8.333: Statistical Mechanics I Mid-term Quiz Solutions Fall 2005

Answer all three problems, but note that the first parts of each problem are easier
than its last parts. Therefore, make sure to proceed to the next problem when you get
stuck.

You may find the following information helpful:

Physical Constants

Electron mass me ~ 9.1 x 1073'Kg  Proton mass my ~ 1.7 X 1072"Kg
Electron Charge e~ 1.6 x 10719C Planck’s const./2m ha 1.1 x 10734 Js7!
Speed of light c~3.0x10%ms! Stefan’s const. o~57x108Wm2K—*

Boltzmann’s const. kg ~ 1.4 x 10723JK~! Avogadro’s number Ny ~ 6.0 x 10%3mol~!

Conversion Factors

latm = 1.0 x 10°Nm ™2 1A=10"1%m leV =1.1 x 10*K
Thermodynamics
dE = TdS+dW For a gas: dW = —PdV For a wire: dW = Jdx

Mathematical Formulas

fi o 2 eer = 2t (=

[ dwexp | ~ike — 5| = V2ro?exp |- 7 | limy_oeInN! = NIn N — N
(e7he) = 0Ly S () In (e=*) = 3200, S (a7),
cosh(x)zl-l—“é—?-i—ﬁ—?-i---- 11‘1(1—%):_220:1%"
Surface area of a unit sphere in d dimensions Sq = (dQ/”Td_/i)!



1. Equations of State: This problem appeared in the second problem set, and is related

to how the equation of state constrains the internal energy of a gas.

(a) Show that the ideal gas equation of state, PV = NkgT, implies that internal energy
FE can only depend on the temperature 7.

e Since there is only one form of work, we can choose any two parameters as independent

variables. For example, selecting 7" and V', such that £ = E(T,V), and S = S(T,V), we

obtain
dEszS—PdeTﬁ dT+T% dVv — PdV,
or |, oV |,
resulting in
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Using the Maxwell’s relation®
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Since Tg_T y = TTB = P, for an ideal gas, P\ . =0.

Thus E depends only on 7', i.e. E = E(T).

(b) What is the most general equation of state, P(V,T), consistent with an internal energy
that depends only on temperature?

o If E=E(T),
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The solution for this equation is P = f(V)T, where f(V) is any function of only V.
(¢) Show that for a van der Waals gas, with [P — a (N/V)?] (V — Nb) = NkgT, the heat

capacity Cy is a function of temperature alone.

e The van der Waals equation of state is given by

o)

P dL = Xde 4+ Ydy+---, = 2%

- (V = Nb) = NkgT,
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From these equations, we conclude that
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2. Semi-flexible polymer in two dimensions: Configurations of a polymer are described by
a set of vectors {t;} of length a in two dimensions (for i = 1,---, N), or alternatively by

the angles {¢;} between successive vectors, as indicated in the figure below.

The (joint) probability to find the polymer at a given configuration is p({t;})
exp (—H/kpT), where T is the temperature, and H is the energy of the configuration,
given by

N-1 N-1
H=—k E t; - ti1 = —ka’ g cos ¢;

(The parameter k is related to the bending rigidity or the polymer.)

(a) Show that (t,, - t,,) o< exp (—|n — m|/£), and obtain an expression for the persistence
length £, = a§. (You can leave the answer as the ratio of simple integrals.)
Hint: Relate the angle between t,, and t,, to the angles {¢;}.

e In terms of the angles, the dot product can be written as
-ty = CL2 CO8S (¢m + ¢m—|—1 +---+ ¢n—1) = a2§R€i(¢m+¢m+1+m+¢"_1).

Note that the angles {¢,} are independent variables, distributed according to the Boltz-

mann weight
2
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Hence the average of the product is the product of averages, and

[n—m]|
n—1 pa? cos ¢
, docos ¢ e*BT
(ty - t,) = a*R | | <e’¢”> =a? J 49 gbm2
o fd¢ e*BT cos ¢

The persistence length is thus given by

a

gp - Ra2 ma2 ’
In {f dp e¥57 %) [ dg cos ¢ eFsT ¢

(b) Consider the end-to—end distance R as illustrated in the figure. Obtain an expression
for <R2> in the limit of N > 1.

