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8.333: Statistical Mechanics I Fall 2005 Mid-term Quiz�

Review Problems 

The Mid-term quiz will take place on Monday 10/24/05 in room 1-190 from 2:30 
to 4:00 pm. There will be a recitation with quiz review on Friday 10/21/05. 

All topics up to (but not including) the micro-canonical ensemble will be covered. The 
exam is ‘closed book,’ but if you wish you may bring a two-sided sheet of formulas. The 
enclosed exams (and solutions) from the previous years are intended to help you review the 
material. Solutions to the midterm     the      

******** 
Answer all three problems, but note that the first parts of each problem are easier 

than its last parts. Therefore, make sure to proceed to the next problem when you get 
stuck. 

You may find the following information helpful: 

Physical Constants 

Electron mass me ∝ 9.1 × 10−31Kg Proton mass mp ∝ 1.7 × 10−27Kg 
Electron Charge e ∝ 1.6 × 10−19C Planck’s const./2α h̄ ∝ 1.1 × 10−34J s−1 

Speed of light c ∝ 3.0 × 108ms−1 Stefan’s const. δ ∝ 5.7 × 10−8W m−2K−4 

Boltzmann’s const. kB ∝ 1.4 × 10−23J K−1 Avogadro’s number N0 ∝ 6.0 × 1023mol−1 

Conversion Factors 

1atm ∞ 1.0 × 105N m−2 1Å ∞ 10−10m 1eV ∞ 1.1 × 104K 

Thermodynamics 

dW For a gas: ¯ dW = J dx dE = T dS +¯ dW = −P dV For a wire: ¯

Mathematical Formulas 
⎪ � 

1 � e−�x n!� 
dx xn = 

�n+1 ! = 
�

λ 
2 2 

⎪ � 
dx exp −ikx − x 2 

= 
⇒

2αδ2 exp β2 k2 
limN �� ln N ! = N ln N − N2−� 2β2 −

e−ikx = 
�� (−ik)n 

n≡ ln e−ikx = 
�� (−ik)n 

�xn
n=0 n! �x n=1 n! ≡c 

2 4 3 5 
cosh(x) = 1 + x + x + sinh(x) = x + x + x +2! 4! 3! 5!· · · · · · 

Surface area of a unit sphere in d dimensions Sd = 2λd/2 

(d/2−1)! 
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8.333: Statistical Mechanics I� Fall 1999 Mid-term Quiz�

1. Photon gas Carnot cycle: The aim of this problem is to obtain the blackbody ra­

diation relation, E(T, V ) → V T 4, starting from the equation of state, by performing an 
infinitesimal Carnot cycle on the photon gas. 

P 

V V+dV 

P+dP 

T 

T+dT 
P 

V 
(a) Express the work done, W , in the above cycle, in terms of dV and dP . 
• Ignoring higher order terms, net work is the area of the cycle, given by W = dPdV . 

(b) Express the heat absorbed, Q, in expanding the gas along an isotherm, in terms of P , 
dV , and an appropriate derivative of E(T, V ). 
• Applying the first law, the heat absorbed is 

�� � � � � �� � � 
γE� γE γE 

Q = dE + PdV = dT + dV + PdV = + P dV. 
γT V� γV T γV Tisotherm 

(c) Using the efficiency of the Carnot cycle, relate the above expressions for W and Q to 
T and dT . 
• The efficiency of the Carnot cycle (σ = dT/T ) is here calculated as 

W dP dT 
σ = =� = . 

Q [(γE/γV )T + P ] T 

(d) Observations indicate that the pressure of the photon gas is given�by P = AT 4 , 

B /45 (¯where A = α2k4 hc)
3 

is a constant. Use this information to obtain E(T, V ), assuming 
E(0, V ) = 0. 
• From the result of part (c) and the relation P = AT 4 , 

γE 
4AT 4 = 

γE 
+ AT 4 , or = 3AT 4 ,

γV� γV T� T 

so that 
E = 3AV T 4 . 

2 



� � � � 

� � 

� � �� 

� � � � � � 

� 

� � � 

(e) Find the relation describing the adiabatic paths in the above cycle. 
• Adiabatic curves are given by dQ = 0, or 

γE γE 
0 = dT + dV + P dV = 3V dP + 4P dV, 

γT γV V T 

i.e. 
P V 4/3 = constant. 

******** 

2. Moments of momentum: Consider a gas of N classical particles of mass m in thermal 
equilibrium at a temperature T , in a box of volume V . 

(a) Write down the equilibrium one particle density feq. (τ q ), for coordinate τq, and mo­p, τ
mentum τp. 
• The equilibrium Maxwell-Boltzmann distribution reads 

2n p
f (τ q ) = 

3/2 exp .p, τ
(2αmkB T )

−
2mkB T 

(b) Calculate the joint characteristic function, exp −iτk pτ , for momentum. ·
• Performing the Gaussian average yields 

mkB T
k2k pγp̃ τk = e−iγ · = exp .− 

2 

σ m n � (c) Find all the joint cumulants pxpy p .z c 
• The cumulants are calculated from the characteristic function, as 

� �σ � �m � �n 
� 

� 
m � γ γ γ τ �σ n px py p = ln ˜ k 

�z p
c γ (−ikx) γ (−iky ) γ (−ikz ) � 

γk=0 

= mkB T (βσ2βm0βn0 + βσ0βm2βn0 + βσ0βm0βn2) , 

i.e., there are only second cumulants; all other cumulants are zero. 

