VIIL.F The Degenerate Bose Gas

The average boson occupation number,
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must be always positive. This requires £ (E) — 1 to be positive for all E, and hence p <
min [E(E)} .= 0 (for £(k) = h?k2/2m). At high temperatures (classical limit), y is large
and negative, and increases towards zero as —kgT In(nA\3/g) as temperature is reduced.
In the degenerate quantum limit, p approaches its limiting value of zero. To see how this
limit is achieved, and to find out about the behavior of the degenerate bose gas, we have
to examine the limiting behavior of the functions f,F(z) in eqgs.(VIL.35) as z = exp(Spu)
goes to unity.

The functions f;}(z) are monotonically increasing with z in the interval 0 < z < 1.

The maximum value attained at z =1 is
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The integrand has a pole as  — 0, where it behaves as [ dxxz™ 2. Therefore, (,, is finite
for m > 1 and infinite for m < 1. A useful recursive property of these functions is (for

m > 1)
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Hence, a sufficiently high derivative of f;}(z) will be divergent at z = 1 for all m.

The density of excited states for the non-relativistic bose gas in three dimensions is

thus bounded by
9 * 9
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At sufficiently high temperatures, such that
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this bound is not relevant and nx = n. However, on lowering temperature, the limiting

density of excited states is achieved at
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For T < T., z gets stuck to unity (u = 0). The limiting density of excited states,
n* = gCB/Q/)\B o T3/2, is then less than the total particle density. The remaining gas
particles, with density ng = n — n*, occupy the lowest energy state with k = 0. The
phenomenon of a macroscopic occupation of a single one—particle state is known as Bose—
Einstein condensation.

The bose condensate has some unusual properties. The gas pressure for T' < T,

BP = S f55(1) = 3552~ 13415, (VIL56)

vanishes as T°/2 and is independent of density. This is because only the excited fraction
n* has finite momentum and contributes to the pressure. Alternatively, bose condensation

can be achieved at a fixed temperature by increasing density (reducing volume). From

eq.(VIL.54), the transition occurs at a specific volume
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For v < v*, the pressure—volume isotherm is flat, since 0P/0v x OP/0n = 0 from

eq.(VIL.56). The flat portion of isotherms is reminiscent of coexisting liquid and gas
phases. We can similarly regard bose condensation as the coexistence of a “normal gas” of
specific volume v*, and a “liquid” of volume 0. The vanishing of the “liquid” volume is an
unrealistic feature due to the absence of any interaction potential between the particles.
Bose condensation combines features of discontinuous (first order), and continuous
(second order) transitions; there is a finite latent heat while the compressibility diverges.
The latent heat of the transition can be obtained from the Clausius—Clapeyron equation

which gives the change of the transition temperature with pressure as
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Since eq.(VIL.56) gives the gas pressure right up to the transition point,
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Using the above equations we find a latent heat,
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To find the compressibility k7 = 9On/OP|, /n, take derivatives of eqs.(VIIL.35), and
take advantage of the identity in eq.(VIL.52) to get
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The ratio of these equations leads to
fia(z

K = 1/;1) (VIL62)

nkBng/Q(z)

which diverges at the transition since lim,_,; f1+/2(z) — 00, i.e. the isotherms approach
the flat coexistence portion tangentially.

From the expression for energy in the grand canonical ensemble,
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and using eq.(VIL.52), the heat capacity is obtained as
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The derivative dz/ dT|V7 n 1s found from the condition of fixed particle number, using
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into eq.(VIL.64) yields
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Expanding the result in powers of z indicates that at high temperatures the heat capacity

is larger than the classical value; Oy /Nkp = 3/2[1+n)3/27/24...]. At low temperatures,
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The origin of the T3/2 behavior at low temperatures is easily understood. At T = 0 all

z=1and

particles occupy the k = 0 state. At small but finite temperatures there is occupation of
states of finite momentum, up to a value of approximately k,, such that thfn /2m = kpT.
Each of these states has an energy proportional to kgT. The excitation energy in d
dimensions is thus given by Ey o< V& kgT. The resulting heat capacity is Cy oc Vk gT2.
The reasoning is similar to that used to calculate the heat capacities of a phonon (or
photon) gas. The difference in the power laws simply originates from the difference in
the energy spectrum of low energy excitations (£(k) o k? in the former and £(k) x k for
the latter). In both cases the total number of excitations is not conserved, corresponding
to u = 0. For the bose gas, this lack of conservation only persists up to the transition
temperature, at which point all particles are excited out of the reservoir with = 0 at
k=0. Cy is continuous at T,, reaching a maximum value of approximately 1.92kp per

particle, but has a discontinuous derivative at this point.
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