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IV.D The Ideal Gas 

As discussed in chapter II, micro-states of a gas of N particles correspond to points µ ⊗ 

{σ qi}, in the 6N -dimensional phase space. Ignoring the potential energy of interactions, pi, σ

the particles are subject to a Hamiltonian 

N � 
σ 2 

� pi 
+ U (σqi) , (IV.26)H = 

2m 
i=1 

where U (qσ) describes the potential imposed by a box of volume V . A microcanonical 

ensemble is specified by its energy, volume, and number of particles, M ⊗ (E, V, N ). The 

joint PDF for a micro-state is 

pi 
2/2m = E (±�E )1 1 for σqi ≡ box, and σi 

p(µ) = 
�(E, V, N ) 

· . (IV.27) 
0 otherwise 

In the allowed micro-states, coordinates of the particles must be within the box, while 
�N 

σthe momenta are constrained to the surface of the (hyper-)sphere pi 
2 = 2mE. Thei=1 

allowed phase space is thus the product of a contribution V N from the coordinates, with 

the surface area of a 3N -dimensional sphere of radius 
⇒

2mE from the momenta. (If the 

microstate energies are accepted in the energy interval E ± �E , the corresponding volume 

in momentum space is that of a (hyper-)spherical shell of thickness �R = 2m/E�E.) 

The area of a d-dimensional sphere is Ad = Sd R
d−1, where Sd is the generalized solid 

angle. 

A simple way to calculate the d–dimensional solid angle is to consider the product of 

d Gaussian integrals, 
�
� � �d 

= λd/2Id ⊗ dxe−x 2 

. (IV.28) 
−� 

Alternatively, we may consider Id as an integral over an entire d–dimensional space, i.e. 

� d 
2Id = dxi exp −xi . (IV.29) 

i=1 

The integrand is spherically symmetric, and we can change coordinates to R2 = i xi . 

Noting that the corresponding volume element in these coordinates is dVd = SdR
d−1dR, 

−y
Id = dRSdR
d−1 e −R2 

= 
Sd 
� � 

dyyd/2−1 e = 
Sd 

(d/2 − 1)! , (IV.30)
2 0 20 
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where we have first made a change of variables to y = R2, and then used the integral 

representation of n!. Equating expressions (IV.28) and (IV.30) for Id gives the final result 

for the solid angle, 
2λd/2 

Sd = . (IV.31)
(d/2 − 1)! 

The volume of the available phase space is thus given by 

2λ3N/2 

�(E, V, N) = V N (2mE)(3N −1)/2�R. (IV.32)
(3N/2 − 1)! 

The entropy is obtained from the logarithm of the above expression. Using Stirling’s 

formula, and neglecting terms of order of 1 or ln E � ln N in the large N limit, results in 
� � 

3N 3N 3N 3N 
S(E, V, N) =kB N ln V + 

2 
ln(2λmE) − 

2 
ln 

2 
+ 

2 
� 
� �3/2 

� (IV.33)
4λemE 

=NkB ln V . 
3N 

Properties of the ideal gas can now be recovered from TdS = dE + PdV − µdN , 

1 πS � 3 NkB 
= = . (IV.34)

T πE � 2 EN,V 

The internal energy E = 3NkB T/2, is only a function of T , and the heat capacity CV = 

3NkB /2, is a constant. The equation of state is obtained from 

P πS � NkB 
= � = , = PV = NkB T. (IV.35)

T πV � V 
∝

N,E 

The unconditional probability of finding a particle of momentum σp1 in the gas can be 

calculated from the joint PDF in eq.(IV.27), by integrating over all other variables, 

� N 

p1) = d3qσ1 d3qσid
3 σ pi})p(σ pip({σqi, σ

i=2 (IV.36) 
V �(E − σp1

2/2m, V, N − 1) 
= . 

�(E, V, N) 

The final expression indicates that once the kinetic energy of one particle is specified, the 

remaining energy must be shared amongst the other N − 1. Using eq.(IV.32), 

V N λ3(N −1)/2(2mE − σp1
2)(3N −4)/2 (3N/2 − 1)! 

p(σp1) = � � 
3(N − 1)/2 − 1 ! 

· 
V N λ3N/2(2mE)(3N −1)/2 

(IV.37)
� 

2 �3N/2−2
σp1 1 (3N/2 − 1)!

