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8.333: Statistical Mechanics I Final Exam & Solutions 12/21/05 (9:00am–noon)


Answer all problems, but note that the first parts of each problem are easier than its 

last parts. Therefore, make sure to proceed to the next problem when you get stuck. 

You may find the following information helpful: 

Physical Constants 

Electron mass me � 9.1 × 10−31kg Proton mass mp � 1.7 × 10−27kg 

Electron Charge e � 1.6 × 10−19C Planck’s constant/2κ h̄ � 1.1 × 10−34Js 

Speed of light c � 3.0 × 108ms−1 Stefan’s constant π � 5.7 × 10−8Wm−2 →K−4 

Boltzmann’s constant kB � 1.4 × 10−23J K−1Avogadro’s number N0 � 6.0 × 1023mol−1 

Gravitational constant G � 6.7 × 10−11Nm2kg−2 

Conversion Factors 

1atm � 1.0 × 105N m−2 1Å � 10−10m 1eV � 1.1 × 104 →K 

Thermodynamics 

dE = T dS+dW For a gas: dW = −P dV For a film: dW = πdA 
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8.333: Statistical Mechanics I Final Exam Fall 2005


1. Graphene is a single sheet of carbon atoms bonded into a two dimensional hexagonal 

lattice. It can be obtained by exfoliation (repeated peeling) of graphite. The band struc­

ture of graphene is such that the single particles excitations behave as relativistic Dirac 

fermions, with a spectrum that at low energies can be approximated by 

E±(ηk) = ±h̄v 
�

�ηk
�

� 
. 

There is spin degeneracy of g = 2, and v � 106ms−1 . Recent experiments on unusual 

transport properties of graphene were reported in Nature 438, 197 (2005). In this problem, 

you shall calculate the heat capacity of this material. 

(a) If at zero temperature all negative energy states are occupied and all positive energy 

ones are empty, find the chemical potential µ(T ). 
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(b) Show that the mean excitation energy of this system at finite temperature satisfies


d2ηk k)
E(T ) − E(0) = 4A � 

E+(η
� . 

(2κ)2 
exp �E+ (ηk) + 1 

(c) Give a closed form answer for the excitation energy by evaluating the above integral. 

(d) Calculate the heat capacity, CV , of such massless Dirac particles. 

(e) Explain qualitatively the contribution of phonons (lattice vibrations) to the heat capac­

ity of graphene. The typical sound velocity in graphite is of the order of 2×104 ms−1 . Is the 

low temperature heat capacity of graphene controlled by phonon or electron contributions? 
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2. Quantum Coulomb gas: Consider a quantum system of N positive, and N negative 

charged relativistic particles in box of volume V = L3 . The Hamiltonian is 

2N 2N 
eiej

pi + ,H = 
i=1 

c|η |
i<j 

|ηri − ηrj | 

where ei = +e0 for i = 1, · · ·N , and ei = −e0 for i = N + 1, · · ·2N , denote the charges of 

the particles; {ηri} and {ηpi } their coordinates and momenta respectively. While this is too 

complicated a system to solve, we can nonetheless obtain some exact results. 

(a) Write down the Schrödinger equation for the eigenvalues ζn(L), and (in coordinate 

space) eigenfunctions �n({ηri}). State the constraints imposed on �n ({ηri}) if the particles 

are bosons or fermions? 
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(b) By a change of scale ηri 
∞ = ηri/L, show that the eigenvalues satisfy a scaling relation 

ζn (L) = ζn(1)/L. 

(c) Using the formal expression for the partition function Z(N, V, T ), in terms of the 

eigenvalues {ζn(L)}, show that Z does not depend on T and V separately, but only on a 

specific scaling combination of them. 
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(d) Relate the energy E, and pressure P of the gas to variations of the partition function. 

Prove the exact result E = 3PV . 

(e) The Coulomb interaction between charges in in d-dimensional space falls off with sepa­

ration as eiej / ηri − ηrj
d−2 

. (In d = 2 there is a logarithmic interaction.) In what dimension | | 
d can you construct an exact relation between E and P for non-relativistic particles (ki-

η2netic energy pi /2m)? What is the corresponding exact relation between energy and i 

pressure? 
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(f) Why are the above ‘exact’ scaling laws not expected to hold in dense (liquid or solid) 

Coulomb mixtures? 

3. Non-interacting Fermions: Consider a grand canonical ensemble of non-interacting 

fermions with chemical potential µ. The one–particle states are labelled by a wavevector 

ηk, and have energies E (ηk). 

(a) What is the joint probability P ( nσ ), of finding a set of occupation numbers nσ ,
k k 

of the one–particle states? 

(b) Express your answer to part (a) in terms of the average occupation numbers nσ .k − 
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(c) A random variable has a set of σ discrete outcomes with probabilities pn, where n = 

What is the entropy of this probability distribution? What is the maximum 1, 2, · · · , σ. 
possible entropy? 

(d) Calculate the entropy of the probability distribution for fermion occupation numbers 

in part (b), and comment on its zero temperature limit. 

(e) Calculate the variance of the total number of particles N2 , and comment on its zero 
c

temperature behavior. 

(f) The number fluctuations of a gas is related to its compressibility �T , and number 

density n = N/V , by 

N2 = NnkB T �T . 
c 
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Give a numerical estimate of the compressibility of the fermi gas in a metal at T = 0 in 

units of Å3eV −1 . 
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