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III.E The H–Theorem and Irreversibility 

The second question posed at the beginning of this chapter was whether a collection of 

particles naturally evolves towards an equilibrium state. While it is possible obtain steady 

state solutions for the full phase space density πN , because of time reversal symmetry these 

solutions are not attractors of generic non-equilibrium densities. Does the unconditional 

one particle PDF π1, suffer the same problem. The H–theorem proves that the Boltzmann 

equation is not time reversal symmetric. 

p, σ• If f1(σ q, t) satisfies the Boltzmann equation, then dH/dt � 0, where 

pd3σ p, σ p, σH(t) = d3σ q f1(σ q, t) ln f1(σ q, t) . (III.39) 

The function H(t) is related to the information content of the one particle PDF. Up to an 

overall constant, the information content of π1 = f1/N is given by I[π1] = �ln π1⇒, which 

is closely similar to H(t). 

Proof: The time derivative of H is 

dH 
p1d

3σq1 
φf1 

= d3 σ (ln f1 + 1) = d3 σp1d
3σq1 ln f1 

φf1 
, (III.40)

dt φt φt 

since dV1f1 = N d�π = N is time independent. Using eq.(III.38), we obtain 

⎪ � 
dH 

p1d
3σq1 ln f1 

φU φf1 p1 φf1 
= d3 σ · − 

σ
· − 

q1 φσ q1dt φσ p1 m φσ

d3σ q1d
3σ p1, σ p2, σ p1 , σ p2 

�, σ p1, σp1d
3σ p2dθ|σv1 − σv2| [f1(σ q1)f1(σ q1) − f1(σ

� q1)f1(σ q1)] ln f1(σ q1), 

(III.41) 

where we shall interchangably use dθ, d2σb, or d�dθ/d� for the differential cross-section. 

The streaming terms in the above expression are zero, as shown through successive inte­

grations by part, 

d3 σ p1d
3σq1f1 

φU 1 φf1 
p1d

3σq1f1 
φ φU 

p1d
3qσ1 ln f1 

φU 
· 
φf1 

= − d3σ · = d3 σ · = 0,
φσ p1 φσ p1 φσ q1q1 φσ q1 f1 φσ p1 φσ

and 

d3 σ
σ σ

p1d
3σq1f1 

φ σp1 
p1d

3σq1 ln f1 
p1 

· 
φf1 

= − d3σp1d
3qσ1 f1 

p1 
· 

1 φf1 
= d3σ · = 0. 

q1 m f1 φσ q1 mm φσ q1 φσ
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p1 and σThe collision term in eq.(III.41) involves integrations over dummy variables σ p2. The 

labels (1) and (2) can thus be exchanged without any change in the value of the integral. 

Averaging the resulting two expressions gives 

dH 1 
p2) − f1(σ

�p1 )f1(σ
�qd3σ p2d

2σb|σv1 − σv2| [f1(σ p1)f1(σ= − d3σ p1d
3σ p1)f1(σ p2 )] ln (f1(σ p2)) . 

dt 2 
(III.42) 

(The implicit arguments, σq and t, are suppressed for ease of notation.) We would now 

like to change the variables of integrations from the coordinates describing the initiators 

p1, σ p1 
�, σof the collision, (σ p2,σb), to those of their products, (σ p2 

� ,σb �). The explicit functional 

forms describing this transformation are complicated because of the dependence of the 

solid angle ˆ p2 − σ� in eq.(III.37) on σb and |σ p1|. However, we are assured that the Jacobian 

of the transformation is unity, since because of time reversal symmetry, for every collision 

there is an inverse one obtained by reversing the momenta of the products. In terms of 

the new coordinates 

dH 1 
p2) − f1(σ1)f1(σ

� = − d3σ p1 
�d3 σ p1)f1(σ p � p2)] ln (f1(σ p2)) ,qd3 σ p2 

�d2σb �|σv1 − σv2| [f1(σ p1)f1(σ
dt 2 

(III.43) 

where we should now regard (σ p2) in the above equation, as functions of the integration p1, σ

σ
p1 

�, σvariables (σ p2 
� , b �) as in eq.(III.37). As noted earlier, |σv1 − σv2| = |σv1 

