IV.G Examples

The two examples of sections (IV.C) and (IV.D) are now reexamined in the canonical

ensemble.

1. Two level systems: The N impurities are described by a macro-state M = (T, N).
Subject to the Hamiltonian H = e Z;il n;, the canonical probabilities of the micro-states

pu = {n;}, are given by

p({ni}) = %eXp

N
B> n] , (IV.71)

From the partition function,

Z(T,N) =) exp [—ﬁeéni] — <§1: e—ﬁem> ( zl: e—ﬁenN>

{ni} n1=0 nN=0 (IV.72)
- (Kj— )
we obtain the free energy
F(T,N) = —kgTlnZ = —NkzTln [(Jr e—€/<’“BT>] ( (IV.73)
The entropy is now given by
oF _ [ € [ e/ (kBT)
—_ 2| = €/(kT)
S=- 55 = Nksl [](+ e l NkpT <’§BT2> remn (IV.74)
/( \v
—F/T
The internal energy, N
€
can also be obtained from M7 NeoBe
p=-212_ % (IV.76)

9 14e P’
Since the joint probability in eq.(IV.71) is in the form of a product, the excitations of

different impurities are independent of each other, with the unconditional distribution

e—,@sn

p(n)

This result coincides with egs.(IV.25), obtained through a more elaborate analysis in the
microcanonical ensemble. As expected, in the large N limit, the canonical and microcanon-
ical ensembles describe exactly the same physics, both at the macroscopic and microscopic

levels.
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2. The Ideal Gas: For the canonical macro-state M = (T,V, N), the joint PDF for the

micro-states u = {p;, ¢}, is
N P2 1 for {q;} € box
G i . (IV.78)
— 2m :
i=1 0 otherwise

Including the modifications to the phase space of identical particles in eq.(IV.51), the

1
p({pi, @:}) = - OXp

dimensionless partition function is computed as

N N
1 1 *ad’pi p;
z v = [ G I e | {93 30
Ti=1 )

i=1 (IV.79)
VN fommkpT\*M? 1 /v Y
- N! h2 S NUANTY)
where ;
MNT) = —— V.80
(T) V2mmkgT ( )

is a characteristic length associated with the action h. It shall be demonstrated later on
that this length scale controls the onset of quantum mechanical effects in an ideal gas.

The free energy is given by

N 2rmkpT
F=—kgTnZ = —NkgTlnV + NkgTIn N — NkpT — %kBTln (%)
Ve 3 2mmkgT
(IV.81)
Various thermodynamic properties of the ideal gas can now be obtained from dF = —SdT—
PdV + pdN. For example, from the entropy
oF Ve 3 2rmkpT 3 F—-F

= 9T |y
we obtain the (\ternal energy ¥ = 3NkpgT /2. The equation of state is obtained from

OF NkgT
P=—-_— = = PV =NkpT IV.83
WV lyn v BEs ( )
and the chemical potential is lven by
F F E-T P
1 0 = — +kpT = SEPV kT In (fA°) . (IV.84)

8N,(V N N

Also, according to eq\(IV.78), the momenta of the N particles are taken from independent

Maxwell-Boltzmann distributions, consistent with eq.(IV.39).
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IV.H The Gibbs Canonical Ensemble

We can also define a generalized canonical ensemble in which the internal energy
changes by the addition of both heat and work. The macrostates M = (T, J), are specified
in terms of the external temperature and forces acting on the system; the thermodynamic
coordinates x appear as additional random variables. The system is maintained at constant
force through external elements (e.g. pistons or magnets). Including the work done against
the forces, the energy of the combined system that includes these elements is H — J - x.
Note that while the work done on the system is +J - x, the energy change associated with
the external elements with coordinates x has the opposite sign. The microstates of this

combined system occur with the (canonical) probabilities
p(ps,x) = exp [-FH(us) + B -x] /Z(T,N,J), (IV.85)
with the Gibbs partition function,
Z(N,T,3) =Y P, (IV..86)
s X

(Note that we have explicitly included the particle number N to indicate that there is no
chemical work. Chemical work is considered in the Grand Canonical Ensemble, which is
discussed next.)

In this ensemble, the expectation value of the coordinates is obtained from

(IV.87)
which together with the thermodynamic identity x = —0G/dJ, suggests the identification
G(N,T,J) = —kgTIn Z, (IV.88)

where G = E — TS —x-J is the Gibbs free energy. (The same conclusion can be reached
by equating Z in eq.(IV.86) to the term that maximizes the probability with respect to
x.) The enthalpy H = E — x - J is easily obtained in this ensemble from

Ooln Z
~=35 = (H-x-J)=H. (IV.89)

Note that heat capacities at constant force (which include work done against the external
forces), are obtained from the enthalpy as Cy = 0H/0T.
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The following examples illustrate the use of the Gibbs canonical ensemble:

1. The Ideal Gas in the isobaric ensemble is described by the macrostate M = (N, T, P).
A micro-state u = {p;, ¢}, with a volume V occurs with the probability

N 2
i
E Y gp
<ﬁ_ 2m BEV
=1
The normalization factor is now

N
> 1 yp @Gd°p;
Z(N,T, P) :/ dve—ﬁpvf— —— 2 exp
0 w15

1 for {G;} € box of volume V
: . (IV.90)

L. 1
p({pi, G}, V) = Z €XP
0 otherwise

2
p.
’ 1 ] (
2
N < = =M (IV.91)
:/ dVVNe PPV ! = !

