III.E The H-Theorem and Irreversibility

The second question posed at the beginning of this chapter was whether a collection of
particles naturally evolves towards an equilibrium state. While it is possible obtain steady
state solutions for the full phase space density py, because of time reversal symmetry these
solutions are not attractors of generic non-equilibrium densities. Does the unconditional
one particle PDF pq, suffer the same problem. The H-theorem proves that the Boltzmann
equation is not time reversal symmetric.

o If f1(p,q,t) satisfies the Boltzmann equation, then dH/dt < 0, where

mw:/fm%ﬁ@@wmﬁﬁaw. (I11.39)

The function H(¢) is related to the information content of the one particle PDF. Up to an
overall constant, the information content of p; = f1/N is given by I[p1] = (Inp;), which
is closely similar to H(¢).

Proof: The time derivative of H is
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el (I11.40)
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since [dVifi = N [dl'p = N is time independent. Using eq.(III.38), we obtain
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where we shall interchangably use do, dzg, or dQddo /dS2 for the differential cross-section.
The streaming terms in the above expression are zero, as shown through successive inte-

grations by part,
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The collision term in eq.(I11.41) involves integrations over dummy variables p; and p,. The
labels (1) and (2) can thus be exchanged without any change in the value of the integral.
Averaging the resulting two expressions gives
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(The implicit arguments, ¢ and t, are suppressed for ease of notation.) We would now
like to change the variables of integrations from the coordinates describing the initiators
of the collision, (p1, Pa, g), to those of their products, (p1’,p2’, I;’) The explicit functional
forms describing this transformation are complicated because of the dependence of the
solid angle € in eq.(I11.37) on b and |F> — py|. However, we are assured that the Jacobian
of the transformation is unity, since because of time reversal symmetry, for every collision

there is an inverse one obtained by reversing the momenta of the products. In terms of

the new coordinates
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where we should now regard (p7, p2) in the above equation, as functions of the integration
variables (71, 72’,b") as in eq.(IIL37). As noted earlier, |0 — @] = |01 — @] for any
elastic collision, and we can use these quantities interchangably. Finally, we relabel the
dummy integration variables such that the primes are removed. Noting that the functional

dependence of (p}, po, l;) on (p1/,p2’, b’ ) is exactly the same as its inverse, we obtain
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Averaging eqgs.(II1.42) and (II1.44) results in
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The integrand of the above expression is always positive. If f1(p1)f1(p2) > fi(p1) f1(P2’),
both terms in square brackets are positive, while both are negative if f1(p1)f1(p2) <
fi(P1) f1(P2'). In either case, their product is positive. The positivity of the integrand
establishes the validity of the H-theorem,
dH
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o [rreversibility: Reconciling the reversibility of laws of physics governing the microscopic
domain with the observed irreversibility of macroscopic phenomena is a fundamental ques-
tion. The second law formulates these observations and establishes the arrow of time.
Of course, not all microscopic laws of physics are reversible: weak nuclear interactions
violate time reversal symmetry, and the collapse of the quantum wave-function in the act
of observation is irreversible. The former interactions in fact do not play any significant
role in everyday observations that lead to the second law. The irreversibe collapse of the
wave-function may itself be an artifact of treating macroscopic observers and microscopic
observables distinctly.” There are proponents of the view that the reversibility of the
currently accepted microscopic equations of motion (classical or quantum) is indicative
of their inadequacy. However, the advent of powerful computers has made it possible to
simulate the evolution of collections of large numbers of particles, governed by classical,
reversible equations of motion. Although simulations are currently limited to relatively
small numbers of particles (10°), they do exhibit the irreversible macroscopic behaviors

0%3 particles). For example, par-

similar to those observed in nature (typically involving 1
ticles initially occupying one half of a box proceed to irreversibly, and uniformly, occupy
the whole box. Thus the origin of the observed irreversibilities should be sought in the
classical evolution of large collections of particles.

The Boltzmann equation is the first formula we have encountered that is clearly not
time reversible, as indicated by eq.(II1.46). We can thus ask the question of how we
obtained this result from the Hamiltonian equations of motion. The key to this, of course,
resides in the physically motivated approximations used to obtain eq.(II1.38). In particular,
there is an implicit coarse—graining of the resolution in the spatial and temporal scales.
In obtaining eq.(II1.38) from the first two equations of the BBGKY hierarchy, we made
approximations regarding what happens at a two body collision. Detailed consequences of
such a collision are contained in the two—body density f5, which is approximated to the
product of two one body densities according to eq.(II1.31). Information about collisions
is lost in this approximation, and the resulting eq.(II1.38) is only applicable at space and
time resolutions longer than those of a two-body collision.

The Liouville equation and its descendents contain precise information about the

evolution of a pure state. This information, however, is inevitably transported to shorter

T The time dependent Schrédinger equation is fully time reversible. If it is possible
to write a complicated wave-function that includes the observing apparatus (possibly the

whole universe), it is hard to see how any irreversibility may occur.
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scales. A useful image is that of mixing two immiscible fluids. While the two fluids remain
distinct at each point, the transitions in space from one to the next occur at finer resolution
on subsequent mixing. At some point, a finite resolution in any measuring apparatus will
prevent keeping track of the two components. Similarly, here, the precise information of
the pure state is lost at the scale of atomic collisions, and the resulting f; describes a state

that becomes more and more probabilistic as further information is lost.

