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8.333: Statistical Mechanics I Re: 2005 Final Exam


Review Problems 

The final exam will take place on Wednesday December 21, from 9:00am to noon. 

All topics presented in the course will be covered, 

with emphasis on the second half. It will be a closed book exam, but you may bring a 

two–sided sheet of formulas if you wish. It may also be helpful to bring along a calculator. 

There will be a recitation with quiz review on Wednesday 12/14/05. 

The enclosed exams (and solutions) from the previous years are intended to help you 

review the material. 

******** 

Note that the first parts of each problem are easier than its last parts. Therefore, 

make sure to proceed to the next problem when you get stuck. 

You may find the following information helpful: 

Physical Constants 

Electron mass me ∞ 9.1 × 10−31Kg Proton mass mp ∞ 1.7 × 10−27Kg 

Electron Charge e ∞ 1.6 × 10−19C Planck’s constant/2β h̄ ∞ 1.1 × 10−34J s−1 

Speed of light c ∞ 3.0 × 108ms−1 Stefan’s constant δ ∞ 5.7 × 10−8W m−2K−4 

Boltzmann’s constant kB ∞ 1.4 × 10−23J K−1Avogadro’s number N0 ∞ 6.0 × 1023mol−1 

Conversion Factors 

1atm → 1.0 × 105N m−2 1Å 10−10m 1eV → 1.1 × 104K→ 

Thermodynamics 

dE = T dS+dW For a gas: dW = −P dV For a film: dW = δdA 

Mathematical Formulas 
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8.333: Statistical Mechanics I Fall 1998 Final Exam


1. Exciton dissociation in a semiconductor: By shining an intense laser beam on a semicon­

ductor, one can create a metastable collection of electrons (charge −e, and effective mass 

me ) and holes (charge +e, and effective mass mh ) in the bulk. The oppositely charged 

particles may pair up (as in a hydrogen atom) to form a gas of excitons, or they may 

dissociate into a plasma. We shall examine a much simplified model of this process. 

(a) Calculate the free energy of a gas composed of Ne electrons and Nh holes, at temper­

ature T , treating them as classical non-interacting particles of masses me and mh. 

(b) By pairing into an excition, the electron hole pair lowers its energy by π. [The binding 

energy of a hydrogen-like exciton is π ∞ me4/(2h̄2η2), where η is the dielectric constant, 

and m−1 = m−1 + m−1.] Calculate the free energy of a gas of Np excitons, treating them e h 

as classical non-interacting particles of mass m = me + mh. 

(c) Calculate the chemical potentials µe , µh, and µp of the electron, hole, and exciton 

states, respectively. 

(d) Express the equilibrium condition between excitons and electron/holes in terms of their 

chemical potentials. 

(e) At a high temperature T , find the density np of excitons, as a function of the total 

density of excitations n ∞ ne + nh. 

******** 

2. The Manning Transition: When ionic polymers (polyelectrolytes) such as DNA are 

immersed in water, the negatively charged counter-ions go into solution, leaving behind 

a positively charged polymer. Because of the electrostatic repulsion of the charges left 

behind, the polymer stretches out into a cylinder of radius a, as illustrated in the figure. 

While thermal fluctuations tend to make the ions wander about in the solvent, electrostatic 

attractions favor their return and condensation on the polymer. If the number of counter-

ions is N , they interact with the N positive charges left behind on the rod through the 

potential U (r) = −2 (N e/L) ln (r/L), where r is the radial coordinate in a cylindrical 

geometry. If we ignore the Coulomb repulsion between counter-ions, they can be described 

by the classical Hamiltonian 

N � 
2 � � 

� pi H = + 2e 2 n ln 
r

,
2m L 

i=1 

where n = N/L. 
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(a) For a cylindrical container of radius R, calculate the canonical partition function Z in 

terms of temperature T , density n, and radii R and a. 

(b) Calculate the probability distribution function p (r) for the radial position of a counter-

ion, and its first moment ∈r�, the average radial position of a counter-ion. 

(c) The behavior of the results calculated above in the limit R √ a is very different at high 

and low temperatures. Identify the transition temperature, and characterize the nature of 

the two phases. In particular, how does ∈r� depend on R and a in each case? 

(d) Calculate the pressure exerted by the counter-ions on the wall of the container, at 

r = R, in the limit R √ a, at all temperatures. 

