
22.51 Problem Set 1 (due Mon, Sept. 10)

1 Least-Action Principle (25 pt)

Question: Action has the unit of energy·time, therefore a plausible expression for the action

of a photon would be,

A =
∫ x2(t2)

x1(t1)
h̄ωdt, (1)

because h̄ω, the energy of a photon, is an apparent energy scale. It is well-known that the

speed of light in a material is v = c/n where n ≥ 1 is the refraction index. Therefore,

dt =
ds

v
=

nds

c
−→ A =

h̄ω

c

∫ x2(t2)

x1(t1)
nds, (2)

where ds is the differential distance, and we have used the knowledge that ω remains constant.
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Figure 1: Least-Action Principle.

Now suppose we have an interface between two materials of constant refraction indices n1,n2,

prove Snell’s law,

n1 sin(θ1) = n2 sin(θ2), (3)

that is, such a path would minimize A among all feasible paths {x(t)} that start at x(t1) =

(x1, y1) and end at x(t2) = (x2, y2).

Answer: Let x = xi be the interface. All feasible light paths will intersect the interface

at some point, say (xi, yi). Among light paths that crosses a certain (xi, yi), straight lines

linking (x1, y1) to (xi, yi), and then (xi, yi) to (x2, y2) are the shortest, the total action for
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which would be (we omit the h̄ω/c constant factor for the sake of simplicity),

A = n1

√
(xi − x1)2 + (yi − y1)2 + n2

√
(xi − x2)2 + (yi − y2)2. (4)
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Figure 2: Least-Action Principle.

We then minimize with respect to yi, the only degree of freedom left,

n1(yi − y1)√
(xi − x1)2 + (yi − y1)2

+
n2(yi − y2)√

(xi − x2)2 + (yi − y2)2
= 0. (5)

This is just the Snell’s law.

Bonus Question (10 pt): Suppose we have a graded material with n(x, y) = 1 + x. Let

x(t1) = (0, 0), x(t2) = (0.5, 0.3), calculate the light path y(x).

Answer: The action as a functional of y(x) is,

A[y] =
∫ x2

x1

nds =
∫ x2

x1

n(x)
√

dx2 + dy2 =
∫ x2

x1

(1 + x)
√

1 + y′2dx, (6)

0 = δA =
∫ x2

x1

(1 + x)
y′δy′√
1 + y′2

dx,

=
∫ x2

x1

[
d

dx

(
(1 + x)

y′δy√
1 + y′2

)
− d

dx

(
(1 + x)y′√

1 + y′2

)
δy

]
dx. (7)

The first term always vanishes since,

δy|x1 = 0, δy|x2 = 0. (8)
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The second term gives zero for all feasible δy if and only if,

(1 + x)y′√
1 + y′2

= C, (9)

for all x, where C is a constant. This means,

y′√
1 + y′2

=
C

1 + x
, (10)

1

1 + y′2
= 1− C2

(1 + x)2
, (11)

y′ =

√√√√ 1

1− C2

(1+x)2

− 1 =
C√

(1 + x)2 − C2
, (12)

Using Maple, one obtains,

0.3 = y(0.5)− y(0) =
∫ 0.5

0

C√
(1 + x)2 − C2

−→ C = .6296364651. (13)

> int(C/sqrt((1+x)^2-C^2),x=0..0.5);

−C ( )ln +1.5 −2.25 1. C2 1. ( )ln +1. −1. ( )−C 1. ( )+C 1. C
> fsolve(C*ln(1.5+sqrt(2.25-1.*C^2))-1.*ln(1.+sqrt(-1.*(C-1.)*(C+1.)
))*C - 0.3, C);

.6296364651
> C := .6296364651;

 := C .6296364651
> with(plots):
> p:= dsolve({D(y)(x) = C/sqrt((1+x)^2-C^2), y(0)=0}, type=numeric, 
range=0..0.5):

> odeplot(p,[x,y(x)],0..0.5,refine=3);
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Figure 3: Least-Action Principle.
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2 Double Pendulum (25 pt)

Question: Lagrangian mechanics is formally equivalent to Newtonian mechanics (the free

body diagram and torque analysis approach), but tends to be less susceptible to human

mistakes, especially when the system is complex or has constraints. Consider a double

pendulum shown in Fig. 4, composed of two uniform rods of lengths l1, l2 and total masses

m1,m2 (mass is uniformly distributed on each rod),

g

(m1,l1)

(m2,l2)

Figure 4: Double Pendulum.

