I.I Stability Conditions

The conditions derived in section I.G are similar to the well known requirements for
mechanical stability. A particle moving in an external potential U settles to a stable
equilibrium at a minimum value of U. In addition to the vanishing of the force —U’, this
is a consequence of the loss of energy to frictional processes. Stable equilibrium occurs at
a minimum of the potential energy. For a thermodynamic system, equilibrium occurs at
the extremum of the appropriate potential, for example at the maximum value of entropy
for an isolated system. The requirement that spontaneous changes should always lead
to an increased entropy, places important constraints on equilibrium response functions,
discussed in this section.

Consider a homogeneous system at equilibrium, characterized by intensive state func-
tions (7, J, ), and extensive variables (E,x,N). Now imagine that the system is arbitrar-
ily divided into two equal parts, and that one part spontaneously transfers some energy
to the other part in the form of work or heat. The two subsystems, A and B, initially
have the same values for the intensive variables, while their extensive coordinates satisfy
Fis+FEp=F, x4a+xg=x%,and Ng+ Np = N. After the exchange of energy between

the two subsystems, the coordinates of A change to

(Ea+0FE, x4+ 06x, Ng+06N), and (Ta +0Ta, Ja+ 04, pa+dua), (1.60)
and those of B to

(Fp —0E, xp —0x, Ng —0N), and (T + 615, Jg + I, up +oup). (1.61)

Note that the overall system is maintained at constant E, x, and IN. Since the inten-
sive variables are themselves functions of the extensive coordinates, to first order in the

variations of (E,x,N), we have
(STA = _5TB = 5T, (5JA == _5JB = 5.], (S[LA = —5,uB = (S[L (162)
Using eq.(1.48), the entropy of the system can be written as

E J E J
S=Sa+S5p=(22_A 5, ~PA N )+ (2828 x5 - BB Ny ). (1.63)
s 1B Ts
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Since by assumption we are expanding about the equilibrium point, the first order changes

vanish, and to second order

_ _ 1 Ja LA
55 =654 + 655 =2 {5 (TA) §EA—§ (TA> Sxa— 6 (TA) 6NA] . (164)

(We have used eq.(1.62) to note that the second order contribution of B is the same as A.)
Eq.(1.64) can be rearranged to

0SS = — —
S TA TA

2
A

2 |:5TA (5EA—JA-5XA—MA-5NA) +5JA‘5XA+5MA‘§NA}

(1.65)

[5TA5SA +0J 4 - 0x4 —f—(SMA 5NA]

The condition for stable equilibrium is that any change should lead to a decrease in entropy,

and hence we must have

0T6S +6J - 0x + 6 - 6N > 0. (1.66)

We have now removed the subscript A, as the above condition must apply to the whole
system as well as to any part of it.

The above condition was obtained assuming that the overall system was kept at con-
stant F/, x, and N. In fact, since all coordinates appear symmetrically in this expression,
the same result is obtained for any other set of constraints. For example, variations in 7’

and 0x with 6N = 0, lead to

N 05 0T + 05 dx;
oT x 8371 T (I 67)
57, = 20| sr i 0| 5, |
T Dy |
Substituting these variations into eq.(1.66) leads to
S 5 0J;
— — x> 0. I.
5T x((5T) + oz, Tda:ldxj >0 (1.68)

Note that the cross terms proportional to 07Tdx; cancel due to the Maxwell relation in
eq.(1.56). Eq.(1.68) is a quadratic from, and must be positive for all choices of 6T and 0x.
The resulting constraints on the coefficients are independent of how the system was initially

partitioned into subsystems A and B, and represent the conditions for stable equilibrium.
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If only 0T is non-zero, eq.(1.66) requires 05/0T|, > 0, implying a positive heat capacity,

since

aQ oS
= 2| = — >0. .
Cy | TaTx—O (1.69)

If only one of the dz; in eq.(1.66) is non-zero, the corresponding response function
ox;/ 8J,-|T7 2, OUSE be positive. However, a more general requirement exists since all dx
values may be chosen non-zero. The general requirement is that the matrix of coefficients
0J;/0x ;| must be positive definite. A matrix is positive definite if all of its eigenvalues
are positive. It is necessary, but not sufficient, that all the diagonal elements of such a
matrix (the inverse response functions) be positive, leading to further constraints between

the response functions. Including chemical work for a gas, the appropriate matrix is

— 3_P} _ opr
av T, N ON T,V
Wil -
Vi N ON|1v
In addition to the positivity of the response functions kp y = —V ! OV/OP|,  and

ON /0|y, the determinant of the matrix must be positive, requiring

op
ON

o

rv OV

oP

_ory ow
TN oV

> 0. (I.71)
rn ON

TV

Another interesting consequence of eq.(1.66) relates to the critical point of a gas where

oP/ 8V|Tm ~ = 0. Assuming that the critical isotherm can be analytically expanded as