(e) The character of the transition examined in part (d) is modified if the Coulomb in­

teractions between counter-ions are taken into account. An approximate approach to the 

interacting problem is to allow a fraction N1 of counter-ions to condense along the polymer 

rod, while the remaining N2 = N − N1 fluctuate in the solvent. The free counter-ions are 

again treated as non-interacting particles, governed by the Hamiltonian 

N � 
2 � � pi H = + 2e 2 n2 ln 

r
,

2m L 
i=1 

where n2 = N2/L. Guess the equilibrium number of non-interacting ions, N2
�, and justify 

your guess by discussing the response of the system to slight deviations from N2
�. (This is 

a qualitative question for which no new calculations are needed.) 

******** 
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3. Bose gas in d dimensions: Consider a gas of non-interacting (spinless) bosons with an 

energy spectrum η = p2/2m, contained in a box of “volume” V = Ld in d dimensions. 

(a) Calculate the grand potential G = −kBT ln Q, and the density n = N/V , at a chemical 

potential µ. Express your answers in terms of d and f + 
m (z), where z = e�µ, and 

1 � xm−1 

f + 
m (z) = dx. 

� (m) z−1 ex − 10 

(Hint: Use integration by parts on the expression for ln Q.) 

(b) Calculate the ratio P V /E, and compare it to the classical value. 

(c) Find the critical temperature, Tc (n), for Bose-Einstein condensation. 

(d) Calculate the heat capacity C (T ) for T < Tc (n). 

(e) Sketch the heat capacity at all temperatures. 

(f) Find the ratio, Cmax/C (T � �), of the maximum heat capacity to its classical limit, 

and evaluate it in d = 3 

(g) How does the above calculated ratio behave as d � 2? In what dimensions are your 

results valid? Explain. 

******** 
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8.333: Statistical Mechanics I Fall 1999 Final Exam


1. Electron Magnetism: The conduction electrons in a metal can be treated as a gas of 

fermions of spin 1/2 (with up/down degeneracy), and density n = N/V . 

(a) Ignoring the interactions between electrons, describe (in words) their ground state. 

Calculate the fermi wave number kF, and the ground-state energy density E0/V in terms 

of the density n. 

Electrons also interact via the Coulomb repulsion, which favors a wave function which 

is antisymmetric in position space, thus keeping them apart. Because of the full (position 

and spin) antisymmetry of fermionic wave functions, this interaction may be described 

as an effective spin-spin coupling which favors states with parallel spins. In a simple 

approximation, the effect of this interaction is represented by adding a potential 

N+ N
U = � − 

,
V 

to the Hamiltonian, where N+ and N = N −N+ are the numbers of electrons with up and − 

down spins, and V is the volume. (The parameter � is related to the scattering length a by 

� = 4βh̄2a/m.) We would like to find out if the unmagnetized gas with N+ = N = N/2− 

still minimizes the energy, or if the gas is spontaneously magnetized. 

(b) Express the modified Fermi wave numbers kF+ and kF−, in terms of the densities 

n+ = N+/V and n = N−/V .− 

(c) Assuming small deviations n+ = n/2 + ζ and n = n/2 − ζ from the symmetric state, − 

calculate the change in the kinetic energy of the system to second order in ζ. 

(d) Express the spin-spin interaction density in terms of ζ. Find the critical value of �c, 

such that for � > �c the electron gas can lower its total energy by spontaneously developing 

a magnetization. (This is known as the Stoner instability.) 

(e) Explain qualitatively, and sketch the behavior of the spontaneous magnetization as a 

function of �. 

******** 

2. Boson magnetism: Consider a gas of non-interacting spin 1 bosons, each subject to a 

Hamiltonian 
σ 2p 

p, sz ) = 
2m 

− µ0sz B ,H1(σ

where µ0 = eh̄/mc, and sz takes three possible values of (-1, 0, +1). (The orbital effect, 

p � σ σσ p − eA, has been ignored.) 

(a) In a grand canonical ensemble of chemical potential µ, what are the average occupation 

numbers ∈n+(σk)�, ∈n0(σk)�, ∈n−(σk)� , of one-particle states of wavenumber σk = σ h?p/¯
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(b) Calculate the average total numbers {N+, N0, N−}, of bosons with the three possible 

values of sz in terms of the functions f+ 
m(z). 

(c) Write down the expression for the magnetization M(T, µ) = µ0(N+ − N−), and by 

expanding the result for small B find the zero field susceptibility α(T, µ) = εM/εB B=0.|
To find the behavior of α(T, n), where n = N/V is the total density, proceed as follows: 

(d) For B = 0, find the high temperature expansion for z(κ, n) = e�µ, correct to second 

order in n. Hence obtain the first correction from quantum statistics to α(T, n) at high 

temperatures. 