(d) Calculate the joint moment �p�p� (τ τ .p · p )≡
• Using Wick’s theorem 

�p�p� (τ τ =p · p )≡ �p�p� pπ pπ ≡ 
= �p�p� ≡ �pπ pπ ≡ + 2 �p�pπ ≡ �p� pπ ≡ 

2 2
= (mkB T ) β�� βππ + 2 (mkB T ) β�π β�π 

2
= 5 (mkB T ) β�� . 
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Alternatively, directly from the characteristic function, 

γ γ γ 
p · τ�p�p� (τ p )≡ = 

γ (−
γ

ik�) γ (−ik� ) γ (−ikπ ) γ (−ikπ ) 
p̃ τk 

� 

γk=0 

γ
k2 γ � 

2= 
γ (−

γ

ik�) γ (−ik� )
3mkB − (mkB T )2 τ e− mkBT 

k2 

γk=0 
2

= 5 (mkB T ) β�� . 

******** 

3. Light and matter: In this problem we use kinetic theory to explore the equilibrium 
between atoms and radiation. 

(a) The atoms are assumed to be either in their ground state a0, or in an excited state a1, 
which has a higher energy π. By considering the atoms as a collection of N fixed two-state 
systems of energy E (i.e. ignoring their coordinates and momenta), calculate the ratio 
n1/n0 of densities of atoms in the two states as a function of temperature T . 
• The energy and temperature of a two-state system are related by 

N η 
E = ,

1 + exp (η/kB T ) 

leading to 

N − E/η N exp (η/kB T ) E/η N 1 
n0 = = , and n1 = = ,

V V 1 + exp (η/kBT ) V V 1 + exp (η/kB T ) 

so that 
� � 

n1 η 
= exp . 

n0 
− 

kB T 

Consider photons θ of frequency � = π/¯ |τ | = ¯h and momentum p h�/c, which can 
interact with the atoms through the following processes: 
(i) Spontaneous emission: a1 � a0 + θ. 
(ii) Adsorption: a0 + θ � a1. 
(iii) Stimulated emission: a1 + θ � a0 + θ + θ. 

Assume that spontaneous emission occurs with a probability δsp, and that adsorption 
and stimulated emission have constant (angle-independent) differential cross-sections of 
δad/4α and δst/4α, respectively. 

(b) Write down the Boltzmann equation governing the density f of the photon gas, treating 
the atoms as fixed scatterers of densities n0 and n1. 
• The Boltzmann equation for photons in the presence of fixed scatterers reads 

γf γf 
+ τ = −δadn0cf + δstn1cf + δspn1.p ·

γt γτq 
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(c) Find the equilibrium density feq. for the photons of the above frequency. 
• In uniform equilibrium, the left-hand side vanishes, leaving 

−δadn0cfeq. + δstn1cfeq. + δspn1 = 0, 

i.e. 
1 δsp 

=
1 δsp

feq. = . 
c δadn0/n1 − δst c δad exp (η/kBT ) − δst 

(d) According to Planck’s law, the density of photons at a temperature T depends on their 
frequency � as feq. = [exp (h̄�/kB T ) − 1]

−1 
/h3 . What does this imply about the above 

cross sections? 
• The result of part (c) agrees with Planck’s law if 

c 
δad = δst, and δsp = 

h3 δst, 

a conclusion first reached by Einstein, and verified later with explicit quantum mechanical 
calculations of cross-sections. 

(e) Consider a situation in which light shines along the x axis on a collection of atoms 
whose boundary coincides with the x = 0 plane, as illustrated in the figure. 

x 

� 

vacuum matter (n0 , n1 ) 

Clearly, f will depend on x (and px), but will be independent of y and z. Adapt the 
Boltzmann equation you propose in part (b) to the case of a uniform incoming flux of 
photons with momentum τ = ¯ x/c. What is the penetration length across which the p h� ̂
incoming flux decays? 
• In this situation, the Boltzmann equation reduces to 

γf n1 
px = δstc (n1 − n0) f + χ (x) . 

γx h3 

To the uniform solution obtained before, one can add an exponentially decaying term for 
x > 0, i.e. 

f (px, x > 0) = A (px) e−ax/px + feq. (px) . 