0’P

oP 1 03P
il V2
ov

SP(T =T.) =
( ) e 6 ave

oV +

1
- SV3 4.+, (1.72)
TN 2 V2

T.,N

the stability condition —§ PV > 0 implies that 92P/9V?> must be zero, and the third

I~
derivative negative, if the first derivative vanishes. This condition is used to obtain the
critical point of the gas from mean-field approximations to the isotherms (such as the van

der Waals isotherms). In fact, it is usually not justified to make a Taylor expansion around

the critical point as in eq.(1.72), although the constraint —dPJV > 0 remains applicable.
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I.J The Third Law

Differences in entropy between two states can be computed using the second law,
from AS = [dQyey/T. Low temperature experiments indicate that AS(X,T) vanishes as
T goes to zero for any set of coordinates X. This observation is independent of the other
laws of thermodynamics, leading to the formulation of a third law by Nernst, which states
e The entropy of all systems at zero absolute temperature is a universal constant that can
be taken to be zero.

The above statement actually implies that
%1{11)0 S(X,T) =0, (1.73)

which is a stronger requirement than the vanishing of the differences AS(X,7T"). This
extended condition has been tested for metastable phases of a substance. Certain materials
such as sulphur or phosphine can exist in a number of rather similar crystalline structures
(allotropes). Of course, at a given temperature only one of these structures is truly stable.
Let us imagine that as the high temperature equilibrium phase A, is cooled slowly, it makes
a transition at a temperature T to phase B, releasing latent heat L. Under more rapid
cooling conditions the transition is avoided, and phase A persists in metastable equilibrium.
The entropies in the two phases can be calculated by measuring the heat capacities C'4 (7T')
and Cp(T). Starting from T" = 0, the entropy at a temperature slightly above T can be
computed along the two possible paths as

S(T* + ¢) :SA(0)+/O dT’CA:IE:f/) SB(O)+/O dT’CBT<T/) +%. (1.74)

Such measurements have indeed verified that S4(0) = Sg(0) = 0.
Consequences of the third law:

(1) Since S(T' = 0,X) = 0 for all coordinates X,

= 0. (1.75)

(2) Heat capacities must vanish as 7' — 0 since

Cx (1)
T )

S(T,X) — S(0,X) = / dr’ (1.76)
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and the integral diverges as T — 0 unless

lim Cx (T) = 0. (L77)

T—0
(3) Thermal expansivities also vanish as 7" — 0 since

1 Oz
oy =— —
x

0

108
x 0J

(L.78)

J

.
The second equality follows from the Maxwell relation in eq.(I.56). The vanishing of the
latter is guaranteed by eq.(1.75).
(4) It is impossible to cool any system to absolute zero temperature in a finite number of
steps. For example, we can cool a gas by an adiabatic reduction in pressure. Since the
curves of S versus 1" for different pressures must join at 7' = 0, successive steps involve
progressively smaller changes, in .S and in T, on approaching zero temperature. Alterna-
tively, the unattainability of zero temperatures implies that S(T" = 0, P) is independent
of P. This is a weaker statement of the third law which also implies the equality of zero
temperature entropy for different substances.

In the following sections, we shall attempt to justify the laws of thermodynamics from
a microscopic point of view. The first law is clearly a reflection of the conservation of
energy, which also operates at the microscopic level. The zeroth and second laws suggest
an irreversible approach to equilibrium, a concept that has no analog at the particulate
level. It is justified as reflecting the collective behavior of large numbers of degrees of
freedom. In statistical mechanics the entropy is calculated as S = kg lIn g, where g is the
degeneracy of the states (number of configurations with the same energy). The third law
of thermodynamics thus requires that ¢ = 1 at T' = 0, i.e. that the ground state of any
system is unique. This condition does not hold within the framework of classical statisti-
cal mechanics, as there are examples of both non-interacting (such as an ideal gas), and
interacting (the frustrated spins in a triangular antiferromagnet) systems with degenerate
ground states, and a finite zero temperature entropy. However, classical mechanics is inap-
plicable at very low temperatures and energies where quantum effects become important.
The third law is then equivalent to the statement that the ground state of a quantum me-
chanical system is unique. While this can be proved for a non-interacting system, there is
no general proof of its validity with interactions. Unfortunately, the onset of quantum ef-
fects (and other possible origins of the breaking of classical degeneracy) are system specific.

Hence it is not a priori clear how low the temperature must be, before the predictions of
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the third law can be observed. Another deficiency of the law is its inapplicability to glassy
phases. Glasses results from the freezing of supercooled liquids into configurations with
extremely slow dynamics. While not truly equilibrium phases (and hence subject to all
the laws of thermodynamics), they are effectively so due to the slowness of the dynamics.
A possible test of the applicability of the third law to glasses, is discussed in problem set
#2.
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