(e) Find the temperature Tc(n, B = 0), of Bose-Einstein condensation. What happens to 

α(T, n) on approaching Tc(n) from the high temperature side? 

(f) What is the chemical potential µ for T < Tc(n), at a small but finite value of B? Which 

one-particle state has a macroscopic occupation number? 

(g) Using the result in (f), find the spontaneous magnetization, 

M(T, n) = lim M(T, n, B). 
B�0 

******** 

3. The virial theorem is a consequence of the invariance of the phase space for a system 

of N (classical or quantum) particles under canonical transformations, such as a change of 

scale. In the following, consider N particles with coordinates {σqi}, and conjugate momenta 

pi} (with i = 1, · · · , N), and subject to a Hamiltonian H ({σ qi}).{σ pi} , {σ
(a) Classical version: Write down the expression for classical partition function, Z → Z [H]. 

Show that it is invariant under the rescaling qσ1 � �σq1, σ p1/� of a pair of conjugate p1 � σ

variables, i.e. Z [H�] is independent of �, where H� is the Hamiltonian obtained after the 

above rescaling. 

(b) Quantum mechanical version: Write down the expression for quantum partition func­

q1 , σ p1/�, where σtion. Show that it is also invariant under the rescalings qσ1 � �σ pip1 � σ

and σqi are now quantum mechanical operators. (Hint: start with the time-independent 

Schrödinger equation.) 

(c) Now assume a Hamiltonian of the form 

� σ 2pi 
= + V ({qσi}) .H 

2m 
i 

Use the result that Z [H�] is independent of � to prove the virial relation 

σ 2p1 εV 
= σ , 

m εσq1 
· q1 
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where the brackets denote thermal averages. (You may formulate your answer in the 

classical language, as a possible quantum derivation is similar.) 

(d) The above relation is sometimes used to estimate the mass of distant galaxies. The 

stars on the outer boundary of the G-8.333 galaxy have been measured to move with 

velocity v ∞ 200 km/s. Give a numerical estimate of the ratio of the G-8.333’s mass to its 

size. 

******** 
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8.333: Statistical Mechanics I Fall 2000 Final Exam


1. Freezing of He3: At low temperatures He3 can be converted from liquid to solid by 

application of pressure. A peculiar feature of its phase boundary is that (dP/dT )melting is 

negative at temperatures below 0.3 oK [(dP/dT )m ∞ −30atm oK−1 at T ∞ 0.1 oK]. We 

will use a simple model of liquid and solid phases of He3 to account for this feature. 

(a) In the solid phase, the He3 atoms form a crystal lattice. Each atom has nuclear spin 

of 1/2. Ignoring the interaction between spins, what is the entropy per particle ss, due to 

the spin degrees of freedom? 

(b) Liquid He3 is modelled as an ideal Fermi gas, with a volume of 46Å3 per atom. What 

is its Fermi temperature TF , in degrees Kelvin? 

(c) How does the heat capacity of liquid He3 behave at low temperatures? Write down an 

expression for CV in terms of N, T, kB , TF , up to a numerical constant, that is valid for 

T ≈ TF . 

(d) Using the result in (c), calculate the entropy per particle sσ, in the liquid at low 

temperatures. For T ≈ TF , which phase (solid or liquid) has the higher entropy? 

(e) By equating chemical potentials, or by any other technique, prove the Clausius– 

Clapeyron equation (dP/dT )melting = (sσ − ss)/(vσ − vs), where vσ and vs are the volumes 

per particle in the liquid and solid phases respectively. 

(f) It is found experimentally that vσ − vs = 3Å3 per atom. Using this information, plus 

the results obtained in previous parts, estimate (dP/dT )melting at T ≈ TF . 

******** 

2. Non-interacting bosons: Consider a grand canonical ensemble of non-interacting bosons 

with chemical potential µ. The one–particle states are labelled by a wavevector σq, and have 

energies E (qσ). 

(a) What is the joint probability P ({nη q }, of q }), of finding a set of occupation numbers {nη

the one–particle states, in terms of the fugacities zηq → exp [κ(µ − E (σq))]? 

(b) For a particular σq, calculate the characteristic function ∈exp [iknηq ]�. 
(c) Using the result of part (b), or otherwise, give expressions for the mean and variance 

q . occupation number ∈nηof nη q �. 
(d) Express the variance in part (c) in terms of the mean occupation number ∈nηq �. 
(e) Express your answer to part (a) in terms of the occupation numbers {∈nηq �}. 
(f) Calculate the entropy of the probability distribution for bosons, in terms of {∈nηq �}, and 

comment on its zero temperature limit. 