(a). Choose variables {qk} which describes the system’s degrees of freedom “most naturally”.

(b). The gravitational constant is g. Express the potential energy V in {qk}.
(c). Express the kinetic energy T in {qk, q̇k}.
(d). Write down L = T − V . Derive the equation of motion.

(e). What are the small oscillation normal-mode frequencies? Describe those modes in

physical terms.

(f). Determine the conjugate momenta {pk} from L.

(g). Write down the Hamiltonian H =
∑

k q̇kpk − L. Reexpress H in {qk, pk} instead of

{qk, q̇k}.
(h). Rederive the equations of motion using q̇k = ∂H/∂pk, ṗk = −∂H/∂qk, and check

whether they are equivalent to (d).

(i). Rationalize (rederive) the equations of motion using Newtonian mechanics.

Answer:

(a). θ1, θ2.
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Figure 5: Double Pendulum.

(b). The center of mass of the first rod is at,

(x1, y1) =

(
l1
2

sin θ1, − l1
2

cos θ1

)
. (14)

The center of mass of the second rod is at,

(x2, y2) =

(
l1 sin θ1 +

l2
2

sin θ2, −l1 cos θ1 − l2
2

cos θ2

)
. (15)

Therefore the total potential energy is,

V = m1gy1 + m2gy2 = −(m1 + 2m2)gl1 cos θ1

2
− m2gl2 cos θ2

2
. (16)

(c). From (b), we have,

(ẋ1, ẏ1) =

(
l1
2

cos θ1θ̇1,
l1
2

sin θ1θ̇1

)
, (17)

(ẋ2, ẏ2) =

(
l1 cos θ1θ̇1 +

l2
2

cos θ2θ̇2, l1 sin θ1θ̇1 +
l2
2

sin θ2θ̇2

)
. (18)

Therefore the center of mass kinetic energy is,

T1 =
m1

2
(ẋ2

1 + ẏ2
1) +

m2

2
(ẋ2

2 + ẏ2
2)

=
m1

2

(
l21
4

θ̇2
1

)
+

m2

2

(
l21θ̇

2
1 +

l22
4

θ̇2
2 + l1l2 cos(θ1 − θ2)θ̇1θ̇2

)
. (19)

In addition to the center of mass translational kinetic energies, there are also rotational
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kinetic energies. The sum is,

T2 =
I1

2
θ̇2
1 +

I2

2
θ̇2
2 =

m1l
2
1θ̇

2
1

24
+

m2l
2
2θ̇

2
2

24
. (20)

Therefore the total kinetic energy is,

T =
(m1 + 3m2)l

2
1θ̇

2
1

6
+

m2l
2
2θ̇

2
2

6
+

m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

2
, (21)

(d).

L(θ1, θ2, θ̇1, θ̇2) =
(m1 + 3m2)l

2
1θ̇

2
1

6
+

m2l
2
2θ̇

2
2

6
+

m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

2

+
(m1 + 2m2)gl1 cos θ1

2
+

m2gl2 cos θ2

2
. (22)

∂L
∂θ̇1

=
(m1 + 3m2)l

2
1θ̇1

3
+

m2l1l2 cos(θ1 − θ2)θ̇2

2
, (23)

∂L
∂θ1

= −m2l1l2 sin(θ1 − θ2)θ̇1θ̇2

2
− (m1 + 2m2)gl1 sin θ1

2
(24)

=⇒ d

dt

(
∂L
∂θ̇1

)
=

∂L
∂θ1

. (25)

∂L
∂θ̇2

=
m2l

2
2θ̇2

3
+

m2l1l2 cos(θ1 − θ2)θ̇1

2
, (26)