� − σv2 
�| for any 

elastic collision, and we can use these quantities interchangably. Finally, we relabel the 

dummy integration variables such that the primes are removed. Noting that the functional 

p1, σ p1 
�, σdependence of (σ p2,σb) on (σ p2 

� ,σb �) is exactly the same as its inverse, we obtain 

dH 1 � � p1 )f1(σ
�= − d3σ p1d

3σ p p p1)f1(σqd3σ p2d
2σb|σv1 − σv2| [f1(σ1)f1(σ2) − f1(σ p2)] ln (f1(σ

� p2 )) . 
dt 2 

(III.44) 

Averaging eqs.(III.42) and (III.44) results in 

dH 1 
p2) − f1(σ

�p1 )f1(σ
�qd3σ p2dθ|σv1 − σv2| [f1(σ= − d3σ p1d

3σ p1)f1(σ p2 )]
dt 4 (III.45) 

p1 )f1(σ
�[ln (f1(σ p2)) − ln (f1(σ

� p2 ))] .p1)f1(σ

The integrand of the above expression is always positive. If f1(σ p2) > f1(σ p2 
�),p1)f1(σ p1 

�)f1(σ

p1)f1(σboth terms in square brackets are positive, while both are negative if f1(σ p2) < 

p1 
�)f1(σf1(σ p2 

�). In either case, their product is positive. The positivity of the integrand 

establishes the validity of the H–theorem, 

dH 
� 0 . (III.46)

dt 
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• Irreversibility: Reconciling the reversibility of laws of physics governing the microscopic 

domain with the observed irreversibility of macroscopic phenomena is a fundamental ques­

tion. The second law formulates these observations and establishes the arrow of time. 

Of course, not all microscopic laws of physics are reversible: weak nuclear interactions 

violate time reversal symmetry, and the collapse of the quantum wave-function in the act 

of observation is irreversible. The former interactions in fact do not play any significant 

role in everyday observations that lead to the second law. The irreversibe collapse of the 

wave-function may itself be an artifact of treating macroscopic observers and microscopic 

observables distinctly. † There are proponents of the view that the reversibility of the 

currently accepted microscopic equations of motion (classical or quantum) is indicative 

of their inadequacy. However, the advent of powerful computers has made it possible to 

simulate the evolution of collections of large numbers of particles, governed by classical, 

reversible equations of motion. Although simulations are currently limited to relatively 

small numbers of particles (106), they do exhibit the irreversible macroscopic behaviors 

similar to those observed in nature (typically involving 1023 particles). For example, par­

ticles initially occupying one half of a box proceed to irreversibly, and uniformly, occupy 

the whole box. Thus the origin of the observed irreversibilities should be sought in the 

classical evolution of large collections of particles. 

The Boltzmann equation is the first formula we have encountered that is clearly not 

time reversible, as indicated by eq.(III.46). We can thus ask the question of how we 

obtained this result from the Hamiltonian equations of motion. The key to this, of course, 

resides in the physically motivated approximations used to obtain eq.(III.38). In particular, 

there is an implicit coarse–graining of the resolution in the spatial and temporal scales. 

In obtaining eq.(III.38) from the first two equations of the BBGKY hierarchy, we made 

approximations regarding what happens at a two body collision. Detailed consequences of 

such a collision are contained in the two–body density f2, which is approximated to the 

product of two one body densities according to eq.(III.31). Information about collisions 

is lost in this approximation, and the resulting eq.(III.38) is only applicable at space and 

time resolutions longer than those of a two-body collision. 

The Liouville equation and its descendents contain precise information about the 

evolution of a pure state. This information, however, is inevitably transported to shorter 

† The time dependent Schrödinger equation is fully time reversible. If it is possible 

to write a complicated wave-function that includes the observing apparatus (possibly the 

whole universe), it is hard to see how any irreversibility may occur. 
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scales. A useful image is that of mixing two immiscible fluids. While the two fluids remain 

distinct at each point, the transitions in space from one to the next occur at finer resolution 

on subsequent mixing. At some point, a finite resolution in any measuring apparatus will 

prevent keeping track of the two components. Similarly, here, the precise information of 

the pure state is lost at the scale of atomic collisions, and the resulting f1 describes a state 

that becomes more and more probabilistic as further information is lost. 