********


8




3. Hard rods: A collection of N asymmetric molecules in two dimensions may be modeled 

as a gas of rods, each of length 2l and lying in a plane. A rod can move by translation of 

its center of mass and rotation about latter, as long as it does not encounter another rod. 

Without treating the hard-core interaction exactly, we can incorporate it approximately 

by assuming that the rotational motion of each rod is restricted (by the other rods) to an 

angle χ, which in turn introduces an excluded volume � (χ) (associated with each rod). 

The value of χ is then calculated self consistently by maximizing the entropy at a given 

density n = N/V , where V is the total accessible area. 

� 

2l 

excluded 
volume 

(a) Write down the entropy of such a collection of rods in terms of N , n, �, and A (χ), 

the entropy associated to the rotational freedom of a single rod. (You may ignore the 

momentum contributions throughout, and consider the large N limit.) 

(b) Extremizing the entropy as a function of χ, relate the density to �, A, and their 

derivatives �∞, A∞; express your result in the form n = f (�, A, �∞, A∞). 

(c) Express the excluded volume � in terms of χ and sketch f as a function of χ ≡ [0, β], 

assuming A � χ. 

(d) Describe the equilibrium state at high densities. Can you identify a phase transition 

as the density is decreased? Draw the corresponding critical density nc on your sketch. 

What is the critical angle χc at the transition? You don’t need to calculate χc explicitly, 

but give an (implicit) relation defining it. What value does χ adopt at n < nc? 

******** 
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8.333: Statistical Mechanics I Fall 2003 Final Exam


1. Helium 4: 4He at low temperatures can be converted from liquid to solid by application 

of pressure. An interesting feature of the phase boundary is that the melting pressure is 

reduced slightly from its T = 0oK value, by approximately 20Nm−2 at its minimum at 

T = 0.8oK. We will use a simple model of liquid and solid phases of 4He to account for 

this feature. 

(a) By equating chemical potentials, or by any other technique, prove the Clausius– 

Clapeyron equation (dP/dT )melting = (sσ − ss)/(vσ − vs), where (vσ , sσ) and (vs, ss) are the 

volumes and entropies per atom in the liquid and solid phases respectively. 

(b) The important excitations in liquid 4He at T < 1∗K are phonons of velocity c. Cal­

culate the contribution of these modes to the heat capacity per particle Cσ 
V /N , of the 

liquid. 

(c) Calculate the low temperature heat capacity per particle Cs 
V /N , of solid 4He in terms 

of longitudinal and transverse sound velocities cL, and cT . 

(d) Using the above results calculate the entropy difference (sσ − ss), assuming a single 

sound velocity c ∞ cL ∞ cT , and approximately equal volumes per particle vσ ∞ vs ∞ v. 

Which phase (solid or liquid) has the higher entropy? 

(e) Assuming a small (temperature independent) volume difference ζv = vσ − vs, calculate 

the form of the melting curve. To explain the anomaly described at the beginning, which 

phase (solid or liquid) must have the higher density? 

******** 

2. Surfactant Condensation: N surfactant molecules are added to the surface of water 

over an area A. They are subject to a Hamiltonian 

N 
� σ 2 

�pi 1 
+ V(σri − σrj ),H = 

2m 2 
i=1 i,j 

where σri and σpi are two dimensional vectors indicating the position and momentum of 

particle i. 

(a) Write down the expression for the partition function Z(N, T, A) in terms of integrals 

over σri and σpi , and perform the integrals over the momenta. 

The inter–particle potential V(σr) is infinite for separations σr < a, and attractive for 

|σr | > a such that 
� 

2βrdrV(r) = −u0. a 

(b) Estimate the total non–excluded area available in the positional phase space of the 

system of N particles. 
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(c) Estimate the total potential energy of the system, assuming a constant density n = N/A. 

Assuming this potential energy for all configurations allowed in the previous part, write 

down an approximation for Z. 

(d) The surface tension of water without surfactants is δ0, approximately independent of 

temperature. Calculate the surface tension δ(n, T ) in the presence of surfactants. 

(e) Show that below a certain temperature, Tc, the expression for δ is manifestly incorrect. 

What do you think happens at low temperatures? 

(f) Compute the heat capacities, CA and write down an expression for Cα without explicit 

evaluation, due to thesurfactants. 