5 



The constant A (px) can be determined by matching to solution for x < 0 at x = 0, and is 
related to the incoming flux. The penetration depth d is the inverse of the decay parameter, 
and given by 

px
d = , with a = δstc (n0 − n1) > 0. 

a 
******** 
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8.333: Statistical Mechanics I Fall 2000 Mid-term Quiz�

1. Superconducting transition: Many metals become superconductors at low temperatures 
T , and magnetic fields B. The heat capacities of the two phases at zero magnetic field are 
approximately given by 

Cs(T ) = V �T 3 in the superconducting phase 
� ⎬ 

Cn (T ) = V ωT 3 + θT in the normal phase 
, 

where V is the volume, and {�, ω, θ} are constants. (There is no appreciable change in 
volume at this transition, and mechanical work can be ignored throughout this problem.) 
(a) Calculate the entropies Ss(T ) and Sn(T ) of the two phases at zero field, using the third 
law of thermodynamics. 
• Finite temperature entropies are obtained by integrating dS = dQ/T , starting from ¯

S(T = 0) = 0. Using the heat capacities to obtain the heat inputs, we find 

⎧�
⎧ Cs = V �T 3 = T 

dSs 
, =≥ Ss = V 

�T 3 
,

dT 3 
⎧ 
⎧ 
⎭ Cn = V ωT 3 + θT 

⎬ 
= T 

dSn 
, =≥ Sn = V 

ωT 3 
+ θT 

� . 

dT 3 

(b) Experiments indicate that there is no latent heat (L = 0) for the transition between 
the normal and superconducting phases at zero field. Use this information to obtain the 
transition temperature Tc, as a function of �, ω, and θ. 
• The Latent hear for the transition is related to the difference in entropies, and thus 

L = Tc (Sn (Tc) − Ss(Tc)) = 0. 

Using the entropies calculated in the previous part, we obtain 

�T 3 ωT 3 � 
3θc c = + θTc, = Tc = . 

3 3 
≥ 

� − ω 

(c) At zero temperature, the electrons in the superconductor form bound Cooper pairs. 
As a result, the internal energy of the superconductor is reduced by an amount V �, i.e. 
En(T = 0) = E0 and Es(T = 0) = E0 −V � for the metal and superconductor, respectively. 
Calculate the internal energies of both phases at finite temperatures. 
• Since dE = T dS + BdM + µdN , for dN = 0, and B = 0, we have dE = T dS = CdT . 
Integrating the given expressions for heat capacity, and starting with the internal energies 
E0 and E0 − V � at T = 0, yields 

⎧ Es(T ) = E0 + V −� + T 4 
� 4 
⎧ 
⎭ En(T ) = E0 + V 

ω
T 4 + 

θ
T 2 

. 

4 2 
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(d) By comparing the Gibbs free energies (or chemical potentials) in the two phases, obtain 
an expression for the energy gap � in terms of �, ω, and θ. 
• The Gibbs free energy G = E − T S − BM = µN can be calculated for B = 0 in each 
phase, using the results obtained before, as 

�

� � � � 
T 4 

⎧ Gs(T ) = E0 + V −� + T 4 − T V 
�

T 3 = E0 − V � + 
� 4 3 12 

ω ω
T 4 θ 

⎧ 
⎭ Gn(T ) = E0 + V 

ω
T 4 + 

θ
T 2 − T V T 3 + θT = E0 − V + T 2 

. 

4 2 3 12 2 

At the transition point, the chemical potentials (and hence the Gibbs free energies) must 
be equal, leading to 

� θ θ 
� + T 4 = 

ω
T 4 + Tc 

2 , =≥ � = Tc 
2 − 

� − ω
T 4 . 

12 c 12 c 2 2 12 c 

Using the value of Tc = 3θ/(� − ω), we obtain 

3 θ2 
� = . 

4 � − ω 

(e) In the presence of a magnetic field B, inclusion of magnetic work results in dE = 
T dS+BdM +µdN , where M is the magnetization. The superconducting phase is a perfect 
diamagnet, expelling the magnetic field from its interior, such that Ms = −V B/(4α) in 
appropriate units. The normal metal can be regarded as approximately non-magnetic, 
with Mn = 0. Use this information, in conjunction with previous results, to show that the 
superconducting phase becomes normal for magnetic fields larger than 

T 2 
Bc(T ) = B0 1 − 

T 2 , 
c 

giving an expression for B0. 
• Since dG = −SdT − MdB + µdN , we have to add the integral of −MdB to the Gibbs 
free energies calculated in the previous section for B = 0. There is no change in the 
metallic phase since Mn = 0, while in the superconducting phase there is an additional 

⎪ ⎪ 
contribution of − MsdB = (V/4α) BdB = (V/8α)B2 . Hence the Gibbs free energies 
at finite field are 

B2 
⎧ 
⎧ 
� Gs(T, B) = E0 − V � + T 4 + V 

12 8α 
⎧ 
⎧ T 2 
⎭ Gn (T, B) = E0 − V 

ω
T 4 + 

θ 
12 2 

8�
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Equating the Gibbs free energies gives a critical magnetic field 

B2 θ 3 θ2 θ � − ω
T 4c = � − T 2 + 

� − ω
T 4 =

4 � − ω 
− 

2 
T 2 + 

8α 2 12 12 
� �2

� − ω 3θ 6θT 2 
+ T 4 = 

� − ω � 
Tc 

2 − T 2
�2 

,= 
12 � − ω 

− 
� − ω 12 

where we have used the values of � and Tc obtained before. Taking the square root of the 
above expression gives 

T 2 6αθ2 
� 

Bc = B0 1 − 
T 2 , where B0 =

2α(� − ω) 
Tc 

2 = 
� − ω 

= Tc 2αθ. 
3c 

******** 

2. Probabilities: Particles of type A or B are chosen independently with probabilities pA 

and pB . 