III.FF Equilibrium Properties

What is the nature of the equilibrium state described by f;, for a homogeneous gas?
(1) The equilibrium distribution: After the gas has reached equilibrium, the function H
should no longer decrease with time. Since the integrand in eq.(I11.45) is always positive,

a necessary condition for dH/dt = 0 is that

fl(ﬁlail)fl(ﬁ27§1) - fl(ﬁl /761)f1(ﬁ2 /7q_)1) = 07 (11147)

i.e. at each point ¢, we must have

In f1(p1,q) +In f1(p2, @) =In f1(pr', @) + In f1(P2", q). (I11.48)

The left hand side of the above equation refers to the momenta before a two-body collision,
and the right hand side to the those after the collision. The equality is thus satisfied by
any additive quantity that is conserved during the collision. There are 5 such quantities
for an elastic collision: the particle number, the three components of the net momentum,

and the kinetic energy. Hence, a general solution for f; is

-2
in i = a@ - a(@ -7~ 5@ (5. ) (111.49)
We can easily incorporate the potential energy U(§) in the above form, and set
2
o - - p
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We shall refer to the above distribution as describing local equilibrium. While dH /dt = 0
for such a solution, f; will itself evelove in time unless {H, fi} = 0. This condition
is satisfied for any function f; that depends only on Hi, or any other quantity that is
conserved by it. Clearly, the above density satisfies this requirement as long as A/, and (3

are independent of ¢, and & = 0.
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According to eq.(II.15), the appropriate normalization for f; is

/ d*pd>if1(p,q) = N. (I1L.51)

For particles in a box of volume V', the potential U(qg) is zero inside the box, and infinite

on the outside. The normalization factor in eq.(II11.50) can be obtained from eq.(II1.51) as

B > Bp? 2m \ 2/ ma?
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Hence, the properly normalized Gaussian distribution for momenta is
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where py = (p) = —md /[ is the mean value for the momentum of the gas, which is zero

for a stationary box, and n = N/V is the particle density. From the Gaussian form of
the distribution it can be easily concluded that the variance of each component of the

momentum is <p1> m/3, and

(p*) = (P2 +p2+p2) =" (I1L.54)

(2) Equilibrium between two gases: Consider two different gases (a) and (b), moving in
the same potential U, and subject to a two-body interaction V (cf (a) — (f(b)). We can
define one-particle densities, fl(a), and, fl(b), for the two gases respectively. In terms of a

generalized collision integral
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the evolution of these densities is governed by a simple generalization of the Boltzmann

equation to

8 (a) a a
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Stationary distributions can be obtained if all six terms on the right hand side of egs.(I11.56)

are zero. In the absence of inter-species collisions, i.e. for Cy;, = Cp 4, We can obtain
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independent stationary distributions fl(a) X exp <—5aH(1a)> and fl(b) X exp <—ﬁngb)>.
Requiring the vanishing of (|, ; leads to the additional constraint,
P EA ) A ) =0, =

(a) /= ®) (= (@) (= 1 b) > (111.57)
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Since the total energy H(la) + Hgb) is conserved in a collision, the above equation can be

satisfied for B, = B, = (. From eq.(I11.54) this condition implies the equality of the kinetic

va \ /i \_ 3
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The parameter § thus plays the role of an empirical temperature describing the equilibrium

energies of the two species,

of gases.

(3) The equation of state: To complete the identification of 8 with temperature 7', consider
a gas of NV particles confined to a box of volume V. The gas pressure results from the force
exerted by the particles colliding with the walls of the container. Consider a wall element
of area A perpendicular to the x direction. The number of particles impacting this area,

with momenta in the interval [p) p'+ dp], over a time period 0t, is

N (B) = (f1(p)d*p) (Av,dt) . (I11.59)

The final factor in the above expression is the volume of a cylinder of height v,dt per-
pendicular to the area element A. Only particles within this cylinder are close enough to
impact the wall during d¢. As each collision imparts a momentum 2p,. to the wall, the net

force exerted is

F-5 | OOO i, | Z , [ Z dp-fa(7) (A2261) (2p.). (I1L60)

As only particles with velocities directed towards the wall will hit it, the first integral is
over half of the range of p,. Since the integrand is even in p,, this restriction can be
removed by dividing the full integral by 2. The pressure P is then obtained from the force

per unit area as

3/2
P:Z /d3ﬁf ———/dgppm ( ) exp(—i—i)z%, (IIL.61)
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where eq.(II1.53) is used for the equilibrium form of f;. Comparing with the standard
equation of state, PV = NkgT, for an ideal gas, leads to the identification, 8 = 1/kgT.
(4) Entropy: As discussed earlier, the Boltzmann H-function is closely related to the infor-
mation content of the one-particle PDF p;. We can also define a corresponding Boltzmann
entropy,

Sp(t) = —kpH(t), (I11.62)

where the constant kp is introduced for historical convenience. The H-theorem implies that
Sp can only increase with time in approaching equilibrium. It has the further advantage
of being defined through eq.(II1.39) for situations that are clearly out of equilibrium. For

a gas in equilibrium in a box of volume V, from eq.(I11.53), we compute
H=V [ &5 A A
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(I11.63)
The entropy is now identified as
N
SB :—kBH:N]CB [g—i-gln(%rmk‘BT)—ln (V):| . (11164)
The thermodynamic relation, TdSp = dE + PdV, implies
E
OE| _, 98w _3..
aT |, ar |, 2 (1IL65)
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The usual properties of a monatomic ideal gas, PV = NkgT, and E = 3NkgT/2, can
now be obtained from the above equations. Also note that for this classical gas, the zero
temperature limit of the entropy in eq.(II1.64) is not independent of the density n, in

violation of the third law of thermodynamics.
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