8.333: Statistical Mechanics I Fall 2005 Mid-term Quiz[]

Review Problems

The Mid-term quiz will take place on Monday 10/24/05 in room 1-190 from 2:30
to 4:00 pm. There will be a recitation with quiz review on Friday 10/21/05.

All topics up to (but not including) the micro-canonical ensemble will be covered. The
exam is ‘closed book,” but if you wish you may bring a two-sided sheet of formulas. The
enclosed exams (and solutions) from the previous years are intended to help you review the
material. Solutions to the midterm are available in the exams section.
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Answer all three problems, but note that the first parts of each problem are easier
than its last parts. Therefore, make sure to proceed to the next problem when you get
stuck.

You may find the following information helpful:

Physical Constants

Electron mass me ~ 9.1 x1073'Kg  Proton mass my ~ 1.7 X 1072"Kg
Electron Charge e~ 1.6 x 10719C Planck’s const./2m ha 1.1 x 10734 Js7!
Speed of light c~3.0x10%ms! Stefan’s const. o~57x108Wm2K~*

Boltzmann’s const. kg ~ 1.4 x 10723JK~! Avogadro’s number Ny ~ 6.0 x 10%3>mol~!

Conversion Factors

latm = 1.0 x 10° Nm~2 1A=10""m leV = 1.1 x 10*K
Thermodynamics
dE = TdS+dW For a gas: dW = —PdV For a wire: dW = Jdx

Mathematical Formulas

o0 n ,—ar n! 1 ™
fo dx x" e = T (ﬂ!:%
ffooo dx exp [—ikx - %} = V2mwo2exp [— ”22k2] limy_ooInN!'=NInN — N
(e7h) = S0l S 2™ In (e**) = 3302, 55 (2,
332 .’E4 3 $3 $5
cosh(z) =1+ 5 + 45 +--- sinh(z) =2+ 5 + & + -
Surface area of a unit sphere in d dimensions Sy = (ffojl_/;



8.333: Statistical Mechanics I[] Fall 1999 Mid-term Quiz[]

1. Photon gas Carnot cycle: The aim of this problem is to obtain the blackbody ra-
diation relation, E(T,V) o VT, starting from the equation of state, by performing an
infinitesimal Carnot cycle on the photon gas.

Vv V+dV

-V

(a) Express the work done, W, in the above cycle, in terms of dV and dP.

e Ignoring higher order terms, net work is the area of the cycle, given by W = dPdV'.

(b) Express the heat absorbed, @, in expanding the gas along an isotherm, in terms of P,
dV, and an appropriate derivative of E(T,V).
e Applying the first law, the heat absorbed is

OF OF OF
= dE+ PdV = | = - = (= .
Q = dE + PdV KaTjVDdTJr(av)TquLPdV} {(8V)T+P}d‘/

isotherm

(c) Using the efficiency of the Carnot cycle, relate the above expressions for W and @ to
T and dT.
e The efficiency of the Carnot cycle (n = dT/T) is here calculated as

w dP ar

"= Q T{@EV), P T

(d) Observations indicate that the pressure of the photon gas is given'by P = AT*,
where A = 72k%, /45 (he)® is a constant. Use this information to obtain E(T, V), assuming
E(0,V)=0.

e From the result of part (c) and the relation P = AT*,

O
4AT* = (8—ED> + AT*, or <8—E> = 3AT*,
oVl o, oV ),

so that
E =3AVT%.
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(e) Find the relation describing the adiabatic paths in the above cycle.
e Adiabatic curves are given by d@Q = 0, or

o= (22 ar+ (%E) av 4 pav = svap + 4pav.
aT ), v ),

i.e.
PV*/3 = constant.

ok sfok ok ok

2. Moments of momentum: Consider a gas of N classical particles of mass m in thermal
equilibrium at a temperature 7', in a box of volume V.

(a) Write down the equilibrium one particle density feq. (7, q’), for coordinate ¢, and mo-
mentum p.

e The equilibrium Maxwell-Boltzmann distribution reads

2
f(0.q) = ————=5 exp <— >
(2ka3T> 2mkpT

(b) Calculate the joint characteristic function, <exp (—ZE P ) >, for momentum.
e Performing the Gaussian average yields

$E) = () o (25507

(c) Find all the joint cumulants <pf;p;”p2>c.
e The cumulants are calculated from the characteristic function, as

). = [t o) o) o

= mkpT (6020m00n0 + 9200m20n0 + 9200m00n2)

i.e., there are only second cumulants; all other cumulants are zero.

