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8.333: Statistical Mechanics I Final Exam & Solutions 12/21/05 (9:00am–noon)


Answer all problems, but note that the first parts of each problem are easier than its 

last parts. Therefore, make sure to proceed to the next problem when you get stuck. 

You may find the following information helpful: 

Physical Constants 

Electron mass me � 9.1 × 10−31kg Proton mass mp � 1.7 × 10−27kg 

Electron Charge e � 1.6 × 10−19C Planck’s constant/2κ h̄ � 1.1 × 10−34Js 

Speed of light c � 3.0 × 108ms−1 Stefan’s constant π � 5.7 × 10−8Wm−2 →K−4 

Boltzmann’s constant kB � 1.4 × 10−23J K−1Avogadro’s number N0 � 6.0 × 1023mol−1 

Gravitational constant G � 6.7 × 10−11Nm2kg−2 

Conversion Factors 

1atm � 1.0 × 105N m−2 1Å � 10−10m 1eV � 1.1 × 104 →K 

Thermodynamics 

dE = T dS+dW For a gas: dW = −P dV For a film: dW = πdA 

Mathematical Formulas 
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8.333: Statistical Mechanics I Final Exam Fall 2005


1. Graphene is a single sheet of carbon atoms bonded into a two dimensional hexagonal 

lattice. It can be obtained by exfoliation (repeated peeling) of graphite. The band struc­

ture of graphene is such that the single particles excitations behave as relativistic Dirac 

fermions, with a spectrum that at low energies can be approximated by 

E±(ηk) = ±h̄v 
�

�ηk
�

� 
. 

There is spin degeneracy of g = 2, and v � 106ms−1 . Recent experiments on unusual 

transport properties of graphene were reported in Nature 438, 197 (2005). In this problem, 

you shall calculate the heat capacity of this material. 

(a) If at zero temperature all negative energy states are occupied and all positive energy 

ones are empty, find the chemical potential µ(T ). 

• According to Fermi statistics, the probability of occupation of a state of of energy E is 

e�(µ−E )n 

p [n(E)] = 
�(µ−E ) 

, for n = 0, 1. 
1 + e

For a state of energy µ + β, 

�αn �α e e 1 
p [n(µ + β)] = 

1 + e�α 
, =� p [n(µ + β) = 1] = 

1 + e�α 
= 

1 + e−�α 
. 

Similarly, for a state of energy µ − β, 

e−�αn 1 
p [n(µ − β)] = = p [n(µ − β) = 0] = = p [n(µ + β) = 1] ,

1 + e−�α 
, � 

1 + e−�α 

i.e. the probability of finding an occupied state of energy µ + β is the same as that of 

finding an unoccupied state of energy µ − β. 

At zero temperature all negative energy Dirac states are occupied and all positive 

energy ones are empty, i.e. µ(T = 0) = 0. The above result implies that for µ = 0, 

n(E)√ + ≈n − E)√ is unchanged for all temperatures; any particle leaving an occupied ≈
negative energy state goes to the corresponding unoccupied positive energy state. Adding 

up all such energies, we conclude that the total particle number is unchanged if µ stays at 

zero. Thus, the particle–hole symmetry enforces µ(T ) = 0. 
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(b) Show that the mean excitation energy of this system at finite temperature satisfies


d2ηk k)
E(T ) − E(0) = 4A � 

E+(η
� . 

(2κ)2 
exp �E+ (ηk) + 1 

• Using the label +(-) for the positive (energy) states, the excitation energy is calculated 

as 
E(T ) − E(0) = [≈n+(k)√ E+(k) + (1 − ≈n−(k)√) E−(k)] 

k,sz 

� d2ηk k)
= 2 2 ≈n+(k)√ E+(k) = 4A � 

E+(η
� . 

k 
(2κ)2 

exp �E+(ηk) + 1 

(c) Give a closed form answer for the excitation energy by evaluating the above integral. 

