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8.333: Statistical Mechanics I Mid-term Quiz Solutions Fall 2005


Answer all three problems, but note that the first parts of each problem are easier 

than its last parts. Therefore, make sure to proceed to the next problem when you get 

stuck. 

You may find the following information helpful: 

Physical Constants 

Electron mass me ∝ 9.1 × 10−31Kg Proton mass mp ∝ 1.7 × 10−27Kg 

Electron Charge e ∝ 1.6 × 10−19C Planck’s const./2� h̄ ∝ 1.1 × 10−34J s−1 

Speed of light c ∝ 3.0 × 108ms−1 Stefan’s const. δ ∝ 5.7 × 10−8W m−2K−4 

Boltzmann’s const. kB ∝ 1.4 × 10−23J K−1 Avogadro’s number N0 ∝ 6.0 × 1023mol−1 

Conversion Factors 

1atm ∞ 1.0 × 105N m−2 1Å ∞ 10−10m 1eV ∞ 1.1 × 104K 

Thermodynamics 

dW For a gas: ¯ dW = J dx dE = T dS +¯ dW = −P dV For a wire: ¯

Mathematical Formulas 
� 

e−�x n! 
� 

1 
��

dx xn = �n+1 ! = 
�

ξ 
2 2 

� 
x β2 k2� 

dx exp −ikx − 
2 

= 
⇒

2�δ2 exp limN �� ln N ! = N ln N − N2−� 2β2 −

e−ikx 
�

� (−ik)n 
n� ln e−ikx 

� 
= 

�� (−ik)n 
n


n=0 n! √x n=1 n! √x c


2 4 xcosh(x) = 1 + x + x + ln(1 − x) = − � n 

2! 4! n=1 n
· · · 

Surface area of a unit sphere in d dimensions Sd = 2ξd/2 

(d/2−1)! 
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1. Equations of State: This problem appeared in the second problem set, and is related 

to how the equation of state constrains the internal energy of a gas. 

(a) Show that the ideal gas equation of state, PV = NkBT , implies that internal energy 

E can only depend on the temperature T . 

• Since there is only one form of work, we can choose any two parameters as independent 

variables. For example, selecting T and V , such that E = E(T, V ), and S = S(T, V ), we 

obtain 
⎦ ⎦ 

εS ⎦ εS ⎦ 
dE = TdS − PdV = T ⎦ dT + T ⎦ dV − PdV, 

⎦εT ⎦ εV V T 

resulting in 
⎦ ⎦ 

εE ⎦ εS ⎦ 
⎦ = T ⎦ − P. 

⎦εV ⎦ εV T T 

Using the Maxwell’s relation† 
⎦ ⎦ 

εS ⎦ εP ⎦ 
⎦ ⎦= , 
⎦ ⎦εV T εT V 

we obtain 
⎦ ⎦ 

εE ⎦ εP ⎦ 
⎦ = T ⎦ 

εV ⎦ εT ⎦ 
− P. 

T V 
⎦ ⎦ 

εP ⎦ NkB εE ⎦ 
Since T ⎦ = T = P, for an ideal gas, ⎦ = 0. 

εT ⎦ V εV ⎦ V T 

Thus E depends only on T , i.e. E = E(T ). 

(b) What is the most general equation of state, P (V, T ), consistent with an internal energy 

that depends only on temperature? 

• If E = E(T ), 
⎦ ⎦ 

εE ⎦ εP ⎦ 
⎦ = 0, = T ⎦ = P. 
⎦ ⎦εV T 

→ 
εT V 

The solution for this equation is P = f(V )T, where f(V ) is any function of only V . 

2
(c) Show that for a van der Waals gas, with [P − a (N/V ) ] (V − Nb) = NkBT , the heat 

capacity CV is a function of temperature alone. 

• The van der Waals equation of state is given by 

� �2
N 

P − a · (V − Nb) = NkBT, 
V 

⎦ 
⎦ † dL = Xdx + Y dy + = πX ⎦

⎦ = πY 
⎦ = π2 L 

πy πx y πx·πy .· · · , → 
x 
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or 
� �2

NkB T N 
P = + a . 