(d) Calculate the joint moment (popg (7 p))-
e Using Wick’s theorem

(Paps (0 D)) = (PaDsPyD~)

= (Paps) (PyPy) + 2 (pap~) (PBP~)
(mkpT)? 8apdyy + 2 (mkpT)? 6ayds,
5 (mkgT)’ 8.
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Alternatively, directly from the characteristic function,

- _ a a a a 5 (k
(paps (P D)) = 0 (—iky) O (—ikg) O (—ik.) 8(—ik7)p <k> i—o
_ 0 0 B 2 2] - TR
= By D) (e (ks T ] o
=5 (771]{5BT)2 5045‘

soksfok ok ok

3. Light and matter: In this problem we use kinetic theory to explore the equilibrium

between atoms and radiation.

(a) The atoms are assumed to be either in their ground state ag, or in an excited state aq,
which has a higher energy . By considering the atoms as a collection of N fixed two-state
systems of energy E (i.e. ignoring their coordinates and momenta), calculate the ratio
ny/ng of densities of atoms in the two states as a function of temperature 7.

e The energy and temperature of a two-state system are related by

P Ne
~ 1+exp(e/kpT)’
leading to
N —FE/e N exp(e/kpT) E/e N 1
ng= ———— = — y and n = —F—= == ’
Vv V 1+exp(e/kpT) Vv V 1+exp(e/kpT)
so that
n1 €
— =exp| — .
o P ]{?BT
Consider photons v of frequency w = ¢/h and momentum |p| = hw/c, which can

interact with the atoms through the following processes:
(i) Spontaneous emission: a1 — ag + 7.
(ii) Adsorption: ag + v — a;.
(iii) Stimulated emission: ay + v — ag + v + 7.
Assume that spontaneous emission occurs with a probability o, and that adsorption
and stimulated emission have constant (angle-independent) differential cross-sections of
Oad/4m and og /4w, respectively.

(b) Write down the Boltzmann equation governing the density f of the photon gas, treating
the atoms as fixed scatterers of densities ng and n;.
e The Boltzmann equation for photons in the presence of fixed scatterers reads

of . Of
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(c) Find the equilibrium density fe,. for the photons of the above frequency.
e In uniform equilibrium, the left-hand side vanishes, leaving

_Uadnocfeq. + Ustnlcfeq. + OspNl1 = 07

i.e.
1 Osp 1 Osp

feq. = -

c TadNo/M1 — st c oadexp (€/kT) — og

(d) According to Planck’s law, the density of photons at a temperature 7" depends on their
frequency w as feq = [exp (hw/kpT) — 117" /h3. What does this imply about the above
cross sections?
e The result of part (c) agrees with Planck’s law if

Oad = Ost, and oz, = %ast,

h

a conclusion first reached by Einstein, and verified later with explicit quantum mechanical

calculations of cross-sections.

(e) Consider a situation in which light shines along the z axis on a collection of atoms

whose boundary coincides with the = 0 plane, as illustrated in the figure.

™~
,,,,, T ~
,,,,,,,,,, - §
,,,,,,,,,, - A X
,,,,,,,,,, - ™~
>~
vacuum ~ matter (n,,n,)

Clearly, f will depend on z (and p,), but will be independent of y and z. Adapt the

Boltzmann equation you propose in part (b) to the case of a uniform incoming flux of

photons with momentum p' = hwi/c. What is the penetration length across which the

incoming flux decays?

e In this situation, the Boltzmann equation reduces to
of ny

Pag = OstC (1 —mno) f+ 43

To the uniform solution obtained before, one can add an exponentially decaying term for
x>0, ie.

0(x).

f Pz, >0) = A(ps) e ae/Pe + fea. (Pz) -
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The constant A (p,) can be determined by matching to solution for z < 0 at z = 0, and is
related to the incoming flux. The penetration depth d is the inverse of the decay parameter,
and given by

d=—, with a = ogc(ng —mny) > 0.

kkskoskoskoskokok
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8.333: Statistical Mechanics I Fall 2000 Mid-term Quiz[]

1. Superconducting transition: Many metals become superconductors at low temperatures
T, and magnetic fields B. The heat capacities of the two phases at zero magnetic field are
approximately given by

Cy(T) = VaT? in the superconducting phase
Co(T) =V [BT? +~T] in the normal phase

Y

where V is the volume, and {«, 3,7} are constants. (There is no appreciable change in

volume at this transition, and mechanical work can be ignored throughout this problem.)

