
22.53 Elements of Molecular Dynamics
Reference: [1]: sections 2, 3 ,4. [2]: 4.4, 5.1-5.3. [3]: 3.1, 3.2, 5.2, 5.3.

N−particle

r (t)i

Figure 1: Illustration of the atomistic system for modeling.

Another (working) definition of MD: Techniques by which one generates the atomic trajec-

tories of system of N particles by numerical integration of Newton’s equation of motion, for

a specific interatomic potential, with certain initial and boundary conditions.

Define the system: N atoms, volume Ω, temperature T (only at equilibrium).

Define internal energy: E ≡ K + U , where K is the kinetic energy,

K ≡
N∑

i=1

1

2
mi|ṙi(t)|2, (1)

and U is the potential energy,

U = U({rN(t)}), (2)

where we use notation {rN(t)} to denote the collection of coordinates r1(t), r2(t), .., rN(t).

Note that E is a constant of motion, e.g., conserved quantity if the system is isolated.

Treat simulation like an experiment:

[system setup] → [equilibration] → [simulation run] → [output]

sample selection sample preparation property average data analysis

(pot., N , BC) (achieve ρ∗, P ∗, T ∗) (run NT steps) (property calc.)

To fully specify a simulation model in thermal equilibration (temperature T), specify a

1

vector,

Λ ≡ (N, Ω, T, BC, {rN , ṙN(t = 0)}; U) . (3)

In many cases, details of {rN , ṙN(t = 0)} is not critically important because simulation,

which run long enough, can automatically settle to the correct phase space region. That

transient process is often called equilibration.

For example, problem 1 (code md.f):

U = Lennard-Jones potential (for noble gases Ne,Ar,Kr,Xe)

{rN(t = 0)} = fcc crystal structure

{ṙN(t = 0)} = arbitrary1

BC = Periodic Boundary Conditions (PBC) (no surface, bulk simulation)

ρ = N/Ω, high density ([1], p. 40)

ρR = ρσ3 ≡ reduced density (> 1.0 for a solid)

TR = kBT/ε ≡ reduced temperature ≤ 0.5

Equation of motion (Newtonian):

F = miai, (4)

and so,

mi
d2ri(t)

dt2
= Fint

i + Fext
i ≡ Fi, i = 1..N. (5)

These are second-order ordinary differential equations (ODE’s), which can be strongly non-

linear. By converting them to first-order equations in the space of {rN , ṙN(t)}, general nu-

merical algorithms for solving ODE’s (here on called integrators) such as the Runge-Kutta

1Of course, {ṙN (t = 0)} should not be too big to permanently damage the assigned solid structure by
temporary melting if we do not intend to do that. Independently and uniformly distributed initial velocities
works fine; Gaussian (Maxwell) distribution works even better. If one starts with {rN (t = 0)} at equilibrium
sites, it is usually more effective to assign initial velocities such that 〈K〉/N = 3kBT , which is twice the
kinetic energy an atom should have if at equilibrium, since harmonic oscillators have 〈U〉 = 〈K〉 in the long
run.

2

method [5] can be applied. But such general methods are rarely used in practice because the

special dynamics of the phase flow due to the existence of a Hamiltonian allows for more

efficient algorithms, prominent among which are the family of predictor-corrector integrators

[6] and the family of symplectic integrators [10, 11, 12, 13].

Integrate over small time-interval ∆t:

{rN(t0)} → {rN(t0 + ∆t)} → {rN(t0 + 2∆t)} → ... → {rN(t0 + NT ∆t)}

where NT is usually ∼ 103 − 106.

Various algorithms: central difference (Verlet [7], leap-frog, velocity Verlet), Beeman’s algo-

rithm [8], predictor-corrector [6], symplectic integrators [10, 11, 12, 13].

Verlet algorithm

Perform Taylor expansion, assuming {rN(t)} trajectory is smooth:

ri(t0 + ∆t) + ri(t0 −∆t) = 2ri(t0) + r̈i(t0)(∆t)2 +O((∆t)4). (6)

Since r̈i(t0) = Fi(t0)/mi can be evaluated given positions {rN(t0)} at t = t0, {rN(t0 + ∆t)}
in turn may be approximated by,

ri(t0 + ∆t) = −ri(t0 −∆t) + 2ri(t0) +

(
Fi(t0)

mi

)
(∆t)2 + O((∆t)4). (7)

By throwing out the O((∆t)4) term, we obtain a recursive formula to compute ri(t0 + ∆t),

ri(t0 + 2∆t), ... successively, which is the Verlet algorithm.