0 NINT)3N - spAT)3HY

The Gibbs free energy is given by

2
G=—-kgTIhZ=NEkgT {‘<\P — §ha(k:BT) + §ln (&)] . (IV.92)
2 2 ™m

Starting from dG = —SdT 4+ VdP + pudN, the volume of the gas is obtained as

NkpT
y_ 0G| _ Nkg

— PV = NkgT. (IV.93)

~ 0P|y n P
The enthalpy H = (FE + PV>’(S easily calculated from

omZ 5
= —NkgT
85 9 B4,

H=-—

from which we get Cp = dH/dT = 5/2Nkp.

2. Spins in an external magnetic field E, provide a common example for usage of the
Gibbs canonical ensemble. Adding the work done against the magnetic field to the internal

Hamiltonian H, results in the Gibbs partition function
Z(N,T,B) = tr [f(p ((ﬁH + 8B - Mﬂ ,

where M is the net magnetization. The symbol tr is used to indicate the sum over all
spin degrees of freedom, which in a quantum mechanical formulation are restricted to
discrete values. The simplest case is spin of 1/2, with two possible projections of the spin
along the magnetic field. A microstate of N spins is now described by the set of Ising

variables {o; = £1}. The corresponding magnetization along the field direction is given
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by M = pg Zf\il oi, where pg is a microscopic magnetic moment. Assuming that there

are no interactions between spins (H = 0), the probability of a microstate is

p{oi}) = %exp ﬁBquai] : (IV.94)

Clearly, this is closely related to the example of two level systems discussed in the canonical

ensemble, and we can easily obtain the Gibbs partition function
Z(N, T, B) = [2cosh(BuroB)]" , (IV.95)
and the Gibbs free energy
G=—-kpTInZ =—NkgT In[2cosh(BuyB)]. (IV.96)

The average magnetization is given by

oG

M:_a—B

= Npo tanh(BuoB). (IV.97)

Expanding eq.(IV.97) for small B results in the well-known Curie law for magnetic sus-

ceptibility of non-interacting spins,

oM Ny

X(T) = S5 (IV.98)

o keT
The enthalpy is simply H = (H — BM) = —iﬂ, and Cp = —BOM/OT.

IV.I The Grand Canonical Ensemble

The previous sections demonstrate that while the canonical and microcanonical en-
sembles are completely equivalent in the thermodynamic limit, it is frequently much easier
to perform statistical mechanical computations in the canonical framework. Sometimes
it is more convenient to allow chemical work (by fixing the chemical potential u, rather
than at a fixed number of particles), but no mechanical work. The resulting macro-states
M = (T, u,x), are governed by the grand canonical ensemble. The corresponding micro-
states pg, contain an indefinite number of particles N(ug). As in the case of the canonical

ensemble, the system S, can be maintained at a constant chemical potential through contact
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with a reservoir R, at temperature 7" and chemical potential . The probability distribu-
tion for the micro-states of S is obtained by summing over all states of the reservoir, as in

eq.(IV.53), and is given by

p(us) = exp [BuN (us) — BH(ps)] / Q.- (IV.99)

The normalization factor is the grand partition function,

QT ji,x) = Z(ﬁuN(us)—BH(us) ) (IV.100)
ps

We can reorganize the above summation by grouping together all micro-states with a

given number of particles, i.e.

(T, 11, %) Z BuN Z( —BHn (s) (IV.101)

(us|N

The restricted sums in eq.(IV.101) are just the N-particle partition functions. As each term
in Q is the total weight of all micro-states of N particles, the unconditional probability of

finding N particles in the system is

ePrN X
) = L2LLNK) vy

The average number of particles in the system is

1 0 0
W= 3a0m 2 = o "< (IV-103)

while the number fluctuations are related to the variance

0> 3] 2 )
ng_(wmmg)‘a@olg 9B
(IV.104)

The variance is thus proportional to N, and the relative number fluctuations vanish in the

(N%)o = (N?) = (N)* =

thermodynamic limit, establishing the equivalence of this ensemble to the previous ones.
Because of the sharpness of the distribution for N, the sum in eq.(IV.101) can be
approximated by its largest term at N = N* =< N >, i.e.

QT p,x) = lim PN Z(T,N,x) = e?"N" Z(T, N*,x) = PN —FF
ZO (IV.105)

_ o~ B(-uN"+E-TS) _ ,~fG

Y
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where

G(T,u,x)=E—-TS — uN = —kpTIn Q, (IV.106)

is the grand potential. Thermodynamic information is obtained by using dG = —SdT —
Ndp 4+ J - dx, as

s %9 0

0g

(IV.107)

oT o O; |7
As a final exai:(ple, we compute the pr’(perties of the ideal gl of non-interacting
particles in the grand canonical ensemble. The macro-state is M = (T, u, V), and the
corresponding micro-states {p1, @1, P2, @2, - -} have indefinite particle number. The grand

partition function is given by

e S5 f([4585) o o gl

[e%e) BuN N
Z e (V) (with \ = \/%) (IV.108)
— ! TMRB

and the grand potential is

v

G(T, 1, V) = —kpTIn Q = —kpTe’H — R

(IV.109)
But, since G = F — TS — uN = — PV, the gas pressure can be obtained directly as

= kpT—. (IV.110)

T >
The particle number and the chemical potential are related by

Bu
N=_9%| _<V (IV.111)

O |7y A3
The equation of state is obtained by Com’(aring eqs.(IV.110) and (IV.111), as P =
kpTN/V. Finally, the chemical potential is given by

= kT ((i’g) % kpTn (]f;;) ( (IV.112)
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