1 − 
2mE (2λmE)3/2 3(N − 1)/2 − 1 ! 
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From Stirling’s formula, the ratio of (3N/2 − 1)! to 3(N − 1)/2 − 1 ! is approximately 

(3N/2)3/2, and in the large E limit, 

3N 
�3/2 

3N σ 2p1 
p(σp1) = exp . (IV.38)

4λmE 
− 

2 2mE 

This is a properly normalized Maxwell-Boltzmann distribution, which can be displayed in 

its more familiar form after the substitution E = 3NkB T/2, 

σ 21 p1 
p(σp1) = 

(2λmkB T )3/2 
exp . (IV.39)− 

2mkB T 

IV.E Mixing Entropy and Gibbs’ Paradox 

The expression in eq.(IV.33) for the entropy of the ideal gas has a major shortcoming in 

that it is not extensive. Under the transformation (E, V, N) � (�E, �V, �N), the entropy 

changes to �(S + NkB ln �). The additional term comes from the contribution V N , of the 

coordinates to the available phase space. This difficulty is intimately related to the mixing 

entropy of two gases. Consider two distinct gases, initially occupying volumes V1 and V2 

at the same temperature T . The partition between them is removed, and they are allowed 

to expand and occupy the combined volume V = V1 + V2. The mixing process is clearly 

irreversible, and must be accompanied by an increase in entropy, calculated as follows. 

According to eq.(IV.33), the initial entropy is 

Si = S1 + S2 = N1kB (ln V1 + β1) + N2kB (ln V2 + β2), (IV.40) 

where, 
4λem� E� 

�3/2 

β� = ln , (IV.41)
3 

· 
N� 

is the momentum contribution to the entropy of the �th gas. Since E�/N� = 3kB T/2 for 

a monotonic gas, 
3 

β�(T ) = ln (2λem�kB T ) . (IV.42)
2 

The temperature of the gas is unchanged by mixing, since 

3 E1 + E2 E1 E2 3 
kB Tf = = = = kB T. (IV.43)

2 N1 + N2 N1 N2 2 
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The final entropy of the mixed gas is 

Sf = N1kB ln(V1 + V2) + N2kB ln(V1 + V2) + kB (N1β1 + N2β2). (IV.44) 

There is no change in the contribution from the momenta which depends only on temper­

ature. The mixing entropy, 

V V N1 V1 N2 V2
�SMix = Sf − Si = N1kB ln + N2kB ln = −NkB ln + ln , (IV.45)

V1 V2 N V N V 

is solely from the contribution of the coordinates. The above expression is easily generalized 

to the mixing of many components, with �SMix = −NkB �(N�/N) ln(V�/V ). 

Gibbs’ Paradox is related to what happens when the two gases, initially on the two 

sides of the partition, are identical with the same density, n = N1/V1 = N2/V2. Since 

removing or inserting the partition does not change the state of the system, there should 

be no entropy of mixing, while eq.(IV.45) does predict such a change. For the resolution of 

this paradox, note that while after removing and reinserting the partition, the system does 

return to its initial configuration, the actual particles that occupy the two components 

are not the same. But as the particles are by assumption identical, these configurations 

cannot be distinguished. In other words, while the exchange of distinct particles leads to 

two configurations 
• | ≈ 

and 
≈ | • 

,
A A | B| B 

a similar exchange has no effect on identical particles, as in 

• | • 
and 

• | • 
. 

A A | B| B 

Therefore, we have over-counted the phase space associated with N identical parti­

cles by the number of possible permutations. As there are N ! permutations leading to 

indistinguishable micro-states, eq.(IV.32) should be corrected to 

V N 2λ3N/2 

�(N, E, V ) = (2mE)(3N −1)/2�R, (IV.46)
N ! (3N/2 − 1)! 

resulting in a modified entropy, 

eV 
S = kB ln � = kB [N ln V − N ln N + N ln e] + NkB β = NkB ln + β . (IV.47)

N 
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As the argument of the logarithm has changed from V to V /N , the final expression is now 

properly extensive. The mixing entropies can be recalculated using eq.(IV.47). For the 

mixing of distinct gases, 

V V V1 V2

�SMix = Sf − Si = N1kB ln + N2kB ln − N1kB ln − N2kB ln


N1 N2 N1 N2 

V N1 V N2 
= N1kB ln 

N1 
· 

V1 
+ N2kB ln 

N2 
· 

V2 
(IV.48) 

N1 V1 N2 V2 
= −N kB ln + ln ,

N V N V 

exactly as obtained before in eq.(IV.45). For the ‘mixing’ of two identical gases, with 

N1/V1 = N2/V2 = (N1 + N2)/(V1 + V2), 

V1 + V2 V1 V2
�SMix = Sf − Si = (N1 + N2)kB ln − N1kB ln − N2kB ln = 0. (IV.49)

N1 + N2 N1 N2 

Note that after taking the permutations of identical particles into account, the available 

volume in the final state is V N1 +N2 /N1!N2! for distinct particles, and V N1 +N2 /(N1 + N2)! 

for identical particles. 