The velocities do not participate in the recursive iteration but are needed for property

calculations. They can be approximated by

vi(t0) ≡ ṙi(t0) =
1

2∆t
[ri(t0 + ∆t)− ri(t0 −∆t)] +O((∆t)2). (8)

3

To what degree does the outcome of the above recursion mimic the real trajectory {rN(t)}?
Notice that in (7), assuming ri(t0) and ri(t0−∆t) are exact, and assuming we have a perfect

computer with no error representing the relevant numbers or carrying out their operations,

the computed ri(t0 + ∆t) would still be off from the real ri(t0 + ∆t) by O((∆t)4), defined

as the local truncation error (LTE), which is an intrinsic property of the algorithm. Clearly,

as ∆t → 0, LTE → 0, but that does not guarantee the algorithm works, because what we

want is {rN(t0 + T)} for a given finite T , not ri(t0 + ∆t). To obtain {rN(t0 + T)}, we must

integrate NT = T/∆t steps, and the difference between the computed {rN(t0 + T)} and the

real {rN(t0 +T)} is called the global error. An algorithm can be useful only if when ∆t → 0,

the global error → 0. A careful analysis of the error propagation in (7) indicates that the

global error is O((∆t)2) as ∆t → 0, which differs from the naive expectation that if LTE

∼ (∆t)k+1, the global error should ∼ (∆t)k. Thus, the order of LTE can be very misleading

as to deciding the quality of an algorithm. From now on when we refer to an algorithm’s

order, we mean its global error’s order in ∆t. The Verlet algorithm is thus a second-order

method.

This is only half the story because the order of an algorithm only characterizes its per-

formance when ∆t → 0. To save computational cost, most often one must adopt a quite

large ∆t. Higher-order algorithms do not necessarily perform better than lower-order algo-

rithms at practical ∆t’s. In fact, they could be much worse by diverging spuriously (causing

overflow and NaN) at a certain ∆t, while a more robust method would just give a finite

but manageable error for the same ∆t. This is the concept of the stability of an numerical

algorithm. In the context of linear ODE’s, the global error e of a certain normal mode k,

can always be written as e(ωk∆t, T/∆t) by dimensional analysis arguments, where ωk is the

mode’s frequency. One then can define the stability domain of an algorithm in the ω∆t

complex plane as the border where e(ωk∆t, T/∆t) starts to grow exponentially as a function

of T/∆t. To rephrase the previous observation, a higher-order algorithm may have a much

smaller stability domain than the lower-order algorithm even though its e decays faster near

the origin. Since e is usually larger for larger |ωk∆t|, the overall quality of an integration

should be characterized by e(ωmax∆t, T/∆t) where ωmax is the maximum intrinsic frequency

4

of the dynamic system.

In addition to LTE, there is round-off error due to the computer’s finite precision. The

effect of round-off error can be better understood in the stability domain: 1. In most

applications, the round-off error ¿ LTE, but it behaves like white noise which has a very

wide frequency spectrum, and so for the algorithm to be stable at all, its stability domain

must include the entire real ω∆t axis. However, as long as we ensure non-positive gains

for all real ω∆t’s, the overall error should still be characterized by e(ωk∆t, T/∆t), since

the white noise has negligible amplitude. 2. Some applications, especially those involving

high-order algorithms, do push the machine precision limit. In those cases, equating LTE

∼ ε where ε is the machine’s relative accuracy 2, provides a practical lower bound to ∆t,

since by reducing ∆t one can no longer reduce (and indeed would increase) the global error.

Leap-frog algorithm

Here we start out with {vN(t0 −∆t/2)} and {rN(t0)}, then,

vi

(
t0 +

∆t

2

)
= vi

(
t0 − ∆t

2

)
+

(
Fi(t0)

mi

)
∆t + O((∆t)3), (9)

followed by,

ri(t0 + ∆t) = ri(t0) + vi

(
t0 +

∆t

2

)
∆t + O((∆t)3), (10)

and we have advanced by one step. This is a second-order method.

The velocity at time t0 can be approximated by,

vi(t0) =
1

2

[
vi

(
t0 − ∆t

2

)
+ vi

(
t0 +

∆t

2

)]
+ O((∆t)2). (11)

2For single-precision (SP) arithmetics (1 real = 4 bytes), ε ∼ 108; for double-precision (DP) arithmetics
(1 real = 8 bytes), ε ∼ 2× 1016; for quadruple-precision (QP) arithmetics (1 real = 16 bytes), ε ∼ 1032.

5

Velocity Verlet algorithm

We start out with {rN(t0)}, {FN(t0)} and {vN(t0)}, then,

ri(t0 + ∆t) = ri(t0) + vi(t0)∆t +
1

2

(
Fi(t0)

mi

)
(∆t)2 + O((∆t)3), (12)

evaluate {FN(t0 + ∆t)}, and then,

vi (t0 + ∆t) = vi(t0) +
1

2

[
Fi(t0)

mi

+
Fi(t0 + ∆t)

mi

]
∆t + O((∆t)3), (13)

and we have advanced by one step. This is a second-order method. Since we have {rN(t0)}
and {vN(t0)} simultaneously, it is very popular.