Hint: Relate R to {t;}.

e Using R = ij:_ll t,,, we obtain

<R2> = Z (ty - ty) = Z aZe~In—ml/g,

The above sum decays exponentially around each point. Ignoring corrections from end
effects, which are asymptotically negligible for N — oo, we obtain
1

<R2> ~a’N |1+ Qi
1 —e1/¢€ 2¢

} = a’N coth

(c) Find the probability p(R) in the limit of N > 1.

e Since R = Zi::ll t,,, we can use the central limit theorem to conclude that in the limit
of N — oo, the probability distribution p(R) approaches a Gaussian form. Thus, we just
need to evaluate the mean and variance of R. Since the mean (R) = 0 by symmetry,
the variance is equal to <R2> calculated in part (b). Noting that in two dimensions,

<R326> = <R§> = <R2> /2, the properly normalized Gaussian form is

PIR) = iy o {‘%] ‘
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3. Zeroth-order hydrodynamics: The hydrodynamic equations resulting from the conser-
vation of particle number, momentum, and energy in collisions are (in a uniform box):
On + Oy (nuy) =0
1
Ortig + uﬁ(‘)ﬁua = —%85Paﬁ

1 1
0t + UqO0ne = ——O0nhg — —Paguaﬁ
n n

where n is the local density, @ = (p/m), uap = (Jaug + Ouq) /2, and € = (mc?/2), with
¢=p/m— .

(a) For the zeroth order density

o= — MED [_ (5= mii(q. 1)) ] |

(2rmkpT(q,1))*? 2mkpT(q,t)

calculate the pressure tensor Pgﬂ =mn (CQCQ)O, and the heat flux Y = nm <ca02/2>0.

e The PDF for ¢ is proportional to the Gaussian exp (—mc?/(2kgT)), from which we

immediately get

kT 3
<ca05)0 = %éag — PSB =nkpTd,3, and €= ikBT'

All odd expectation values of the symmetric weight are zero, specifically (¢) = 0, and

() =o.

(b) Obtain the zeroth order hydrodynamic equations governing the evolution of n(q,t),
u(q,t), and T(q,¢t).

e Substituting Pgﬁ = nkpTdap, ¢ = 3kpT/2, and <7LO> = 0 in the hydrodynamic

equations gives:
On + Uy 0an = —N0y Uy

kg
o o = ———0q (nT
Orug + ugdpu mna (nT)
g (0T 4 w00, T) = =T 0O uq

(c) Show that the above equations imply D; In (nT_3/2) = 0, where D; = 0; +ugdp is the

material derivative along streamlines.



e Using D; = 0; + ug0gs, the above equations can be written as

Dilnn = —0yuq
k

Diu, = ——Baa (nT)
mn

3
§Dt InT = —8aua

Eliminating Od,u, between the first and third equations gives the required result of
D;1n (nT‘g/Q) = 0.

(d) Write down the expression for the function HO(t) = [d3qd®pf?(p,q,t) In (P, q, 1),
after performing the integrations over p, in terms of n(q,t), @(q,t), and T(q,t).

e Using the expression for f?,

(7 — ma)”

HO(t) = /d?’(j’d?’p_’#exp —_——
(27rkaT)3/2 2mkpT

" 2
X |In <nT_3/2> — gln (2rmkpg) — (7= mi)

kaBT

The Gaussian averages over p are easily performed to yield

HO () = /d?’cjn {m <nT—3/2) . gln(Qﬁka) . g] .

(e) Using the hydrodynamic equations in (b) calculate dH /dt.

e Taking the time derivative inside the integral gives

CiZ—I;O = /d?’(f [&nln (nT_3/2) + nd; In (nT_?’/Q)} .

Use the results of parts (b) and (c) to substitute for 9;n and 9; In (RT~3/2), to get
HO
d _ /d?’cj’ [ln <nT—3/2> Do (NUa) + N0y In (nT‘3/2)}

dr
=— /dgcjﬁa [nua In (nT‘g/Qﬂ =0,
since the integral of a complete derivative is zero.

(f) Discuss the implications of the result in (e) for approach to equilibrium.

e The expression for —HO is related to the entropy of the gas. The result in (f) implies
that the entropy of the gas does not change if its n «, and T vary according to the zeroth
order equations. The corrections due to first order hydrodynamics are necessary in order

to describe the increase in entropy.
skokokskoksk sk ok