(a) Calculate the entropies S, (7') and S,,(T") of the two phases at zero field, using the third
law of thermodynamics.

e Finite temperature entropies are obtained by integrating dS = dQ/T, starting from
S(T = 0) = 0. Using the heat capacities to obtain the heat inputs, we find

B 3 dS, aT?
s = 1° =T ) s — V5
Cs=Va o7 = S;=V 5
ds,, T3 '
Cp =V [BT? +7T] =T, S”:V{ﬁi% JHYT}

(b) Experiments indicate that there is no latent heat (L = 0) for the transition between
the normal and superconducting phases at zero field. Use this information to obtain the
transition temperature T,, as a function of «, 3, and ~.

e The Latent hear for the transition is related to the difference in entropies, and thus
L=T.(S,(T.) — Ss(T.)) = 0.
Using the entropies calculated in the previous part, we obtain

ozT(f’_BTE’
3 3

3y
a—f

+~T.,, — 1T.=

(c) At zero temperature, the electrons in the superconductor form bound Cooper pairs.
As a result, the internal energy of the superconductor is reduced by an amount VA, i.e.
E,.(T =0) = Eg and E5(T = 0) = Eq—V A for the metal and superconductor, respectively.
Calculate the internal energies of both phases at finite temperatures.
e Since dE = TdS + BdM + pdN, for dN = 0, and B = 0, we have dEl = TdS = CdT.
Integrating the given expressions for heat capacity, and starting with the internal energies
FEpand Ey — VA at T =0, yields

ET)=Eo+V [—A + %Tﬂ

En(T) = Eo+V ET‘* + %TQ}
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(d) By comparing the Gibbs free energies (or chemical potentials) in the two phases, obtain
an expression for the energy gap A in terms of «, 3, and 7.

e The Gibbs free energy G = E — TS — BM = puN can be calculated for B = 0 in each
phase, using the results obtained before, as

_ ALY v g & pa
GS(T)_EOH/[ A+4T] TVST? = By V[A+12T}
Gn(T):EOjLV{gTA‘jL%TQ} -1V [§T3+7T} :EO—V[%T‘H—%TQ} '

At the transition point, the chemical potentials (and hence the Gibbs free energies) must
be equal, leading to
g gl gl

Arlpio B dpe L A _Jg2_a=P

T4,
12°¢ 7 127¢ " g97¢r 27 12 ¢

Using the value of T, = /3v/(a — [3), we obtain

(e) In the presence of a magnetic field B, inclusion of magnetic work results in dE =
TdS+ BdM + pudN, where M is the magnetization. The superconducting phase is a perfect
diamagnet, expelling the magnetic field from its interior, such that My = —V B/(4x) in
appropriate units. The normal metal can be regarded as approximately non-magnetic,
with M,, = 0. Use this information, in conjunction with previous results, to show that the
superconducting phase becomes normal for magnetic fields larger than

giving an expression for By.

e Since dG = —SdT' — MdB + pdN, we have to add the integral of —MdB to the Gibbs
free energies calculated in the previous section for B = 0. There is no change in the
metallic phase since M,, = 0, while in the superconducting phase there is an additional
contribution of — [ MsdB = (V/4r) [ BdB = (V/87)B?%. Hence the Gibbs free energies

at finite field are )

B
Go(T,B) = By~ V [A+ %T‘*] Ve
5 .

_ _ P a2
G.(T,B) = Ey VLQT +2T}
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Equating the Gibbs free energies gives a critical magnetic field

B? -0 3 4% v a—f
=A— T = — 177 T4
87T 2 12 40z—ﬁ 2 + 12
a— 3 3y 2 6T 4 a—0, 5 o\ 2
- - T =221
12 (a—ﬁ) a—ﬁ+ 12 (T: )

where we have used the values of A and T, obtained before. Taking the square root of the

above expression gives

T? 2 — 6r~2
T<:2 3 o — ﬁ

soksfok ok ok

2. Probabilities: Particles of type A or B are chosen independently with probabilities p 4
and pp.

(a) What is the probability p(INa, V) that N4 out of the N particles are of type A7
e The answer is the binomial probability distribution

N! N—N
Ny, N) = B,

(b) Calculate the mean and the variance of N 4.

