8.333: Statistical Mechanics I Problem Set # 9 Due: 11/23/05

Phase Transitions

1. Dieterici’s equation: A gas obeys Dieterici’s equation of state:

P(v —b) = kgT exp (- kB“TU) :

where v = V/N.

(a) Find the ratio Pv/kgT at the critical point.

(b) Calculate the isothermal compressibility kr for v = v, as a function of T'— T..

(c) On the critical isotherm expand the pressure to the lowest non-zero order in (v — v.).
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2. 2d Coulomb Gas: Consider a classical mixture of N positive, and N negative charged
particles in a two dimensional box of area A = L x L. The Hamiltonian is
2
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where ¢; = +¢g fort=1,---N, and ¢; = —¢g for i = N + 1,---2N, denote the charges of

the particles; {¢;} and {p;} their coordinates and momenta respectively.

(a) Note that in the interaction term each pair appears only once, and that there is no
self interaction ¢ = j. How many pairs have repulsive interactions, and how many have

attractive interactions?

(b) Write down the expression for the partition function Z(N,T, A) in terms of integrals
over {q;} and {p;}. Perform the integrals over the momenta, and rewrite the contribution

of the coordinates as a product involving powers of {g;}, using the identity e™® = z.

(c) Although it is not possible to perform the integrals over {¢;} exactly, the dependence
of Z on A can be obtained by the simple rescaling of coordinates, ¢;’ = ¢;/L. Use the
results in parts (a) and (b) to show that Z oc A2N=BeN/2,

(d) Calculate the two dimensional pressure of this gas, and comment on its behavior at

high and low temperatures.

(e) The unphysical behavior at low temperatures is avoided by adding a hard—core which
prevents the coordinates of any two particles from coming closer than a distance a. The

appearance of two length scales a and L, makes the scaling analysis of part (¢) questionable.
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By examining the partition function for N = 1, obtain an estimate for the temperature T,
at which the short distance scale a becomes important in calculating the partition function,
invalidating the result of part (c¢). What are the phases of this system at low and high

temperatures?
kookoskoskoskokock >k

3. One dimensional gas: In statistical mechanics, there are very few systems of interacting
particles that can be solved exactly. Such exact solutions are very important as they
provide a check for the reliability of various approximations. A one dimensional gas with
short-range interactions is one such solvable case.

(a) Show that for a potential with a hard core that screens the interactions from further

neighbors, the Hamiltonian for N particles can be written as

N p2 N

The (indistinguishable) particles are labelled with coordinates {x;} such that

0<m <2< <2y <L,
where L is the length of the box confining the particles.
(b) Write the expression for the partition function Z (7T, N, L). Change variables to §; =
r1, 00 = Tog —x1, -+, 0Ny = TNy — xn_1, and carefully indicate the allowed ranges of
integration and the constraints.

(c) Consider the Gibbs partition function obtained from the Laplace transformation
Z(T,N,P) = / dLexp(—pBPL)Z(T,N, L),
0

and by extremizing the integrand find the standard formula for P in the canonical ensemble.
(d) Change variables from L to 41 = L— Zfil d;, and find the expression for Z(T', N, P)

as a product over one-dimensional integrals over each §;.

(e) At a fixed pressure P, find expressions for the mean length L(T, N, P), and the density
n = N/L(T, N, P) (involving ratios of integrals which should be easy to interpret).

Since the expression for n(7T, P) in part (e) is continuous and non-singular for any
choice of potential, there is in fact no condensation transition for the one-dimensional
gas. By contrast, the approximate van der Waals equation (or the mean-field treatment)
incorrectly predicts such a transition.

(f) (Optional) For a hard sphere gas (as in PS#6, problem 3, or PS# 8, problem 2, part
(d)) calculate the equation of state P(7T,n). Compare the excluded volume factor with the

approximate result obtained in PS#3, and also obtain the general virial coefficient By(T).
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Suggested reading: Feynman, Chapter 4; Ma, Chapter 8.



