " H2e (IV.64)
I

Cumulants of H are generated by In Z([3),

1 107 olnZz
_ Z -BH _ _ v
7 He 7 08 o8’ (1V.65)

and

(H?)e = (H?) — (H)? = %ZH%—BH _ % (ZH6—5H> _ ‘9281;22 _ o)

op
(IV.66)
More generally, the n'" cumulant of H is given by
o"InZ
M= (=1)" . Iv.67
e = (1" (1V.67)

86



From eq.(IV.66),

O(H) O(H) 2

HY) =~ = kpT? 22|, =  (H). = kpT?Cy, IV.68
e == aksT) T ot ) = ko (IV.68)
where we have identified the heat capacity with the thermal derivative of the average
energy (H). Eq.(IV.68) shows that it is justified to treat the mean and most likely energies

interchangeably, since the width of the distribution p(£), only grows as \/ (H?), oc N1/2.

The relative error, 1/ (H?)./(H). vanishes in the thermodynamic limit as 1/+v/N. (In fact
eq.(IV.67) shows that all cumulants of H are proportional to N.) The PDF for energy in

a canonical ensemble can thus be approximated by

1 PE (€ — <H>)2 1
= —e PFC) » — 1V
p(€) c oxp < 2kpT2Cx 2mkpT2Cy (1V.69)

The above distribution is sufficiently sharp to make the internal energy in a canonical

ensemble unambiguous in the N — oo limit. Some care is necessary if the heat capacity
Cx is divergent, as is the case in some continuous phase transitions.

The canonical probabilities in eq.(IV.56) are unbiased estimates obtained (as in
sec.(II.G)) by constraining the average energy. The entropy of the canonical ensemble

can also be calculated directly from eq.(IV.56) (using eq.(I11.68)) as

E—-F
T

S =—kp(lnp(n)) = —kp ((-FH —InZ2)) = (IV.70)

again using the identification of In Z with the free energy from eq.(IV.63). For any finite
system, the canonical and microcanonical probabilities are distinct. However, in the so
called thermodynamic limit of N — oo limit, the canonical probabilities are so sharply
peaked around the average energy that they are essentially indistinct from microcanonical
probabilities at that energy. The following table compares the prescriptions used in the

two ensembles.

‘ Ensemble ‘ Macro-state ‘ p(p) ‘ Normalization
Microcanonical (E,x) oa(H(p) — E)/Q S(E,x) = kplnQ
Canonical (T, x) exp (— BH(n))/Z F(T,x)=—kgTInZ

Table 3: Comparison of canonical and microcanonical ensembles.
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