N
nag = E ti,
i=1

where t; = 1 if the i-th particle is A, and 0 if it is B. The mean value is then equal to

e We can write

=Y (t:) =) (pax 1+pp x0) = Npa.

i=1 i=1
Similarly, since the {¢;} are independent variables,
N

(N3). =D (<t?> = (ta) ) i (pa —P4) = Npaps.

=1

(c) Use the central limit theorem to obtain the probability p(IN 4, N) for large V.

9



e According to the central limit theorem the PDF of the sum of independent variables
for large N approaches a Gaussian of the right mean and variance. Using the mean and
variance calculated in the previous part, we get

. (Na— Npa)? 1
1 N4, N) = — )
ngllp( 4, ) ~ exp [ 2NpaApB V2rNpaps

(d) Apply Stirling’s approximation (In N! ~ NIn N — N) to Inp(N4, N) [using the prob-
ability calculated in part (a), not part (c)] to find the most likely value, N4, for N > 1.
e Applying Stirling’s approximation to the logarithm of the binomial distribution gives

Inp(Ng, N) =InN! —In Ny! —In(N — Ng)!' + Nalnpa + (N — Na)Inpp

N N
~—Nyln (WA) — (N —Ny)ln (1—%) +Nalnpa+ (N — Ny)Inpp.

The most likely value, N4, is obtained by setting the derivative of the above expression

with respect to N4 to zero, i.e.

+1n1ﬂ:(), — Ny =pal.

dlnp {NA N }
PB

dN4 ‘N N—N,

Thus the most likely value is the same as the mean in this limit.

(e) Expand Inp(Na, N) calculated in (d) around its maximum to second order in
(N A — N—A), and check for consistency with the result from the central limit theorem.

e Taking a second derivative of Inp gives

d*lnp 1 1 N 1

dN} ~ Ni N-Nai Na(N-Na)  Npavs’

The expansion of Inp around its maximum thus gives

(Ng —paN)’

Inp ~ —
2Npaps

which is consistent with the result from the central limit theorem. The correct normaliza-

tion is also obtained if the next term in the Stirling approximation is included.
kKA KKK

3. Thermal Conductivity: Consider a classical gas between two plates separated by a
distance w. One plate at y = 0 is maintained at a temperature 77, while the other plate at

1001



y = w is at a different temperature T5. The gas velocity is zero, so that the initial zeroth
order approximation to the one particle density is,

P 2y, = —) gy ]

[27kaBT(y)]3/2 P {_ 2mkpT(y)

(a) What is the necessary relation between n(y) and T'(y), to ensure that the gas velocity 4
remains zero? (Use this relation between n(y) and 7'(y) in the remainder of this problem.)
e Since there is no external force acting on the gas between plates, the gas can only flow
locally if there are variations in pressure. Since the local pressure is P(y) = n(y)kgT (y),
the condition for the fluid to be stationary is

n(y)T(y) = constant.

(b) Using Wick’s theorem, or otherwise, show that
0 0
<p2> = <papa>0 =3 (kaT) , and <p4> = <po¢po¢pﬁpﬁ>0 =15 (kaT)2 )

where (O)O indicates local averages with the Gaussian weight f{. Use the result <p6>0 =
105(mkgT)? (you don’t have to derive this) in conjunction with symmetry arguments to
conclude

(p2p*)" = 35 (mkpT)" .

e The Gaussian weight has a covariance (papg)o = 0q3(mkpT). Using Wick’s theorem
gives
<p > papa (kaT) Ooa = 3 (mk‘BT) .
Similarly
(0" = (papapsps)” = (MkT)? (Saa + 20a50as) = 15 (mkpT)? .

The symmetry along the three directions implies

<p326p4>0 = <p§p4>0 = <p§p > <p P > = x 105 (mkgT)® = 35 (mkgT)®.

(c) The zeroth order approximation does not lead to relaxation of temperature/density
variations related as in part (a). Find a better (time independent) approximation f{(p,y),
by linearizing the Boltzmann equation in the single collision time approximation, to

o 1 _ 0
Clf] = | lea] s LA
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where 7 is of the order of the mean time between collisions.

e Since there are only variations in y, we have
9y 91 0Py 0 0P 3 p? 3
T s = f7=£9,1 = f{720, |lnn — =InT — — —In (2mmk
[at * m@y] h=h m Y nfi =/ e 2mkgT 2 n(2mmks)
_ 0Py 8yn_§ayT_|_ p2 8_T _ 0Py _§_|_ p2 ay_T
T n 2 T omkgT T | "'m 2 2mkgT| T’

where in the last equality we have used nT" = constant to get d,n/n = —0,1/T. Hence

the first order result is

2
F(0y) = 15, y) [1 K (2kaT 2) T }

(d) Use f{, along with the averages obtained in part (b), to calculate h,,, the y component
of the heat transfer vector, and hence find K, the coefficient of thermal conductivity.