∂L
∂θ2

=
m2l1l2 sin(θ1 − θ2)θ̇1θ̇2

2
− m2gl2 sin θ2

2
. (27)

=⇒ d

dt

(
∂L
∂θ̇2

)
=

∂L
∂θ2

. (28)

(e). When θ1, θ2 ∼ 0, keeping only the linear order terms,

(m1 + 3m2)l
2
1θ̈1

3
+

m2l1l2θ̈2

2
= −(m1 + 2m2)gl1θ1

2
, (29)

m2l
2
2θ̈2

3
+

m2l1l2θ̈1

2
= −m2gl2θ2

2
, (30)
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Or,

(2m1 + 6m2)l
2
1θ̈1 + 3m2l1l2θ̈2 = −(3m1 + 6m2)gl1θ1, (31)

2m2l
2
2θ̈2 + 3m2l1l2θ̈1 = −3m2gl2θ2, (32)

To determine the normal modes, let us multiply (32) by α and add it onto (31),

[(2m1+6m2)l
2
1+3m2l1l2α]θ̈1+[3m2l1l2+2m2l

2
2α]θ̈2 = −(3m1 + 6m2)gl1θ1−3m2gl2αθ2. (33)

For properly chosen α, the coefficient ratio of θ̈1, θ̈2 on LHS would equal to the coefficient

ratio of θ1, θ2 on RHS, allowing one to consolidate a single equation out of two coupled

equations,
(2m1 + 6m2)l

2
1 + 3m2l1l2α

3m2l1l2 + 2m2l22α
=

(3m1 + 6m2)gl1
3m2gl2α

, (34)

for which there are two roots, α+ > 0 and α− < 0. And the vibrational frequencies of the

two normal modes would then be,

ω− =

√√√√ (3m1 + 6m2)gl1
(2m1 + 6m2)l21 + 3m2l1l2α+

, ω+ =

√√√√ (3m1 + 6m2)gl1
(2m1 + 6m2)l21 + 3m2l1l2α−

. (35)

The low frequency (ω−) mode (3m1 + 6m2)gl1θ1 + 3m2gl2α+θ2 corresponds to the case of

θ1,θ2 swinging in phase. The high frequency (ω+) mode (3m1 + 6m2)gl1θ1 + 3m2gl2α−θ2

corresponds to the case of θ1,θ2 swinging anti-phase.

(f).

p1 ≡ ∂L
∂θ̇1

=
(m1 + 3m2)l

2
1θ̇1

3
+

m2l1l2 cos(θ1 − θ2)θ̇2

2
, (36)

p2 ≡ ∂L
∂θ̇2

=
m2l

2
2θ̇2

3
+

m2l1l2 cos(θ1 − θ2)θ̇1

2
, (37)

from which we can solve for θ̇1, θ̇2 (using Maple) as,

θ̇1 =
−12l2p1 + 18l1 cos(θ1 − θ2)p2

l2l21(−4m1 − 12m2 + 9m2 cos2(θ1 − θ2))
(38)

θ̇2 =
−12l1m1p2 − 36l1m2p2 + 18p1m2l2 cos(θ1 − θ2)

m2l22l1(−4m1 − 12m2 + 9m2 cos2(θ1 − θ2))
(39)

(g).

H ≡ θ̇1p1 + θ̇2p2 − L
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=
(m1 + 3m2)l

2
1θ̇

2
1

6
+

m2l
2
2θ̇

2
2

6
+

m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

2

−(m1 + 2m2)gl1 cos θ1

2
− m2gl2 cos θ2

2
. (40)

Plugging (38),(39) into above, and using Maple,

H =
−6m2l

2
2p

2
1 − 6(m1 + 3m2)l

2
1p

2
2 + 18m2l1l2 cos(θ1 − θ2)p1p2

m2l22l
2
1(−4m1 − 12m2 + 9m2 cos2(θ1 − θ2))

−(m1 + 2m2)gl1 cos θ1

2
− m2gl2 cos θ2

2
. (41)

(h). It is straightforward to verify that θ̇1 = ∂H/∂p1, θ̇2 = ∂H/∂p2 indeed agrees with (38),

(39). Similarly, one can verify that ṗ1 = −∂H/∂θ1, ṗ2 = −∂H/∂θ2 indeed agrees with (25),

(28).