(a) What is the probability p(NA, N) that NA out of the N particles are of type A? 
• The answer is the binomial probability distribution 

p(NA, N) = 
N ! 

p NA p N −NB .BNA!(N − NA)! A 

(b) Calculate the mean and the variance of NA. 
We can write • 

N 

nA = ti, 
i=1 

where ti = 1 if the i-th particle is A, and 0 if it is B. The mean value is then equal to 

N N 

�NA≡ = �ti ≡ = (pA × 1 + pB × 0) = NpA. 
i=1 i=1 

Similarly, since the {ti} are independent variables, 

N 
� � N 

� � � � 2 � �

2 2N2 
A c = ti − �ti≡ = pA − pA = NpApB . 

i=1 i=1 

(c) Use the central limit theorem to obtain the probability p(NA, N) for large N . 

9 
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• According to the central limit theorem the PDF of the sum of independent variables 
for large N approaches a Gaussian of the right mean and variance. Using the mean and 
variance calculated in the previous part, we get 

2 
1 

lim p(NA, N) ∝ exp 
(NA − NpA)

N ∞1 
− 

2NpApB 
⇒

2αNpApB 
. 

(d) Apply Stirling’s approximation (ln N ! ∝ N ln N − N) to ln p(NA, N) [using the prob­

ability calculated in part (a), not part (c)] to find the most likely value, NA, for N √ 1. 
• Applying Stirling’s approximation to the logarithm of the binomial distribution gives 

ln p(NA, N) = ln N ! − ln NA! − ln(N − NA)! + NA ln pA + (N − NA) ln pB 

NA NA − (N − NA) ln + NA ln pA + (N − NA) ln pB .∝ −NA ln 1 −
N N 

The most likely value, NA, is obtained by setting the derivative of the above expression 
with respect to NA to zero, i.e. 

d ln p NA N pA 
= − ln + ln = 0, = NA = pAN. 

dNA N N − NA pB 
≥ 

Thus the most likely value is the same as the mean in this limit. 

(e) Expand ln p(NA, N) calculated in (d) around its maximum to second order in 
NA − NA , and check for consistency with the result from the central limit theorem. 
• Taking a second derivative of ln p gives 

d2 ln p 1 1 N 1 
dN2 −

NA 
−

N − NA 
−

NA N − NA 
−

NpApBA 

The expansion of ln p around its maximum thus gives 

2 

,ln p ∝ − 
(NA − pAN)

2NpApB 

which is consistent with the result from the central limit theorem. The correct normaliza­

tion is also obtained if the next term in the Stirling approximation is included. 
******** 

3. Thermal Conductivity: Consider a classical gas between two plates separated by a 
distance w. One plate at y = 0 is maintained at a temperature T1, while the other plate at 

10�
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y = w is at a different temperature T2. The gas velocity is zero, so that the initial zeroth 
order approximation to the one particle density is, 

f1
0(τ

n(y) 
3/2 exp 

τ pp · τ
p, x, y, z) = . 

[2αmkB T (y)]
−

2mkB T (y) 

(a) What is the necessary relation between n(y) and T (y), to ensure that the gas velocity τu 
remains zero? (Use this relation between n(y) and T (y) in the remainder of this problem.) 
• Since there is no external force acting on the gas between plates, the gas can only flow 
locally if there are variations in pressure. Since the local pressure is P (y) = n(y)kB T (y), 
the condition for the fluid to be stationary is 

n(y)T (y) = constant. 

(b) Using Wick’s theorem, or otherwise, show that 
� 

2
�0 0 0 2 

p ∞ �p�p�≡ = 3 (mkB T ) , and 
� 
p 4
�0 

= 15 (mkB T ) ,∞ �p�p�p� p� ≡ 
0

where �O≡ indicates local averages with the Gaussian weight f1
0 . Use the result p6 �0 

= 
105(mkB T )3 (you don’t have to derive this) in conjunction with symmetry arguments to 
conclude 

� 
2 4
�0 3 

py p = 35 (mkB T ) . 

0 • The Gaussian weight has a covariance �p�p� ≡ = β�� (mkB T ). Using Wick’s theorem 
gives 

� 
2
�0 0 

p = �p�p�≡ = (mkB T ) β�� = 3 (mkB T ) . 

Similarly 
� 

4
�0 0 2 2 

p = �p�p�p� p� ≡ = (mkB T ) (β�� + 2β�� β�� ) = 15 (mkB T ) . 

The symmetry along the three directions implies 
� 

2 4
�0 � 

2 4
�0 � 

2 4
�0 1 � 2 4

�0 1 3 3 
pxp = py p = pz p = p p =

3 
× 105 (mkB T ) = 35 (mkB T ) . 