• For E+(k) = h̄v k , and | |
� 2κkdk h̄vk 

E(T ) − E(0) = 4A = (set �h̄ck = x)
4κ2 e hvk + 1 0 

� �2 � 22A kB T � x
= kB T dx 

κ h̄v 0 ex + 1 
� �2

3�3 kB T 
= AkB T . 

κ h̄v 

For the final expression, we have noted that the needed integral is 2!f3
−(1), and used 

f −(1) = 3�3/4. 
d2ηk k)

E(T ) − E(0) = A � 
E+(η

� . 
(2κ)2 

exp �E+ (ηk) − 1 

(d) Calculate the heat capacity, CV , of such massless Dirac particles. 

• The heat capacity can now be evaluated as 

� 
� �2

εE � 9�3 kB T 
CV = � = AkB . 

� κεT h̄vV 

(e) Explain qualitatively the contribution of phonons (lattice vibrations) to the heat capac­

ity of graphene. The typical sound velocity in graphite is of the order of 2×104 ms−1 . Is the 

low temperature heat capacity of graphene controlled by phonon or electron contributions? 
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• The single particle excitations for phonons also have a linear spectrum, with Ep = h̄vp k| | 
and correspond to µ = 0. Thus qualitatively they give the same type of contribution to 

energy and heat capacity. The difference is only in numerical pre-factors. The precise 

contribution from a single phonon branch is given by 

¯
Ep(T ) − Ep(0) = A 

� 2κkdk hvpk 
= (set �h̄ck = x)

hvp k4κ2 e − 10 
� �2 � 2A kB T � x

= kB T dx 
2κ ¯ 0 − 1hvp ex 

� �2 � �2
�3 kB T 3�3 kB T 

= AkB T 
¯

, CV,p = AkB 
¯

. 
κ hvp κ hvp 

We see that the ratio of electron to phonon heat capacities is proportional to (vp/v)2 . Since 

the speed of Dirac fermions is considerably larger than that of phonons, their contribution 

to heat capacity of graphene is negligible. 

******** 

2. Quantum Coulomb gas: Consider a quantum system of N positive, and N negative 

charged relativistic particles in box of volume V = L3 . The Hamiltonian is 

2N 2N 
eiej

pi + ,H = 
i=1 

c|η |
i<j 

|ηri − ηrj | 

where ei = +e0 for i = 1, · · ·N , and ei = −e0 for i = N + 1, · · ·2N , denote the charges of 

the particles; {ηri} and {ηpi } their coordinates and momenta respectively. While this is too 

complicated a system to solve, we can nonetheless obtain some exact results. 

(a) Write down the Schrödinger equation for the eigenvalues ζn(L), and (in coordinate 

space) eigenfunctions �n({ηri}). State the constraints imposed on �n ({ηri}) if the particles 

are bosons or fermions? 

• In the coordinate representation η h≡i, leading to the Schr¨pi is replaced by −i¯ odinger 

equation 
2N 2N 

� c − i¯ + 
ei ej 

⎡ �n ({ηri}) = ζn (L)�n({ηri}). 
η rji=1 

| h≡i |
i<j 

|ri − η | 

There are N identical particles of charge +e0 , and N identical particles of charge −e0. 

We can examine the effect of permutation operators P+ and P on these two sets. The− 
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symmetry constraints can be written compactly as 

P
−P+P ri }) = δP+ δ−�n ({η + · − �n({ηri}), 

where δ = +1 for bosons, δ = −1 for fermions, and (−1)P denotes the parity of the 

permutation. Note that there is no constraint associated with exchange of particles with 

opposite charge. 

(b) By a change of scale ηri 
∞ = ηri/L, show that the eigenvalues satisfy a scaling relation 

ζn (L) = ζn(1)/L. 