• Additional comments on the microcanonical entropy: 

1. In the example of two-level impurities in a solid matrix (sec.IV.C), there is no need for 

the additional factor of N !, as the defects can be distinguished by their locations. 

2. The corrected formula for the ideal gas entropy in eq.(IV.47) does not affect the com­

putations of energy and pressure in eqs.(IV.34) and (IV.35). It is essential to obtaining an 

intensive chemical potential, 

µ πS � S 5 V 4λmE 
�3/2 

= � = + kB = kB ln . (IV.50)
T 

− 
πN E,V 

− 
N 2 N 3N 

3. The above treatment of identical particles is somewhat artificial. This is because 

the concept of identical particles does not easily fit within the framework of classical 

mechanics. To implement the Hamiltonian equations of motion on a computer, one has to 

keep track of the coordinates of the N particles. The computer will have no difficulty in 

distinguishing exchanged particles. The indistinguishability of their phase spaces is in a 

sense an additional postulate of classical statistical mechanics. This problem is elegantly 

resolved within the framework of quantum statistical mechanics. Description of identical 

particles in quantum mechanics requires proper symmetrization of the wave function. The 
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corresponding quantum microstates naturally yield the N ! factor, as will be shown later 

on. 

4. Yet another difficulty with the expression (IV.47), resolved in quantum statistical me­

chanics, is the arbitrary constant that appears in changing the units of measurement for 

q and p. The volume of phase space involves products pq, of coordinates and conjugate 

momenta, and hence has dimensions of (action)N . Quantum mechanics provides the ap­

propriate measure of action in Planck’s constant h. Anticipating these quantum results, 

we shall henceforth set the measure of phase space for identical particles to 

N
1 

d�N = d3qσid
3σ

h3N N ! 
pi . (IV.51) 

i=1 

IV.F The Canonical Ensemble 

In the microcanonical ensemble, the energy E, of a large macroscopic system is pre­

cisely specified, and its equilibrium temperature T , emerges as a consequence (eq.(IV.7)). 

However, from a thermodynamic perspective, E and T are both functions of state and on 

the same footing. It is possible to construct a statistical mechanical formulation in which 

the temperature of the system is specified and its internal energy is then deduced. This is 

achieved in the canonical ensemble where the macro-states, specified by M ⊗ (T, x), allow 

the input of heat into the system, but no external work. The system S, is maintained 

at a constant temperature through contact with a reservoir R. The reservoir is another 

macroscopic system that is sufficiently large so that its temperature is not changed due 

to interactions with S. To find the probabilities p(T,x) (µ), of the various micro-states of 

S, note that the combined system R ∞ S, belongs to a microcanonical ensemble of energy 

ETot ∈ ES. As in eq.(IV.3), the joint probability of micro-states (µS ≥ µR) is 

1 1 for HS(µS) + HR(µR) = ETot 
p(µS ≥ µR) = 

�S�R(ETot) 
· 

0 otherwise 
. (IV.52) 

The unconditional probability for micro-states of S is now obtained from 

p(µS) = p(µS ≥ µR) . (IV.53) 
{µR } 
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Once µS is specified, the above sum is restricted to micro-states of the reservoir with energy 

ETot − HS (µS ). The number of the such states is related to the entropy of the reservoir, 

and leads to 

�R ETot −HS (µS ) ≤ exp 
1 � � 

p(µS ) = 
�S�R (ETot ) kB 

SR ETot −HS (µS ) . (IV.54) 

Since by assumption the energy of the system is insignificant compared to that of the 

reservoir, 

� � πSR S (µS )
SR ETot −HS (µS ) ⊕ SR (ETot ) −HS (µS ) = SR (ETot ) −

H
. (IV.55)

πER T 

Dropping the subscript S, the normalized probabilities are given by 

e−�H(µ) 

p(T,x) (µ) = . (IV.56)
Z(T, x) 

The normalization, 

Z(T, x) = e −�H(µ) , (IV.57) 
{µ} 

is known as the partition function, and � ⊗ 1/kBT . (Note that probabilities similar to 

eq.(IV.56) were already obtained in eqs.(IV.25), and (IV.39), when considering a portion 

of the system in equilibrium with the rest of it.) 

Is the internal energy E, of the system S well defined? Unlike in a microcanonical 

ensemble, the energy of a system exchanging heat with a reservoir is a random variable. 

Its probability distribution p(E), is obtained by changing variables from µ to H(µ) in p(µ), 

resulting in 
� e−�E 

� 
p(E) = p (µ) α (H(µ) − E) = (IV.58)

Z
α (H(µ) − E) . 