III.F Equilibrium Properties 

What is the nature of the equilibrium state described by f1, for a homogeneous gas? 

(1) The equilibrium distribution: After the gas has reached equilibrium, the function H 

should no longer decrease with time. Since the integrand in eq.(III.45) is always positive, 

a necessary condition for dH/dt = 0 is that 

f1(σ q1)f1(σ q1) − f1(σ
� p1, σ p2, σ p1 , σ p2 

�, σq1)f1(σ q1) = 0, (III.47) 

i.e. at each point σq, we must have 

p1, σ p2, σ p1 , σ p2 
�, σln f1(σ q) + ln f1(σ q) = ln f1(σ

� q) + ln f1(σ q). (III.48) 

The left hand side of the above equation refers to the momenta before a two-body collision, 

and the right hand side to the those after the collision. The equality is thus satisfied by 

any additive quantity that is conserved during the collision. There are 5 such quantities 

for an elastic collision: the particle number, the three components of the net momentum, 

and the kinetic energy. Hence, a general solution for f1 is 

⎪ � 
σ 2 

�(σq) · σln f1 = a(σq) − σ p − �(σq) 
p

. (III.49)
2m 

We can easily incorporate the potential energy U(σq) in the above form, and set 

� ⎪ ��

2 

p, σ �(qσ) · σf1(σ q) = N (qσ) exp −σ p − �(qσ) 
p

+ U(qσ) . (III.50)
2m 

We shall refer to the above distribution as describing local equilibrium. While dH/dt = 0 

for such a solution, f1 will itself evelove in time unless {H1, f1} = 0. This condition 

is satisfied for any function f1 that depends only on H1, or any other quantity that is 

conserved by it. Clearly, the above density satisfies this requirement as long as N , and � 

are independent of qσ, and σ� = 0. 
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According to eq.(III.15), the appropriate normalization for f1 is 

pd3σ p, σd3σ qf1(σ q) = N. (III.51) 

For particles in a box of volume V , the potential U(σq) is zero inside the box, and infinite 

on the outside. The normalization factor in eq.(III.50) can be obtained from eq.(III.51) as 

�
� � ⎪ ⎪ � 

�p2 ��3 ⎪ 
2λm 

�3/2 
m�2 

N = N V dpi exp −�ipi − i = N V exp . (III.52)
2m � 2�−� 

Hence, the properly normalized Gaussian distribution for momenta is 

⎪ � � 
p − σ� 

�3/2 
�(σ p0)

2 

p, σf1(σ q) = n exp − , (III.53)
2λm 2m 

p0 = �σ �/� is the mean value for the momentum of the gas, which is zero where σ p⇒ = −mσ

for a stationary box, and n = N/V is the particle density. From the Gaussian form of 

the distribution it can be easily concluded that the variance of each component of the 

momentum is p2 = m/�, and i 

� � � � 3m2 2 2 2 p = p + py + p = . (III.54)x z 

(2) Equilibrium between two gases: Consider two different gases (a) and (b), moving in 

q (a) − qσ (b)the same potential U , and subject to a two-body interaction V ab σ . We can 

define one-particle densities, f (a)
, and, f (b)

, for the two gases respectively. In terms of a 1 1 

generalized collision integral 

p2d� 
d� 1 p1, σ 1 p2, σ 1 p1 , σ 1 p2 

�, σC�,� = − d3σ
dθ�,� 

|σv1 − σv2| f
(�)

(σ q1)f
(�)

(σ q1) − f (�)
(σ q1)f

(�)
(σ q1) , 

(III.55) 

the evolution of these densities is governed by a simple generalization of the Boltzmann 

equation to 

⎨ ⎨ φf1
(a) 

= f
(a) 

, H(a) 
⎣ 1 1 + Ca,a + Ca,b

φt . (III.56) 
⎨ 
⎧ ⎨ φf1

(b) 

= f
(b) 

, H(b) 
+ Cb,a + Cb,b

φt 1 1 

Stationary distributions can be obtained if all six terms on the right hand side of eqs.(III.56) 

are zero. In the absence of inter-species collisions, i.e. for Ca,b = Cb,a, we can obtain 
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� ⎩ � ⎩ 
−�a H