(V − Nb) V 

From these equations, we conclude that 

⎦ ⎦ 
εE ⎦ εCV ⎦ ε2E ε εP ⎦

⎦ 
ε2P ⎦

⎦ 
⎦ ⎦CV , = → 

εV 
⎦ 
T 

= = T 
⎦ − P = T ⎦ = 0. 

⎦ ⎦

∞ 
εT V 

⎦ εV εT εT εT V εT 2 
V 

******** 

2. Semi-flexible polymer in two dimensions: Configurations of a polymer are described by 

a set of vectors {ti} of length a in two dimensions (for i = 1, · · · , N), or alternatively by 

{πi} 

t 1 

t 2 

t 3 

t N-1 

t N 

R 

ø
N-1 

ø 
1 

the angles between successive vectors, as indicated in the figure below. 

The (joint) probability to find the polymer at a given configuration is p ({ti}) 
exp (−H/kB T ), where T is the temperature, and H is the energy of the configuration, 

given by 
N −1 N −1 

H = −� ti · ti+1 = −�a2 cos πi . 
i=1 i=1 

(The parameter � is related to the bending rigidity or the polymer.) 

(a) Show that tn� � exp (−|n − m /�), and obtain an expression for the persistence √tm · |
length φp = a�. (You can leave the answer as the ratio of simple integrals.) 

Hint: Relate the angle between tm and tn to the angles {πi }. 
• In terms of the angles, the dot product can be written as 

2 i(αm +αm+1 + +αn−1 )tm · tn = a cos (πm + πm+1 + + πn−1 ) = a 2 ··· .· · · �e 

Note that the angles {πn} are independent variables, distributed according to the Boltz

mann weight 
N −1 
� �a2 

exp cos πn .p [{πn}] � 
kB T 

n=1 
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Hence the average of the product is the product of averages, and 

� ⎡ n−m
n−1 � �a2 

cos α 
| |

kBT�

� � dπ cos π e 2 iαn 2 e = a � 
�a2 

⎤ .√tm · tn� = a � 
� 

kBT cos α 
k=m dπ e 

The persistence length is thus given by 

a 
φp = � � . 

�a2 �a2 
� cos α � cos αkBTln dπ e kBT / dπ cos π e 

(b) Consider the end–to–end distance R as illustrated in the figure. Obtain an expression


for 
� 
R2

� 
in the limit of N ≈ 1.


Hint: Relate R to {ti}.

• Using R = 

�N −1 
tn, we obtain n=1 

√ 2 /�R2 = tm · tn� = a e−|n−m| . 
m,n m,n 

The above sum decays exponentially around each point. Ignoring corrections from end 

effects, which are asymptotically negligible for N � �, we obtain 

e−1/� 

R2 ≡ a 2N 1 + 2
1 − e−1/� 

= a 2N coth 
1 

. 
2� 

(c) Find the probability p(R) in the limit of N ≈ 1. 

Since R = 
�N −1 

tn, we can use the central limit theorem to conclude that in the limit n=1• 

of N � �, the probability distribution p(R) approaches a Gaussian form. Thus, we just 

need to evaluate the mean and variance of R. Since the mean √ = 0 by symmetry, R� 
the variance is equal to R2 calculated in part (b). Noting that in two dimensions, 

R2 = R2 = R2 /2, the properly normalized Gaussian form is x y 

1 R R 
p(R) = 

� √R2
exp 

·
. � − √R2� 

******** 
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3. Zeroth-order hydrodynamics: The hydrodynamic equations resulting from the conser

vation of particle number, momentum, and energy in collisions are (in a uniform box): 

⎨ εtn + ε� (nu�) = 0 
⎨ 
⎨ 
⎨ 
⎣ 1 

εtu� + u� ε� u� = ε� P�� ,− 
mn 

⎨ 
⎨ 
⎨ 1 1 
⎨ 
⎧ εtξ + u�ε�ξ = ε�h� − P�� u��− 

n n 

u = √σwhere n is the local density, σ p/m�, u�� = (ε�u� + ε� u�) /2, and ξ = mc2/2 
� 
, with 

σc = σ u.p/m − σ

(a) For the zeroth order density 

2 

p, σ
p − mσ q, t))q, t) (σ u(σ

f1
0(σ q, t) = 

n(σ
3/2 

exp , 
q, t))

− 
2mkB T (σ(2�mkB T (σ q, t) 

� �0 
calculate the pressure tensor P 0 = mn √c�c� � 0, and the heat flux h0 = nm c�c2/2 . 