e Since the velocity  is zero, the heat transfer vector is

me?\ ' n o 1
hy:”<cy7> :ﬁ@yp ) -
In the zeroth order Gaussian weight all odd moments of p have zero average. The correc-

tions in fi, however, give a non-zero heat transfer

0

n 0, /p p? 5

o= g Oyt [Py (P79 2\

Y Kom2 T <m (ka’BT 2)pyp >

Note that we need the Gaussian averages of <p12/p4>0 and <p§p2>0. From the results of part

(b), these averages are equal to 35(mkpT)? and 5(mkgT)?, respectively. Hence
n 0,T 2 (35 5x5 5nrck3T
h, = —7p—— 4 T = _ _ _ZAvBT
v = TTRgs o (mksT) (2 2 )

The coefficient of thermal conductivity relates the heat transferred to the temperature

o,T.
2 m Y

gradient by h=-K VT, and hence we can identify
§ nrt K]{?QBT

2 m

K =

(e) What is the temperature profile, T'(y), of the gas in steady state?

e Since J,T is proportional to —d,h,, there will be no time variation if h, is a constant.
But hy, = —K9,T, where K, which is proportional to the product nT, is a constant in
the situation under investigation. Hence 0,7 must be constant, and T'(y) varies linearly
between the two plates. Subject to the boundary conditions of 7'(0) = T4, and T'(w) = 15,

this gives
Ty =T
T(y) =T+ = .

Y.

SR EELEL LT
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8.333: Statistical Mechanics I

Fall 2003

1. Hard core gas:

heat capacity C'y independent of temperature.

A gas obeys the equation of state P(V — Nb) = NkgT, and has a
(N is kept fixed in the following.)

(a) Find the Maxwell relation involving 9.5/9V| . .

e For dN =0,

d(E —TS) = —SdT — PdV, =

08

ov

_op
TN oT

V,N

(b) By calculating dE(T, V'), show that E is a function of 7' (and N) only.

e Writing dS in terms of dT" and dV/,

oS

dE =TdS — PdV =T
—

V,N

98
ar + 22
toav

dV | — PdV.
T.N

Using the Maxwell relation from part (a), we find

P
dE(T,V):Tﬁ dTl + Ta— — P |dV.
IT |y N IT |y, N
But from the equation of state, we get
NkgT oP P oS
P=—71-— — = — dE(T,)V)=T —
(V — Nb)’ or|, 1 — EEVI=Ton
ie. E(T,N,V)= E(T,N) does not depend on V.
(c) Show that v = Cp/Cy =1+ Nkp/Cy (independent of T and V).
e The heat capacity is
0 OF + POV oF ov
Cp = 9@ _ 9B+ POV _ OFE +pP_| .
oT | p oT p OT|p oT | p
But, since E = E(T") only,
oF oF
e S y— = CV7
or|, oT|,
and from the equation of state we get
ov Nkp Nkp
— = —= Cp=C NEk = =14 —
oT b, P ) P v+ B, Y + CV )
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which is independent of 7', since C'y is independent of temperature. The independence of
Cy from V also follows from part (a).

(d) By writing an expression for E(P, V), or otherwise, show that an adiabatic change
satisfies the equation P(V — Nb)? =constant.

e Using the equation of state, we have

(PAV + (V — Nb)dP).

dE:C’VdT:CVd(P(V_Nb)) Cv

Nks ) Nkg
The adiabatic condition, dQ)Q = dE + PdV = 0, can now be written as

0=dQ = (1 + 5—?3) Pd(V — Nb) + ]\?—]:B(V — Nb)dP.

Dividing by Cy P(V — Nb)/(Nkp) yields

dP d(V — Nb
- + 7% =0, = In[P(V — Nb)?] = constant.

kokoskoskoskoskokok

2. FEnergy of a gas: The probability density to find a particle of momentum p =
(Pz, Py, P=) in a gas at temperature 7' is given by

1 2

p(p)Z—meXp(— L ) where  p*=p-p
(27T771k3T) 2mkpT

(a) Using Wick’s theorem, or otherwise, calculate the averages (p*) and ((p - p)(p - p))-
e From the Gaussian form we obtain (popg) = mkpTdns, where o and [ label any of the
three components of the momentum. Therefore:

<p2> = <papa> - kaT(saa — 3kaT>

and using Wick’s theorem

(P P)(P D)) = (PaPapsps) = (MkET)” [Jaadss + 20ap0as] = 15 (mkpT)?.