• After the change of scale ηri 
∞ = ηri/L (and corresponding change in the derivative 

∞ = L≡i), the above Schrödinger equation becomes ≡i 

2N � � 2N �� �� �� �� 
�

� 
h
≡i 

∞ 
�

� eiej ηri 
∞ ηri 

∞ 
� � + ⎡ �n = ζn (L)�n .� c 
�

−i¯
L L ηri 

∞ − ηrj 
∞ L L 

i=1 i<j 
| | 

The coordinates in the above equation are confined to a box of unit size. We can regard it 

odinger equation in such a box, with wave-functions �∞as the Schr¨ n ({ηri}) = �n ({ηri 
∞/L}). 

The corresponding eigenvalues are ζn(1) = Lζn (L) (obtained after multiplying both sides 

of the above equation by L We thus obtain the scaling relation 

ζn(1)
ζn(L) = . 

L 

(c) Using the formal expression for the partition function Z(N, V, T ), in terms of the 

eigenvalues {ζn(L)}, show that Z does not depend on T and V separately, but only on a 

specific scaling combination of them. 

• The formal expression for the partition function is 

⎦ � 
Z(N, V, T ) = tr e−�H = exp 

ζn (L) − 
kB T 

n 

� ζn(1) 
= exp ,− 

kB TL 
n 

where we have used the scaling form of the energy levels. Clearly, in the above sum T and 

L always occur in the combination TL. Since V = L3, the appropriate scaling variable is 

V T 3, and 

Z(N, V, T ) = Z(N, V T 3). 

5 



� 

�	 � 

(d) Relate the energy E, and pressure P of the gas to variations of the partition function. 

Prove the exact result E = 3PV . 

•	 The average energy in the canonical ensemble is given by 

ε ln Z 
= kB T

2 ε ln Z ε ln Z
E = − 

ε� εT 
= kB T

2(3V T 2) 
ε ln Z 

= 3kB V T 4 . 
ε(V T 3) ε(V T 3) 

The free energy is F = −kB T ln Z, and its variations are dF = −SdT − PdV + µdN . 

Hence the gas pressure is given by 

εF 
P = − 

εV 
= kB T

ε ln Z 
= kB T

4 ε ln Z 
. 

εV ε(V T 3) 

The ratio of the above expressions gives the exact identity E = 3PV . 

(e) The Coulomb interaction between charges in in d-dimensional space falls off with sepa­

ration as eiej / ηri − ηrj
d−2 

. (In d = 2 there is a logarithmic interaction.) In what dimension | | 
d can you construct an exact relation between E and P for non-relativistic particles (ki-

η2netic energy	 pi /2m)? What is the corresponding exact relation between energy and i 

pressure? 

• The above exact result is a consequence of the simple scaling law relating the energy 

eigenvalues ζn (L) to the system size. We could obtain the scaling form in part (b) since 

the kinetic and potential energies scaled in the same way. The kinetic energy for non­

2relativistic particles ηi /2m = − h2 ≡2 
i /2m, scales as 1/L2 under the change of scale i p i ¯

ηri 
∞ = ηri/L, while the interaction energy 

�2N | |i<j ei ej / ηri − ηrj
d−2 

in d space dimensions 

scales as 1/Ld−2 . The two forms will scale the same way in d = 4 dimensions, leading to 

ζn(1)
ζn(L) = . 

L2 

The partition function now has the scaling form 

⎦ � ⎦ � 
Z(N, V = L4, T ) = Z N, (TL2)2 = Z N, V T 2 . 

Following steps in the previous part, we obtain the exact relationship E = 2PV . 
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(f) Why are the above ‘exact’ scaling laws not expected to hold in dense (liquid or solid) 

Coulomb mixtures? 

• The scaling results were obtained based on the assumption of the existence of a single 

scaling length L, relevant to the statistical mechanics of the problem. This is a good 

approximation in a gas phase. In a dense (liquid or solid) phase, the short-range repulsion 

between particles is expected to be important, and the particle size a is another relevant 

length scale which will enter in the solution to the Schrödinger equation, and invalidate 

the scaling results. 