(i). That is pretty tricky!

3 Collision Cross-Section of Hard Spheres (25 pt)

Question: This course is mainly concerned with probing materials by radiation. Assume

both the probe and the target are hard spheres of mass m and radius a, and assume they

interact by frictionless elastic collision only.

m

m

m

θ

probe out

probe in

target

Figure 6: Collision cross-section.

A central concept of the course is the double differential cross-section d2σ/dΩdE, which has

the following interpretation: imagine immersing a single target sphere in a uniform flux f

of probing spheres, where f is the number of incoming probes per unit cross-sectional area
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per unit time, and suppose the incoming probes all have the same kinetic energy E0, then

probabilistically two changes may occur to the probes after they leave the target area,

1. A probe could be deflected by angle θ from the original incoming direction.

2. A probe could acquire a different energy E 6= E0.

Thus, per unit time, there is a certain number of incoming probes dN that are deflected into

certain (θ, θ+dθ) that corresponds to solid angle dΩ = −2πd cos θ (we use dΩ instead of dθdφ

because there is axial symmetry) and with outgoing kinetic energies between (E, E + dE),

dN = f
d2σ

dΩdE
dΩdE, (42)

and this can be taken as the definition of d2σ/dΩdE.

a. Assume the target is transfixed (constrained to be immobile), calculate d2σ/dΩdE. You

are allowed to use the δ-function.

b. Assume the target is free and at rest before collision, calculate d2σ/dΩdE. You are

allowed to use the δ-function.

c. Verify that in both cases,

∫ ∫ d2σ

dΩdE
dΩdE = 4πa2. (43)

Explain why this should be obvious.

Answer:

a. When the target is transfixed, there is no energy transfer so E = E0. As for the momentum

transfer, there is a simple relationship between θ and the contact point characterized by the

contact angle α,

α =
π − θ

2
. (44)

At the contact, the Cartesian coordinate of the probe’s center is,

(x, y) = (−2a cos α, 2a sin α), (45)

so there is,

y = 2a sin

(
π − θ

2

)
, (46)
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Figure 7: Collision cross-section.

and therefore,

|dy| =

∣∣∣∣∣a cos

(
π − θ

2

)
dθ

∣∣∣∣∣ , (47)

which says that if the incoming probe happens to be inside the ring (y, y + dy) of thickness

dy, the outgoing angle will be between (θ, θ + dθ). That ring has differential cross-section,

dσ = |2πydy| , (48)

to intercept the probe flux, and the corresponding outgoing solid angle is,

dΩ = 2π sin θdθ, (49)

therefore,

dσ

dΩ
=

|2πydy|
|2π sin θdθ| =

∣∣∣∣∣∣
2a2 sin

(
π−θ

2

)
cos

(
π−θ

2

)

sin θ

∣∣∣∣∣∣
= a2. (50)

The double differential cross-section d2σ/dΩdE is formally,

dσ

dΩdE
= a2δ(E − E0), (51)

and the total scattering cross-section of hard spheres is simply,

∫ ∫ dσ

dΩdE
dΩdE = 4πa2. (52)

b. When the target is free, there will be both momentum and energy transfer, and the

relationship between α and θ is not straightforward. One way of solving θ(α) is to write
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down the energy and momentum conservation equations with an additional constraint that

the momentum transfer is in the direction of contact, α. A simpler method, however, is

by switching into a different inertial frame comoving with speed vf = v/2, where v is the

incoming probe speed in rest frame: E0 ≡ mv2/2. In the comoving frame, the probe comes

in with speed v/2, and exits with speed v/2 in the direction θ′. The target does exactly the

opposite. And it is clear that in the comoving frame,

α =
π − θ′

2
, θ′ = π − 2α, (53)

is still valid. The exit velocity of the probe in the comoving frame is therefore,