(b) Calculate the characteristic function for the energy e = p?/2m of a gas particle.
e The characteristic function ¢ is the average <eik5>, which is easily calculated by Gaussian
integration as

. . d’p 1 p? _
ike\ __ ikp®/2m\ __ L _ - 3/2
(e = <e > — / o kBiT)?’/Q exp [(zk —k‘BT> —Qm] (1 —ikkpT) .



th

(c) Using the characteristic function, or otherwise, calculate the m"™ cumulant of the

particle energy ().

e The cumulants are obtained from the expansion

(e = 32 S (€7 = —5 n(1 — ikkaT) = 5 37 SE (k)™
as

(7)o = 5 m = D! (ksT)™

(d) The total energy of a gas of N (independent) particles is given by E = Zf\il €;, where
g; is the kinetic energy of the i*" particle, as given above. Use the central limit theorem
to compute the probability density for energy, p(E), for N > 1.

e Since the energy FE is the sum of N identically distributed independent variables, its
cumulants are simply N times those for a signle variable, i.e.

(E™), = N (™), = SN(m — D! (ko)™

According to the central limit theorem, in the large N limit the mean and variance are

sufficient to describe the probability density, which thus assumes the Gaussian form

1

o (E —3NkgT/2)?
V3rNkgT ¥

E p—
p(E) 3NkgT

soksfok ok ok

3. ‘Relativistic’ gas: Consider a gas of particles with a ‘relativistic’ one particle Hamil-
tonian H; = c|p|, where |p| = ,/p2 + p2 + p? is the magnitude of the momentum. (The
external potential is assumed to be zero, expect at the edges of the box confining the
gas particles.) Throughout this problem treat the two body interactions and collisions
precisely as in the case of classical particles considered in lectures.

(a) Write down the Boltzmann equation for the one-particle density fi(p,q,t), using the
same collision form as employed in lectures (without derivation).
e The Boltzmann equation has the general form

Lfi=Clfr, fr].

The collision term is assumed to be the same as in the classical case derived in lectures,
and thus given by

ﬂﬁjﬂ:—/fmew—VHM@ﬂﬁ@ﬂ—h@Uﬁ@M-
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(There are various subtleties in treatment of relativistic collisions, such as the meaning of
|ve — v1|, which shall be ignored here.) The streaming terms have the form

LRDat) = 0ufi + {(Has fi} = {at ; %a} f = [at i c%aa} .

(b) The two body collisions conserve the number of particles, the momentum, and the
particle energies as given by H;. Write down the most general form f9(p,q,t) that sets
the collision integrand in the Boltzmann equation to zero. (You do not need to normalize
this solution.)

e The integrand in C[f1, f1] is zero if at each q, In f1(p1)+1n f1(p2) = In f1(p})+1n f1(p%).
This can be achieved if In fi = >~ a,(a,t)x,(p), where x,(p) are quantities conserved in
a two body collision, and a, are functions independent of p. In our case, the conserved

quantities are 1 (particle number), p (momentum), and ¢|p| (energy), leading to

fL(p,a,t) = exp[—ao(q,t) — ai(q,t)-p — az(q, t)c|p]].

For any function y(p) which is conserved in the collisions, there is a hydrodynamic

equation of the form

B: (1 (x)) + Oa (n <CI%QIX>> —n{Bx) —n <c|%“|aax> =0,

where n(q,t) = [d*pfi(p,q,t) is the local density, and
1
©) == [ #psip.an0

(c) Obtain the equation governing the density n(q,t), in terms of the average local velocity

Ua = (cpa/|PI)-
e Substituting y = 1 in the conservation equation gives

Oin + 0q (nug) =0, with  us = (cpa/|P]) -

(d) Find the hydrodynamic equation for the local momentum density 7, (q,t) = (ps), in
terms of the pressure tensor P,g = nc ((pa — 7o) (pg — 73) /|PI)-

e Since momentum is conserved in the collisions, we can obtain a hydrodynamic equation
by putting xo = po — T4 in the general conservation form. Since (x,) = 0, this leads to

Og <n <c%xa>> +noimo + nugdsmy = 0.
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Further simplification and rearrangements leads tol

1 1 Xa
Dy = Oy, +uglpmy = ——03Pgq — —0 (mrc<—>)
t 13 B3 n B4 B n B B |p|

(Unfortunately, as currently formulated, the problem does not lead to a clean answer, in

that there is a second term in the above result that does not depend on P,g3.)