3 

(c) The zeroth order approximation does not lead to relaxation of temperature/density 
variations related as in part (a). Find a better (time independent) approximation f1

1(τp, y), 
by linearizing the Boltzmann equation in the single collision time approximation, to 

� ⎬ γ py γ
f 0 f1

1 − f1
0 

+ ,1L f 1 ∝ 
γt m γy 1 ∝ − 

εK 

11 
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where εK is of the order of the mean time between collisions. 
Since there are only variations in y, we have 
γ py γ py p 3 

+ f 0 = f 0 py 
γy ln f 0 = f 0 γy ln n − 

3 
ln T − 

2 
ln (2αmkB )1 1 1γt m γy 1 m m 2 2mkB T 

− 
2 

2γy n 3 γy T p γT 
= f 0 py 5 p2 γy T

,+= f1
0 py 

+ 1 m n 
− 

2 T 2mkB T T m 
− 

2 2mkB T T 
where in the last equality we have used nT = constant to get γy n/n = −γy T /T . Hence 
the first order result is 

2p 5 γy T 
f1

1(τ p, y) 1 − εK 
py

p, y) = f1
0(τ

m 2mkB T 
− 

2 T
. 

(d) Use f1
1, along with the averages obtained in part (b), to calculate hy , the y component 

of the heat transfer vector, and hence find K, the coefficient of thermal conductivity. 
• Since the velocity τu is zero, the heat transfer vector is 

� 
2 �1 

mc n � 
hy = n cy = py p 2

�1 
. 

2m22 
In the zeroth order Gaussian weight all odd moments of p have zero average. The correc­

tions in f1
1, however, give a non-zero heat transfer 

hy = −εK 
n γy T py p2 5 

� �0 
2 py p . 

2m2 T m 2mkB T 
− 

2 
2 2Note that we need the Gaussian averages of py p

4 �0 
and py p

2 �0 
. From the results of part 

(b), these averages are equal to 35(mkB T )3 and 5(mkB T )2, respectively. Hence 

hy = −εK 
n γy T 2 35 5 × 5 5 nεK k

2 T 
(mkB T )

2 
− 

2
= − 

2 m 
B γy T. 

2m3 T 
The coefficient of thermal conductivity relates the heat transferred to the temperature 
gradient by τh = −K≈T , and hence we can identify 

5 nεK k
2 T 

K = B . 
2 m 

(e) What is the temperature profile, T (y), of the gas in steady state? 
• Since γtT is proportional to −γy hy , there will be no time variation if hy is a constant. 
But hy = −Kγy T , where K, which is proportional to the product nT , is a constant in 
the situation under investigation. Hence γy T must be constant, and T (y) varies linearly 
between the two plates. Subject to the boundary conditions of T (0) = T1, and T (w) = T2, 
this gives 

T (y) = T1 + 
T2 − T1 

y. 
w 

********�
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8.333: Statistical Mechanics I Fall 2003 Mid-term Quiz�

1. Hard core gas: A gas obeys the equation of state P (V − Nb) = NkB T , and has a 
heat capacity CV independent of temperature. (N is kept fixed in the following.) 

(a) Find the Maxwell relation involving γS/γV T ,N .|
• For dN = 0, 

γS � γP � 
d(E − TS) = −SdT − PdV, = = . 

� γT 
≥ 

γV T ,N V,N 

(b) By calculating dE(T, V ), show that E is a function of T (and N) only. 
• Writing dS in terms of dT and dV , 

γS � γS � 
dE = TdS − PdV = T � dT + � dV − PdV. 

γT � γV V,N T ,N 

Using the Maxwell relation from part (a), we find 

γS � γP � 
dE(T, V ) = T � dT + T 

� − P dV. 
γT � γT V,N V,N 

But from the equation of state, we get 

NkB T γP � P γS � 
P = , = � = , = dE(T, V ) = T � dT, 

(V − Nb) 
≥ 

γT V,N T 
≥ 

γT V,N 

i.e. E(T, N, V ) = E(T, N) does not depend on V . 

(c) Show that θ ∞ CP /CV = 1 + NkB /CV (independent of T and V ). 
• The heat capacity is 

γQ � γE + PγV � γE � γV � 
CP = = � = � + P . 

γT � γT � γT � γT P P P P 

But, since E = E(T ) only, 
γE � γE � 
� = � = CV ,

γT P γT V 

and from the equation of state we get 

γV � NkB NkB 
� = , = CP = CV + NkB , =≥ θ = 1 + ,

γT P P 
≥ 

CV 

13 
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which is independent of T , since CV is independent of temperature. The independence of 
CV from V also follows from part (a). 

(d) By writing an expression for E(P, V ), or otherwise, show that an adiabatic change 
satisfies the equation P (V − N b)π =constant. 
• Using the equation of state, we have 

CV
dE = CV dT = CV d

P (V − N b)
= (P dV + (V − N b)dP ) . 

N kB N kB 

The adiabatic condition, dQ = dE + P dV = 0, can now be written as 

CV CV
0 = dQ = 1 + P d(V − N b) + (V − N b)dP. 

N kB N kB 

Dividing by CV P (V − N b)/(N kB ) yields 

dP 
+ θ

d(V − N b) 
= 0, =≥ ln [P (V − N b)π ] = constant. 

P (V − N b) 

******** 

2. Energy of a gas: The probability density to find a particle of momentum p ∞ 
(px, py , pz ) in a gas at temperature T is given by 

p
p(p) = 

1 
3/2 exp − 

2mk

2 

B T
, where p 2 = p · p . 