The PDF for σc is proportional to the Gaussian exp −mc2 /(2kB T ) , from which we • 

immediately get 

0 √c�c� � = 
kB T

κ�� = P 0 = nkB T κ�� , and ξ =
3 
kB T. 

m 
→ �� 2 

All odd expectation values of the symmetric weight are zero, specifically √σ = 0, and c�
⎩ ⎪ 
σh0 = 0. 

(b) Obtain the zeroth order hydrodynamic equations governing the evolution of n(σq, t), 

σ q, t), and T (σu(σ q, t). 
⎩ ⎪ 

Substituting P 0 = nkB T κ�� , ξ = 3kB T/2, and σh0 = 0 in the hydrodynamic 

equations gives: 
⎨ εtn + u�ε�n = −nε�u� 
⎨ 
⎨ 
⎨ 
⎣ kB

εtu� + u� ε� u� = ε� (nT ) .− 
mn 

⎨ 
⎨ 
⎨ 3 
⎨ 
⎧ (εtT + u�ε�T ) = −T ε� u�

2 

(c) Show that the above equations imply Dt ln nT −3/2
� 

= 0, where Dt = εt + u� ε� is the 

material derivative along streamlines. 
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• Using Dt = εt + u� ε� , the above equations can be written as 

⎨ Dt ln n = −ε�u� 
⎨ 
⎨ 
⎨ 
⎣ kB

Dt u� = ε� (nT ) .− 
mn 

⎨ 
⎨ 
⎨ 3 
⎨ 
⎧ Dt ln T = −ε�u�

2 

Eliminating ε�u� between the first and third equations gives the required result of 

Dt ln nT −3/2
� 

= 0. 

qd3σ p, σ p, σ(d) Write down	 the expression for the function H0(t) = d3σ pf1
0(σ q, t) ln f1

0(σ q, t), 

p, in terms of n(σ u(σ q, t).after performing the integrations over σ	 q, t), σ q, t), and T (σ

Using the expression for f1
0 ,• 

�	 2 
p − mσ

qd3σ
n 

3/2 
expH0(t) = d3σ p 

(σ u)

(2�mkB T )
− 

2mkB T 

(σ u)p − mσ× ln 
� 
nT −3/2 

� 3 
ln (2�mkB ) − 

2 

− 
2	 2mkB T 

The Gaussian averages over σp are easily performed to yield 

H0(t) = d3σ
�	 3 

q n ln nT −3/2 
� 3 

ln (2�mkB ) − .− 
2	 2 

(e) Using the hydrodynamic equations in (b) calculate dH0/dt. 

• Taking the time derivative inside the integral gives 
� � � � ��dH0 

= d3qσ εtn ln nT −3/2 + nεt ln nT −3/2 . 
dT 

Use the results of parts (b) and (c) to substitute for εtn and εt ln nT −3/2 , to get 

� � �	 � �� dH0 

dT 
= − d3qσ ln nT −3/2 ε� (nu�) + nu�ε� ln nT −3/2 

= q ε� nu� ln nT −3/2 = 0,− d3σ

since the integral of a complete derivative is zero. 

(f) Discuss the implications of the result in (e) for approach to equilibrium. 

The expression for −H0 is related to the entropy of the gas. The result in (f) implies • 

that the entropy of the gas does not change if its n σu, and T vary according to the zeroth 

order equations. The corrections due to first order hydrodynamics are necessary in order 

to describe the increase in entropy. 

******** 
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