******** 

3. Dirac Fermions are non-interacting particles of spin 1/2. The one-particle states come 

in pairs of positive and negative energies, 

E ±(σk) = ± m2c4 + h̄2k2c2 , 

independent of spin. 

(a) For any fermionic system of chemical potential µ, show that the probability of finding 

an occupied state of energy µ + ζ is the same as that of finding an unoccupied state of 

energy µ − ζ. (ζ is any constant energy.) 

(b) At zero temperature all negative energy Dirac states are occupied and all positive 

energy ones are empty, i.e. µ(T = 0) = 0. Using the result in (a) find the chemical 

potential at finite temperatures T . 

(c) Show that the mean excitation energy of this system at finite temperature satisfies 

d3σk k)
E(T ) − E(0) = 4V � 

E+ (σ
� . 

(2β)3 
exp κE +(σk) + 1 

(d) Evaluate the integral in part (c) for massless Dirac particles (i.e. for m = 0). 

(e) Calculate the heat capacity, CV , of such massless Dirac particles. 

(f) Describe the qualitative dependence of the heat capacity at low temperature if the 

particles are massive. 

******** 
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8.333: Statistical Mechanics I Fall 2004 Final Exam


1. Neutron star core: Professor Rajagopal’s group has proposed that a new phase of QCD 

matter may exist in the core of neutron stars. This phase can be viewed as a condensate 

of quarks in which the low energy excitations are approximately 

� �2 

h2 
|σk | − kF 

E (σk)± = ¯± 
2M

. 

The excitations are fermionic, with a degeneracy of g = 2 from spin. 

(a) At zero temperature all negative energy states are occupied and all positive energy 

ones are empty, i.e. µ(T = 0) = 0. By relating occupation numbers of states of energies 

µ + ζ and µ − ζ, or otherwise, find the chemical potential at finite temperatures T . 

(b) Assuming a constant density of states near k = kF , i.e. setting d3k ∞ 4βk2 
F dq with 

q = σk − kF , show that the mean excitation energy of this system at finite temperature is | | 

k2 

E(T ) − E(0) ∞ 2gV F dq 
exp (κ

E
E 
+

+

(

(

q

q

)

)) + 1 
. 

β2
0 

(c) Give a closed form answer for the excitation energy by evaluating the above integral. 

(d) Calculate the heat capacity, CV , of this system, and comment on its behavior at low 

temperature. 

******** 

2. Critical point behavior: The pressure P of a gas is related to its density n = N/V , and 

temperature T by the truncated expansion 

c 3P = kBT n − 
b
n 2 + n ,

2 6 

where b and c are assumed to be positive temperature independent constants. 

(a) Locate the critical temperature Tc below which this equation must be invalid, and 

the corresponding density nc and pressure Pc of the critical point. Hence find the ratio 

kBTcnc/Pc. 

 

1 πV 

(b) Calculate the isothermal compressibility �T = V πP T 

, and sketch its behavior as a − 

function of T for n = nc. 

(c) On the critical isotherm give an expression for (P − Pc) as a function of (n − nc). 

(d) The instability in the isotherms for T < Tc is avoided by phase separation into a liquid 

of density n+ and gas of density n−. For temperatures close to Tc, these densities behave 

as n± ∞ nc (1 ± ζ). Using a Maxwell construction, or otherwise, find an implicit equation 

12
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for ζ(T ), and indicate its behavior for (Tc − T ) � 0. (Hint: Along an isotherm, variations 

of chemical potential obey dµ = dP/n.) 

******** 

3. Relativistic Bose gas in d dimensions: Consider a gas of non-interacting (spinless) 

bosons with energy η = c p|σ |, contained in a box of “volume” V = Ld in d dimensions. 

(a) Calculate the grand potential G = −kBT ln Q, and the density n = N/V , at a chemical 

potential µ. Express your answers in terms of d and f + 
m (z), where z = e�µ, and 

1 � xm−1 

f+ 
m (z) =	 dx. 

(m − 1)! 0 z−1 ex − 1 

(Hint: Use integration by parts on the expression for ln Q.) 

(b) Calculate the gas pressure P , its energy E, and compare the ratio E/(P V ) to the 

classical value. 

(c) Find the critical temperature, Tc (n), for Bose-Einstein condensation, indicating the 

dimensions where there is a transition. 

(d) What is the temperature dependence of the heat capacity C (T ) for T < Tc (n)? 

(e) Evaluate the dimensionless heat capacity C(T )/(NkB) at the critical temperature 

T	 = Tc, and compare its value to the classical (high temperature) limit. 

******** 
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