{µ} {µ} 

Since the restricted sum is just the number �(E), of micro-states of appropriate energy, 

1 1 
p(E) = 

�(E)e−�E 
= exp 

S(E) − E 
= exp 

F (E) 
, (IV.59)

Z Z kB kBT Z 
−

kBT 

where we have set F = E − TS(E), in anticipation of its relation to the Helmholtz free 

energy. The probability p(E), is sharply peaked at a most probable energy E� , which 

minimizes F (E). Using the result in sec.(II.F) for sums over exponentials, 

−�F (E) −�F (E� )Z = e −�H(µ) = e ⊕ e . (IV.60) 
{µ} E 
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The average energy computed from the distribution in eq.(IV.59) is 

◦H√ = 
� 

H(µ) 
e−�H(µ) 

=
1 π

e −�H = 
π ln Z

. (IV.61)
Z 

− 
Z π� 

− 
π� 

µ µ 

In thermodynamics, a similar expression was encountered for the energy (eq.(I.37)), 

πF � F π(�F )
E = F + TS = F − T � = −T 2 π 

= . (IV.62)
πT � πT T π� 

x 

Eqs.(IV.60) and (IV.61), both suggest identifying 

F (T, x) = −kB T ln Z(T, x) . (IV.63) 

However, note that eq.(IV.60) refers to the most likely energy, while the average energy 

appears in eq.(IV.61). How close are these two values of the energy? We can get an idea 

of the width of the probability distribution p(E), by computing the variance ◦H 2 √c. This is 

most easily accomplished by noting that Z(�) is proportional to the characteristic function 

for H (with � replacing ik) and, 

πZ � π2Z � 
2 − 

π� 
= He −�H, and = H e −�H. (IV.64)

π�2 
µ µ 

Cumulants of H are generated by ln Z(�), 

1 He −�H =
1 πZ π ln Z 

= = , (IV.65)◦H√c 
Z 

− 
Z π� 

− 
π� 

µ 

and 


 �2 

2 = 2 2 =
1 2 

� 
He −�H = 

π2 ln Z 
= 

π◦H√ 
.◦H √c ◦H √ − ◦H√ 

Z 
H e −�H − 

Z

1 
2 π�2 

− 
π� 

µ µ 

(IV.66) 

More generally, the nth cumulant of H is given by 

πn ln Zn = (−1)n . (IV.67)√c◦H
π�n 
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From eq.(IV.66),


2 
�
π◦H√ 
� , 2 = kBT 2Cx, (IV.68)

πT 
◦H √c = − 

π(1/kBT )
= kBT 2 π◦H√ 

x 

∝ ◦H √c 

where we have identified the heat capacity with the thermal derivative of the average 

energy ◦H√. Eq.(IV.68) shows that it is justified to treat the mean and most likely energies 

interchangeably, since the width of the distribution p(E), only grows as 2 ≤ N1/2 .√c 
� 

◦H 

The relative error, ◦H 2 √c/◦H√c vanishes in the thermodynamic limit as 1/
⇒

N . (In fact 

eq.(IV.67) shows that all cumulants of H are proportional to N .) The PDF for energy in 

a canonical ensemble can thus be approximated by 

1 1 
p(E ) = 

Z
e −�F (E ) ⊕ exp − 

2kBT 2Cx 
⇒

2λkBT 2Cx 
. (IV.69)

(E − ◦H√)2 

The above distribution is sufficiently sharp to make the internal energy in a canonical 

ensemble unambiguous in the N � → limit. Some care is necessary if the heat capacity 

Cx is divergent, as is the case in some continuous phase transitions. 

The canonical probabilities in eq.(IV.56) are unbiased estimates obtained (as in 

sec.(II.G)) by constraining the average energy. The entropy of the canonical ensemble 

can also be calculated directly from eq.(IV.56) (using eq.(III.68)) as 

S = −kB ln p(µ)√ = −kB 
E − F

, (IV.70)◦ ◦(−�H − ln Z)√ = 
T 

again using the identification of ln Z with the free energy from eq.(IV.63). For any finite 

system, the canonical and microcanonical probabilities are distinct. However, in the so 

called thermodynamic limit of N � → limit, the canonical probabilities are so sharply 

peaked around the average energy that they are essentially indistinct from microcanonical 

probabilities at that energy. The following table compares the prescriptions used in the 

two ensembles. 

Ensemble Macro-state p(µ) Normalization 
Microcanonical (E, x) α� H(µ) − E /� S(E, x) = kB ln � 

Canonical (T, x) exp − �H(µ) /Z F (T, x) = −kBT ln Z 

Table 3: Comparison of canonical and microcanonical ensembles. 
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