(v′x, v
′
y) = (v cos θ′/2, v sin θ′/2), (54)

and transforming back to the rest frame, it is,

(vx, vy) = (vx + vf , vy) = (v(1 + cos θ′)/2, v sin θ′/2), (55)

therefore,

cos θ =
1 + cos θ′√

(1 + cos θ′)2 + sin2 θ′
=

1− cos 2α√
(1− cos 2α)2 + sin2 2α

= sin α. (56)

As α varies from 0 to π/2, so does θ. There is,

dσ

dΩ
=

|πdy2|
|2πd cos θ| =

∣∣∣∣∣
4a2d sin2 α

2d cos θ

∣∣∣∣∣ = 4a2 cos θ, θ ∈ (0, π/2). (57)

The exit energy is,

E =
m

2
(v2

x + v2
y) =

1 + cos θ′

2
E0 = cos2 θE0, (58)

therefore,
dσ

dΩdE
= 4a2 cos θδ(E − cos2 θE0), (59)

and, ∫ ∫ dσ

dΩdE
dΩdE =

∫ π/2

0
2πd cos θ(4a2 cos θ) = 4πa2. (60)

c. Whenever a probe is within the cylinder of radius 2a to the target, its trajectory will be

influenced. Therefore the total cross-section must be π(2a)2 = 4πa2.
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4 Poisson Bracket (25 pt)

Question:

a. Verify Jacobi’s identity:

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0. (61)

b. Use the above to show why if f and g are constants of motion, then {f, g} must also be.

c. Using (2.144), prove that,

{Lx, Ly} = Lz, {Ly, Lz} = Lx, {Lz, Lx} = Ly. (62)

Answer: a. Using shorthand notations for partial derivative and index summation,

{g, h} = gqk
hpk

− hqk
gpk

, {h, f} = hqk
fpk

− fqk
hpk

, {f, g} = fqk
gpk

− gqk
fpk

, (63)

{f, {g, h}} = fql
(gqkpl

hpk
+gqk

hpkpl
−hqkpl

gpk
−hqk

gpkpl
)−fpl

(gqkql
hpk

+gqk
hpkql

−hqkql
gpk
−hqk

gpkql
),

{g, {h, f}} = gql
(hqkpl

fpk
+hqk

fpkpl
−fqkpl

hpk
−fqk

hpkpl
)−gpl

(hqkql
fpk

+hqk
fpkql

−fqkql
hpk
−fqk

hpkql
),

{h, {f, g}} = hql
(fqkpl

gpk
+fqk

gpkpl
−gqkpl

fpk
−gqk

fpkpl
)−hpl

(fqkql
gpk

+fqk
gpkql

−gqkql
fpk
−gqk

fpkql
),

They indeed sum up to zero.

b. If f and g are constants of motion, then

{g,H} = 0, {H, f} = 0, (64)

and from (a) there is,

{f, {g,H}} + {g, {H, f}} + {H, {f, g}} = 0, (65)

therefore,

{H, {f, g}} = 0, (66)

which means {f, g} is also a constant of motion.

c. In Levi-Cevita notation,

Li ≡ εijkrjpk, (67)

12



So,

{Li, Li′} = {εijkrjpk, εi′j′k′rj′pk′}
= εijkεi′j′k′{rjpk, rj′pk′}
= εijkεi′j′k′(rj{pk, rj′}pk′ + {rj, pk′}pkrj′)

= εijkεi′j′k′(−rjδkj′pk′ + δjk′pkrj′)

= −εijkεi′kk′rjpk′ + εijkεi′j′jpkrj′

= (δii′δjk′ − δik′δi′j)rjpk′ − (δii′δkj′ − δij′δki′)pkrj′

= δii′rjpj − ri′pi − δii′pkrk + pi′ri

= ripi′ − ri′pi. (68)

For example, if i = x, j = y, then,

{Lx, Ly} = rxpy − rypx = Lz. (69)
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