(2αmkB T )

(a) Using Wick’s theorem, or otherwise, calculate the averages p2 and �(p · p)(p · p)≡. 
• From the Gaussian form we obtain �p�p� ≡ = mkB T β�� , where � and ω label any of the 
three components of the momentum. Therefore: 

2p = �p�p�≡ = mkB T β�� = 3mkB T, 

and using Wick’s theorem 

2 2 �(p · p)(p · p)≡ = �p�p�p� p� ≡ = (mkB T ) [β��β�� + 2β�� β�� ] = 15 (mkB T ) . 

(b) Calculate the characteristic function for the energy π = p2/2m of a gas particle. 
The characteristic function π is the average eikα � , which is easily calculated by Gaussian • 

integration as 

1 p2 
� 
e ikα

� 
= 
� 
eikp 2 /2m 

� 
= 

d3p 
3/2 exp ik − = (1 − ikkB T )−3/2 

. 
(2αmkB T ) kB T 2m 
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(c) Using the characteristic function, or otherwise, calculate the mth cumulant of the 
particle energy �πm .≡c 
• The cumulants are obtained from the expansion 

� �

� (ik)m 3 3 � (kB T )
m 

ln e ikα = �πm = ln (1 − ikkB T ) = (ik)m , 
m! 

≡c − 
2 2 m 

m=1 m=1 

as 
3 �πm = (m − 1)! (kB T )

m 
.≡c 2 

�N
(d) The total energy of a gas of N (independent) particles is given by E = πi, where i=1 
πi is the kinetic energy of the ith particle, as given above. Use the central limit theorem 
to compute the probability density for energy, p(E), for N √ 1. 
• Since the energy E is the sum of N identically distributed independent variables, its 
cumulants are simply N times those for a signle variable, i.e. 

3 �Em = N �πm = N(m − 1)! (kB T )
m 

.≡c ≡c 2 
According to the central limit theorem, in the large N limit the mean and variance are 
sufficient to describe the probability density, which thus assumes the Gaussian form 

2 

p(E) =
1 (E − 3NkB T/2)

.⇒
3αNkB T 

exp − 
3NkB T 

******** 

3. ‘Relativistic’ gas: Consider a gas of particles with a ‘relativistic’ one particle Hamil­

tonian H1 = c p , where p = p2 + py + p2 is the magnitude of the momentum. (Thex z| | | | 2 

external potential is assumed to be zero, expect at the edges of the box confining the 
gas particles.) Throughout this problem treat the two body interactions and collisions 
precisely as in the case of classical particles considered in lectures. 

(a) Write down the Boltzmann equation for the one-particle density f1(p,q, t), using the 
same collision form as employed in lectures (without derivation). 
• The Boltzmann equation has the general form 

Lf1 = C[f1, f1]. 

The collision term is assumed to be the same as in the classical case derived in lectures, 
and thus given by 

C[f1, f1] = − d3 p2d
2b v2 − v1 [f1(p1)f1(p2) − f1(p

→
2
)] .

1
)f1(p

→| | 
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(There are various subtleties in treatment of relativistic collisions, such as the meaning of 
v2 − v1 , which shall be ignored here.) The streaming terms have the form | |

p� Lf1(p,q, t) = γtf1 + {H1, f1} = γt + 
γH1 

γ� f1 = γt + c γ� f1. 
γp� p| | 

(b) The two body collisions conserve the number of particles, the momentum, and the 
particle energies as given by H1. Write down the most general form f1

0(p,q, t) that sets 
the collision integrand in the Boltzmann equation to zero. (You do not need to normalize 
this solution.) 
• The integrand in C[f1, f1] is zero if at each q, ln f1(p1)+ln f1(p2) = ln f1(p

→
2
).

1
)+ln f1(p

→

This can be achieved if ln f1 = µ aµ (q, t)λµ(p), where λµ(p) are quantities conserved in 
a two body collision, and aµ are functions independent of p. In our case, the conserved 
quantities are 1 (particle number), p (momentum), and c p (energy), leading to | | 

f1
0(p,q, t) = exp [−a0(q, t) − a1(q, t)·p − a2(q, t)c p ] .| |

For any function λ(p) which is conserved in the collisions, there is a hydrodynamic 
equation of the form 

� � �� � � 
p� p�

γt (n �λ≡) + γ� n c λ c γ�λ = 0, |p| − n �γtλ≡ − n |p| 
⎪ 

where n(q, t) = d3pf1(p,q, t) is the local density, and 

1 �O≡ = 
n

d3 pf1(p,q, t)O. 

(c) Obtain the equation governing the density n(q, t), in terms of the average local velocity 
u� = �cp�/|p|≡. 
• Substituting λ = 1 in the conservation equation gives 

γtn + γ� (nu�) = 0, with u� = �cp�/|p|≡ . 