(e) Find the (normalized) one particle density f1(p,q,t) for a gas of N such particles in a
box of volume V| in equilibrium at a temperature 7.
e At equilibrium, the temperature T and the density n = N/V are uniform across the

system, and there is no local velocity. The general form obtained in part (b) now gives

N dpl\ 1 [ ¢\
0
t) = — - oy ’
fi(p,a,t) v exp( k;BT) 87 (k‘BT)

The normalization factor is obtained by requiring N = V [ d®pf1, noting that d°p =
n+1

47p?dp, and using fooo dpp™eP/% = nla
f) Evaluate the pressure tensor P,z for the above gas in equilibrium at temperature 7.
B

e For the gas at equilibrium 7, = u, = 0, and the pressure tensor is given by

PaPp PaxPx nc /p-p
Pag:nc< >:nc5a < >:5a5— <—>
p| “\ Ipl 3\ [p|

In rewriting the above equation we have taken advantage of the rotational symmetry of

the system. The expectation value is simply

_ Jo_dppPpe=?te T kT
T [Fdppreer/bsT T U e

{Ipl)

leading to
Pag = (5a5nk‘BT,

which is the usual formula for an ideal gas.
kKA KKK
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8.333: Statistical Mechanics I Fall 2004 Mid-term Quiz[]

1. Wire: Experiments on stretching an elastic wire indicate that, at a temperature 7', a
displacement x requires a force

J=ax — 0T+ cT'x,

where a, b, and ¢ are constants. Furthermore, its heat capacity at constant displacement

is proportional to temperature, i.e. C,, = A(x)T.

(a) Use an appropriate Maxwell relation to calculate 0.5/0z|.
e From dF = —SdT + Jdx, we obtain

oS

__8J
ox |

——| =b—cx.
T 8T$

(b) Show that A has to be independent of z, i.e. dA/dx = 0.
e We have C,, = Tg—i = A(z)T, where S = S(T, z). Thus

0A_ 005 _ 005 _
oxr 0z 0T OT 0x
from part (a), implying that A is independent of z.

(c¢) Give the expression for S(T,x), and comment on whether it is compatible with the
third law of thermodynamics.

e By integrating the derivatives of S given above, S(z,T') can be calculated as

T =T ’ . o —a ,
S(x,T)ZS(O,O)+/ Mﬂu/ oS(1,7)

T'—0 o1’ ’—0 ox'
T T
= 5(0,0) + / AdT’ + / (b — cz')dx'
0 0
= 5(0,0) + AT + bx — ggﬂ.

However, S(T = 0,x) = S(0,0) + bz — cx?/2, now explicitly depends on z, in violation of
the third law of thermodynamics.

(d) Calculate the heat capacity at constant tension, i.e. C; =T 9S/0T|,, as a function
of T and J.
e Writing the entropy as S(7T',z) = S(T,z(T, J)), leads to

as
oT

_as| 08
J_(?Tw ox

o
;T

J
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From parts (a) and (b), g—i}T = b — cr and g—?’ x = A. Furthermore, g—% ; is given by

ag—;—b—l—c:lc—l—ch—;:O, i.e.
8_:0_ b—cx
OT a+cT’

cJ:T{M%].

Thus

J+bT
a+cT?

Since z = we can rewrite the heat capacity as a function of 7" and J, as

( _ J+bT)2

A a+cT
T T laken)

(ab—cJ)T
(a+cT)3 |-

C;=T

:T[A—i—
ok stk ok ok

2. Random matrices: As a model for energy levels of complex nuclei, Wigner considered
N x N symmetric matrices whose elements are random. Let us assume that each element
M;; (for ¢ > j) is an independent random variable taken from the probability density

function

1
p(M;;) = % for —a<M;; <a, and p(M,;;) =0 otherwise.