(a)
independent stationary distributions f (a) 

∼ exp and f (b) 
∼ exp −�bH

(b) 
.1 1 1 

Requiring the vanishing of Ca,b leads to the additional constraint, 

p1 
�)f

(b)
p1)f

(b)
(σ p2 ) = 0, =→f

(a)
(σ p2)−f

(a)
(σ 1 (σ �

1 1 1 
(III.57) 

�aH
(a) 

(σ p2) = �aH
(a) 

(σ p2 ) .p1) + �bH
(b)

(σ p1 ) + �(b) Hb(σ1 1 1 1 

Since the total energy H(a) 
+ H(b) 

is conserved in a collision, the above equation can be 1 1 

satisfied for �a = �b = �. From eq.(III.54) this condition implies the equality of the kinetic 

energies of the two species, 

2 2p p 3a b = = . (III.58)
2ma 2mb 2� 

The parameter � thus plays the role of an empirical temperature describing the equilibrium 

of gases. 

(3) The equation of state: To complete the identification of � with temperature T , consider 

a gas of N particles confined to a box of volume V . The gas pressure results from the force 

exerted by the particles colliding with the walls of the container. Consider a wall element 

of area A perpendicular to the x direction. The number of particles impacting this area, 

with momenta in the interval [σ p + dσp, σ p], over a time period αt, is 

dN (σ p)d3σp) = f1(σ p Avxαt . (III.59) 

The final factor in the above expression is the volume of a cylinder of height vxαt per­

pendicular to the area element A. Only particles within this cylinder are close enough to 

impact the wall during αt. As each collision imparts a momentum 2px to the wall, the net 

force exerted is 

1 
� 0 � � � � � ⎩ px

F = dpx dpy dpz f1(σp) A αt (2px). (III.60)
αt −� −� −� m 

As only particles with velocities directed towards the wall will hit it, the first integral is 

over half of the range of px. Since the integrand is even in px, this restriction can be 

removed by dividing the full integral by 2. The pressure P is then obtained from the force 

per unit area as 

⎪ ⎪ �
� 2 � 

p f1(σ
1 

p p 2 nP = 
F 

= d3σ p) 
px = d3 σ

� 
�3/2 

exp − 
�p2 

= 
n

, (III.61)
A m m x 2λm 2m � 
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where eq.(III.53) is used for the equilibrium form of f1. Comparing with the standard 

equation of state, PV = NkB T , for an ideal gas, leads to the identification, � = 1/kB T . 

(4) Entropy: As discussed earlier, the Boltzmann H-function is closely related to the infor­

mation content of the one-particle PDF π1. We can also define a corresponding Boltzmann 

entropy, 

SB (t) = −kB H(t), (III.62) 

where the constant kB is introduced for historical convenience. The H-theorem implies that 

SB can only increase with time in approaching equilibrium. It has the further advantage 

of being defined through eq.(III.39) for situations that are clearly out of equilibrium. For 

a gas in equilibrium in a box of volume V , from eq.(III.53), we compute 

H = V d3σ p) ln f1(σp f1(σ p) 
⎪ �� ⎪ � �

� 
d3σ

N 2 n p2 

= V p (2λmkB T )−3/2 exp − 
p

ln − 
V 2mkB T (2λmkB T )3/2 2mkB T 

� ⎪ � � 
n 3 

= N ln − . 
(2λmkB T )3/2 2 

(III.63) 

The entropy is now identified as 

� ⎪ �� 
3 3 N 

SB = −kB H = NkB + ln (2λmkB T ) − ln . (III.64)
2 2 V 

The thermodynamic relation, TdSB = dE + PdV , implies 

φE � φSB � 3 
� =T � = NkB ,

φT V φT V 2 
� � (III.65)

φE � φSB � NkB T 
P + � =T = . 

φV T φV T V 

The usual properties of a monatomic ideal gas, PV = NkB T , and E = 3NkB T/2, can 

now be obtained from the above equations. Also note that for this classical gas, the zero 

temperature limit of the entropy in eq.(III.64) is not independent of the density n, in 

violation of the third law of thermodynamics. 
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