(d) Find the hydrodynamic equation for the local momentum density α�(q, t) ∞ �p�≡, in 
terms of the pressure tensor P�� = nc �(p� − α�) (p� − α� ) /|p|≡. 
• Since momentum is conserved in the collisions, we can obtain a hydrodynamic equation 
by putting λ� = p� − α� in the general conservation form. Since �λ�≡ = 0, this leads to 

λ� + α�
γ� n c λ� + nγtα� + nu� γ� α� = 0. 

p| | 
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Further simplification and rearrangements leads to�

1 1 λ�
Dtα� ∞ γtα� + u� γ� α� = γ� P�� − γ� nα� c .− 

n n |p| 

(Unfortunately, as currently formulated, the problem does not lead to a clean answer, in 
that there is a second term in the above result that does not depend on P�� .) 

(e) Find the (normalized) one particle density f1(p, q, t) for a gas of N such particles in a 
box of volume V , in equilibrium at a temperature T . 
• At equilibrium, the temperature T and the density n = N/V are uniform across the 
system, and there is no local velocity. The general form obtained in part (b) now gives 

� � � �3 
c p 1 c 

f1
0(p, q, t) = 

N 
exp 

| | 
. 

V 
− 

kB T 8α kB T 
⎪ 

The normalization factor is obtained by requiring N = V d3pf1, noting that d3p = 
⎪ 

e−p/a4αp2dp, and using 
0 
� 

dppn = n!an+1 . 

(f) Evaluate the pressure tensor P�� for the above gas in equilibrium at temperature T . 
• For the gas at equilibrium α� = u� = 0, and the pressure tensor is given by 

p�p� px px nc p · p
P�� = nc = ncβ�� = β�� . 

p p 3 p| | | | | | 

In rewriting the above equation we have taken advantage of the rotational symmetry of 
the system. The expectation value is simply 

⎪ 
pe−cp/kB T� 

dpp2 kB T0 
⎪ ,�|p|≡ = 
0 
� 

dpp2e−cp/kB T 
= 3 

c 

leading to 
P�� = β�� nkB T, 

which is the usual formula for an ideal gas. 
******** 
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8.333: Statistical Mechanics I Fall 2004 Mid-term Quiz�

1. Wire: Experiments on stretching an elastic wire indicate that, at a temperature T , a 
displacement x requires a force 

J = ax − bT + cTx, 

where a, b, and c are constants. Furthermore, its heat capacity at constant displacement 
is proportional to temperature, i.e. Cx = A(x)T . 

(a) Use an appropriate Maxwell relation to calculate γS/γx T .|
• From dF = −SdT + Jdx, we obtain 

γS � γJ � 
� = � = b − cx. 

γx T 
− 

γT x 

(b) Show that A has to be independent of x, i.e. dA/dx = 0. 
We have Cx = T εS 

� = A(x)T , where S = S(T, x). Thus 
εT x

• 

γA γ γS γ γS 
= = = 0 

γx γx γT γT γx 

from part (a), implying that A is independent of x. 

(c) Give the expression for S(T, x), and comment on whether it is compatible with the 
third law of thermodynamics. 
• By integrating the derivatives of S given above, S(x, T ) can be calculated as 

� T � 
�=T γS(T →, x = 0) x � =x γS(T, x→)

S(x, T ) = S(0, 0) + dT → + dx 
T �=0 γT → 

x� =0 γx→ 
� T � x 

= S(0, 0) + AdT → + (b − cx→)dx→ 

0 0 
c 

= S(0, 0) + AT + bx − x 2 . 
2 

However, S(T = 0, x) = S(0, 0) + bx − cx2/2, now explicitly depends on x, in violation of 
the third law of thermodynamics. 

(d) Calculate the heat capacity at constant tension, i.e. CJ = T γS/γT J , as a function |
of T and J . 
• Writing the entropy as S(T, x) = S(T, x(T, J)), leads to 

γS � γS � γS � γx � 
γT J γT � γx T γT x J 
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εS εx From parts (a) and (b), εx 
� 
T = b − cx and εS 

� x = A. Furthermore, εT 
� 
J is given by εT 

a εx − b + cx + cT εx = 0, i.e. εT εT 
γx b − cx 

= . 
γT a + cT 

Thus 
(b − cx)2 

CJ = T A + . 
(a + cT ) 

J +bTSince x = a+cT , we can rewrite the heat capacity as a function of T and J , as 

J +bT(b − c a+cT )
2 

CJ = T A + 
(a + cT ) 

(ab − cJ )2 
= T A + . 

(a + cT )3 

******** 

2. Random matrices: As a model for energy levels of complex nuclei, Wigner considered 
N × N symmetric matrices whose elements are random. Let us assume that each element 
Mij (for i � j) is an independent random variable taken from the probability density 
function 

1 
p(Mij ) = for − a < Mij < a , and p(Mij ) = 0 otherwise. 

2a 

(a) Calculate the characteristic function for each element Mij . 
• Since each element is uniformly distributed in the interval (−a, a), the characteristic 
function is 

a eika − e−ika sin ak 
p̃ij (k) = dx e−ikx 1 = = . 