(a) Calculate the characteristic function for each element M.
e Since each element is uniformly distributed in the interval (—a,a), the characteristic

a o1 gika _ g—ika sin ak
~,L- - = d —ikx _— = = .
pij (k) / ve 2a 2aik ak

function is

—Q

(b) Calculate the characteristic function for the trace of the matrix, ' = tr M = ), M;;.
e The trace of the matrix is the sum of the N diagonal elements which are independent
random variables. The characteristic function for the sum of independent variables is
simply the product of the corresponding characteristic functions, and thus

pr(k) = f[lmm - (e

(c) What does the central limit theorem imply about the probability density function of
the trace at large N7
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e Since the trace is the sum of N > 1 independent random variables, its cumulants are
simply N times those of a single element. The leading cumulants are

(T).= N (M;;) =0,

[

and

2 CL2

2\ _ 2\ _ cmtat
(T), = N{(Mj) =N | dog- =N

For the qunatity ¢t = T'/ VN, higher order cumulants vanish in the limit of N — oo, and

thus
. ; tr M 3t2 3
im = =exp| -5 |\ 7
Nos P VN P\ 7 2a2 2ma?

(d) For large N, each eigenvalue A\, (o = 1,2,---,N) of the matrix M is distributed

according to a probability density function

2 A2
p(A) = ——4/1— 5 for —XAg<A<Ay, and p(A)=0 otherwise,
(known as the Wigner semi-circle rule). Find the variance of A.
(Hint: Changing variables to A = Ao sin 6 simplifies the integrals.)

e The mean value of X is zero by symmetry, and hence its variance is given by

(\?) :/A Y SRy (g
¢ Ao 7T)\0 )\(2)

In the integral, change variables to A = A\gsin# and d\ = Ay cos 8df, to get

/2 22 w/2 /\2 /2 A2
<)\2> = — df cos® §sin? § = —O/ df sin? 20 = —/ df (1 — cos4f) = =2
c T —x/2 T J /2 4 —7/2 4

(e) If in the previous result, we have A\3 = 4Na?/3, can the eigenvalues be independent of
each other?
e The trace of a matrix is related to its eigenvalues by

T:iAa, — T2>—Z<)\2>+Z>\)\g

aF#p

The cross-correlations of eigenvalues thus satisfy

> (ads) = <T2>—Z<Az> IS Y

-
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Clearly, this is inconsistent with independent eigenvalues. In fact, the well known result
that eigenvalues do not cross implies a repulsion between eigenvalues which leads to a

much wider distribution than would result from independent eigenvalues.
skokokskokokskok

3. Viscosity: Consider a classical gas between two plates separated by a distance w.
One plate at y = 0 is stationary, while the other at y = w moves with a constant velocity

vy = u. A zeroth order approximation to the one particle density is,
n 1
2rmkpT)>/? 2mkpT

obtained from the uniform Maxwell-Boltzmann distribution by substituting the average

REq) = ((pz — maw)® +p, +p2) |,

value of the gas velocity at each point. (o = u/w is the velocity gradient, while n and T
are constants.)

(a) The above approximation does not satisfy the Boltzmann equation as the collision term
(right hand side of the equation) vanishes, while (the left hand side) df{/dt # 0. Find
a better approximation, fi(7), by considering the linearized Boltzmann equation in the

single collision time approximation, i.e.

o p 0 fi=f
Ll | 2L 2| 041 J1
1] [3t+m aq*} fi P—
where 7y is a characteristic mean time between collisions.
e We have 5 PR
g P Y9V X _ 0
(8t + m aq—»> fl kapr(pl' may)fla
whence

«
f11 = f{) {1 —TXWBpr(pm —may)}.

(b) Calculate the off-diagonal component P,,(y) of the pressure tensor.
e The pressure tensor is P,g(y) = nm (cocg) = n (papg) /m. From the first order density,
the off-diagonal element is calculated as

Paly) = [ &P 1)

x Ty X
= / @ptly (— - )py(pz — may) f}

m mkgT

exp (_(pz—may)2> ox (_ P, )
—Txan 9 2mksT o FP\ T amkpT
= — / dpy (pz — may) / dpyp,
m k'BT \ 27rkaT \ 27ka?BT
Ty QN
= —m(kaT)Q = —ONTx k?BT
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(c) The gas exerts a transverse force per unit area F, = —F,, (y = w) on the moving plate.
Calculate this force, and hence obtain the coefficient of viscosity, defined by n = F,/a.
e The pressure tensor calculated in part (b) is in fact independent of the position y, and

the force exerted on the top plate (or the bottom plate) is thus

F, = —P,, = antxkpT.

The coeflicient of viscosity is then simply

F.
n=—"=nrkpT.

!

koK AR K
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