******** 

3. Non-interacting Fermions: Consider a grand canonical ensemble of non-interacting 

fermions with chemical potential µ. The one–particle states are labelled by a wavevector 

ηk, and have energies E(ηk). 

(a) What is the joint probability P ( nσ ), of finding a set of occupation numbers nσ ,
k k 

of the one–particle states? 

• In the grand canonical ensemble with chemical potential µ, the joint probability of 

finding a set of occupation numbers nσ , for one–particle states of energies E(ηk) is given 
k 

by the Fermi distribution 
⎣ � 

� exp k))nσ
� � k 

P ( nσ ) = 
�(

⎣ 
µ − E(η

� , where nσ = 0 or 1, for each ηk. k

σ 1 + exp �(µ − E(ηk)) 

k


k 

(b) Express your answer to part (a) in terms of the average occupation numbers nσ .k − 

• The average occupation numbers are given by 
⎣ � 

exp k))�(µ − E(η

nσ = ⎣ � ,k − 
1 + exp �(µ − E(ηk)) 

from which we obtain 
� � 

⎣ � nσ
exp k)) = � −

� . 
nσ

�(µ − E(η
1 − 

k

k − 

This enables us to write the joint probability as 
⎤ � 

�k 
�1−n

P ( nσ ) = nσ nσ .k k 1 − k− −
σk 
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(c) A random variable has a set of σ discrete outcomes with probabilities pn, where n = 

What is the entropy of this probability distribution? What is the maximum 1, 2, · · · , σ. 
possible entropy? 

• A random variable has a set of σ discrete outcomes with probabilities pn. The entropy 

of this probability distribution is calculated from 

δ 

S = −kB pn ln pn . 
n=1 

The maximum entropy is obtained if all probabilities are equal, pn = 1/σ, and given by 

Smax = kB ln σ. 

(d) Calculate the entropy of the probability distribution for fermion occupation numbers 

in part (b), and comment on its zero temperature limit. 

• Since the occupation numbers of different one-particle states are independent, the cor­

responding entropies are additive, and given by 

⎣ � � � �� 
S = −kB nσ ln nσ + 1 − nσ ln 1 − nσ .

k k k− k − − −
σk 

In the zero temperature limit all occupation numbers are either 0 or 1. In either case the 

contribution to entropy is zero, and the fermi system at T = 0 has zero entropy. 

(e) Calculate the variance of the total number of particles N2 , and comment on its zero 
c

temperature behavior. 

• The total number of particles is given by N = σ nσ . Since the occupation numbers 
k k 

are independent 

� � � � � � 
� � � 

2 
� 

2 
� �2 �

� � � � 
N2 = nσ = nσ nσ = nσ nσ ,

c k k − 
− k k 1 − k 

c − 
σ

− −
σ σk k k 

2since nσ = nσ . Again, since at T = 0, nσ = 0 or 1, the variance N2 
k k − − k − 

vanishes. 

(f) The number fluctuations of a gas is related to its compressibility �T , and number 

density n = N/V , by 

N2 = NnkB T �T . 
c 
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Give a numerical estimate of the compressibility of the fermi gas in a metal at T = 0 in 

units of Å3eV −1 . 

To obtain the compressibility from 
� 
N 2

� 
= N nkB T �T , we need to examine the behavior 

c
• 

at small but finite temperatures. At small but finite T , a small fraction of states around the 

fermi energy have occupation numbers around 1/2. The number of such states is roughly 

N kB T /ζF , and hence we can estimate the variance as 

� 
N 2

� 1 N kB T 
= N nkB T �T . 

c 
� 

4 
× 

ζF 

The compressibility is then approximates as 

1 
�T ,� 

4nζF 

where n = N/V is the density. For electrons in a typical metal n � 1029m−3 � 0.1Å3, and 

ζF � 5eV � 5 × 104 →K, resulting in 

A3eV −1 .�T � 0.5˚

******** 
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