2a 2aik ak−a 

(b) Calculate the characteristic function for the trace of the matrix, T ∞ tr M = i Mii. 
• The trace of the matrix is the sum of the N diagonal elements which are independent 
random variables. The characteristic function for the sum of independent variables is 
simply the product of the corresponding characteristic functions, and thus 

� �NN 
� sin ak 

p̃T (k) = p̃ii (k) = . 
ak 

i=1 

(c) What does the central limit theorem imply about the probability density function of 
the trace at large N ? 
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• Since the trace is the sum of N √ 1 independent random variables, its cumulants are 
simply N times those of a single element. The leading cumulants are 

= N �Mij≡ = 0,c�T ≡

and 
� a 2 2 

� � � � x a
= N M2 = N dx = N .T 2

c ij 2a 3−a 

For the qunatity t = T/
⇒

N , higher order cumulants vanish in the limit of N � �, and 
thus 

tr M 3t2 3 
lim p t = ⇒

N 
= exp . 

N�� 
−

2a2 2αa2 

(d) For large N , each eigenvalue �� (� = 1, 2, · · · , N) of the matrix M is distributed 
according to a probability density function 

2 �2 
p(�) = 

α�0 
1 − 

�2 for − �0 < � < �0, and p(�) = 0 otherwise, 
0 

(known as the Wigner semi-circle rule). Find the variance of �. 
(Hint: Changing variables to � = �0 sin χ simplifies the integrals.) 
• The mean value of � is zero by symmetry, and hence its variance is given by 

� � � �0 

�2 = 
�2 

d� �2 2 
. 

c 
−�0 α�0 

1 − 
�2 

0 

In the integral, change variables to � = �0 sin χ and d� = �0 cos χdχ, to get 
� λ/2 �2 � λ/2 � λ/2 

� � 2�2 �2 �2 
0 0 0�2 = dχ cos 2 χ sin2 χ = dχ sin2 2χ = dχ (1 − cos 4χ) = 0 . 

c α 4α 4−λ/2 2α −λ/2 −λ/2 

(e) If in the previous result, we have �2 
0 = 4Na2/3, can the eigenvalues be independent of 

each other? 
• The trace of a matrix is related to its eigenvalues by 

N N 

T = ��, = = �2 + ����� ≡ . 
c

≥ T 2
�=1 �=1 �=�√

The cross-correlations of eigenvalues thus satisfy 

N 
� 

� � �

� � a2 4Na2 
����� ≡ = T 2 = N = 0. 

c − �2 
3 

− N × 
3 

�
�=� �=1√
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Clearly, this is inconsistent with independent eigenvalues. In fact, the well known result 
that eigenvalues do not cross implies a repulsion between eigenvalues which leads to a 
much wider distribution than would result from independent eigenvalues. 

******** 

3. Viscosity: Consider a classical gas between two plates separated by a distance w. 
One plate at y = 0 is stationary, while the other at y = w moves with a constant velocity 
vx = u. A zeroth order approximation to the one particle density is, 

p, τ 2 2f1
0(τ q ) = 

n 
3/2 exp 

1 � 
(px − m�y)2 + py + p ,z 

(2αmkB T )
−

2mkB T 

obtained from the uniform Maxwell–Boltzmann distribution by substituting the average 
value of the gas velocity at each point. (� = u/w is the velocity gradient, while n and T 
are constants.) 
(a) The above approximation does not satisfy the Boltzmann equation as the collision term 
(right hand side of the equation) vanishes, while (the left hand side) df 10/dt = 0. Find 
a better approximation, f1

1(τp ), by considering the linearized Boltzmann equation in the 
single collision time approximation, i.e. 

τ γ� ⎬ γ p 
f 0 ,+1 q

L f 1 ∝ 
γt m 

·
γτ 1 ∝ − 

f1
1 

ε 
− f1

0 

× 

where ε is a characteristic mean time between collisions. × 

We have 
� �

• 
γ p

+ 
τ γ

f 0 = 
�

py (px − m�y)f1
0 ,

γt m 
·
γτ 1 mkB Tq 

whence 
� ⎫ 

f1
1 = f1

0 1 − ε × 
mk

� 
B T

py (px − m�y) . 

(b) Calculate the off-diagonal component Pxy (y) of the pressure tensor. 
• The pressure tensor is P�� (y) = nm �c�c� ≡ = n �p�p� ≡ /m. From the first order density, 
the off-diagonal element is calculated as 

Pxy (y) = d3 p
px py 

f1
1(y) 

m 
ε � × 

1 = d3 p
px 

m

py −
mkB T

py (px − m�y)f 0 

� ⎨ 
� ⎨ 2 
� ⎩� exp ⎩�n 2mkB T 2 

−
2mkB T 

= 
−ε × 

dpx (px − m�y)2 
exp − (px −m�y)2 

⎧ 
dpy p 

py ⎧ 

ym2 kB T ⎭ 
⇒

2αmkB T �⎧ 
⇒

2αmkB T ⎧ 
⎭ � 

ε �n ×
= −

m2kB T 
(mkB T )2 = −�nε kB T. × 
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(c) The gas exerts a transverse force per unit area Fx = −Pxy (y = w) on the moving plate. 
Calculate this force, and hence obtain the coefficient of viscosity, defined by σ = Fx /�. 
• The pressure tensor calculated in part (b) is in fact independent of the position y, and 
the force exerted on the top plate (or the bottom plate) is thus 

Fx = −Pxy = �nε kB T. × 

The coefficient of viscosity is then simply 

Fx
σ = = nε kB T. 

******** 
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