Beeman’s algorithm

It is similar to the velocity Verlet algorithm. We start out with {rN(t0)}, {FN(t0 − ∆t)},
{FN(t0)} and {vN(t0)}, then,

ri(t0 + ∆t) = ri(t0) + vi(t0)∆t +

[
4Fi(t0)− Fi(t0 −∆t)

mi

]
(∆t)2

6
+ O((∆t)4), (14)

evaluate {FN(t0 + ∆t)}, and then,

vi (t0 + ∆t) = vi(t0) +

[
5Fi(t0 + ∆t) + 8Fi(t0)− Fi(t0 −∆t)

mi

]
∆t

12
+ O((∆t)4), (15)

and we have advanced by one step. This is a third-order method.

Predictor-corrector algorithm

Let us take the often used 6-value predictor-corrector algorithm as an example. We start

out with 6× 3N storage: {r0
N(t0), r

1
N(t0), r

2
N(t0), ..., r

5
N(t0)}, where rk

N(t) is defined as,

rk
N(t) ≡

(
dkrN(t)

dtk

) (
(∆t)k

k!

)
. (16)

6

The iteration consists of prediction, evaluation, and correction steps:

Prediction step:

r0
N = r0

N + r1
N + r2

N + r3
N + r4

N + r5
N ,

r1
N = r1

N + 2r2
N + 3r3

N + 4r4
N + 5r5

N ,

r2
N = r2

N + 3r3
N + 6r4

N + 10r5
N ,

r3
N = r3

N + 4r4
N + 10r5

N ,

r4
N = r4

N + 5r5
N . (17)

The general formula for the above is

rk
N =

M−1∑

k′=k

[
k′!

(k′ − k)!k!

]
rk′

N , k = 0..M − 2, (18)

with M = 6 here. The evaluation must proceed from 0 to M − 2 sequentially.

Evaluation step: Evaluate forces {FN} using the newly obtained {r0
N}.

Correction step: Define the error {eN} as,

eN ≡ r2
N −

(
FN

mN

) (
(∆t)2

2!

)
. (19)

Then apply corrections,

rk
N = rk

N − CMkeN , k = 0..M − 1, (20)

where CMk are constants listed in Table 1.

It is clear that the LTE for {rN} is O((∆t)M) after the prediction step. But one can show

that the LTE is enhanced to O((∆t)M+1) after the correction step if {FN} depend on {rN}
only. And so the global error would be O((∆t)M).

7

CMk k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
M = 4 1/6 5/6 1 1/3
M = 5 19/120 3/4 1 1/2 1/12
M = 6 3/20 251/360 1 11/18 1/6 1/60
M = 7 863/6048 665/1008 1 25/36 35/144 1/24 1/360
M = 8 1925/14112 19087/30240 1 137/180 5/16 17/240 1/120 1/2520

Table 1: Gear predictor-corrector coefficients.

Symplectic integrators

The symplectic integrators preserve the property of phase space volume conservation (Li-

ouville’s theorem) of Hamiltonian dynamics. They tend to have much better energy con-

servation in the long run. The velocity Verlet algorithm is in fact symplectic, followed by

higher-order extensions by Yoshida [10] and Sanz-Serna [11]. As with the predictor-corrector

algorithm, symplectic integrators tend to perform better at higher order, even on a per cost

basis [12, 13]. The high-order predictor-corrector and high-order symplectic integrators are

the real competitors for high-accuracy integrators.

We have benchmarked the two families of integrators by numerically solving the Kepler’s

problem (eccentricity 0.5) which is nonlinear and periodic, to compare with the exact ana-

lytical solution. The two families have different numerical error versus time characteristics:

non-symplectic integrators all have linear energy error (∆E ∝ t) and quadratic phase point

error (|∆Γ| ∝ t2) with time, while symplectic integrators have constant (fluctuating) en-

ergy error (∆E ∝ t0) and linear phase point error (|∆Γ| ∝ t) with time. Therefore the

asymptotic long-term performance of a symplectic integrator is always superior to that of a

non-symplectic integrator. But, it is found that for a reasonable integration duration, say 100

Kepler periods, high-order predictor-corrector integrators can have a significantly better per-

formance than the best of the published symplectic integrators at large integration timesteps,

or small number of force evaluations per period. That is important, because it says that if

one does not care about the correlation of a mode beyond 100 oscillation periods (say, the

natural decay time of the mode is only 50 oscillation periods due to scattering, so there is no

8

point ensuring numerical fidelity much beyond that), then the high-order predictor-corrector

algorithm may preserve the physics at a significantly smaller computational cost.

Properties commonly calculated in MD, which are all expressible in {rN , ṙN}:

Potential Energy

U = 〈∑
i<j

φ(rij)〉. (21)

Temperature

T =
1

3NkB

〈∑
i

mi|vi|2〉. (22)

Pressure

P =
1

3Ω
〈∑

i

mi|vi|2 +
∑

i<j

rij · Fij〉. (23)

Radial Distribution Function

g(r) =
1

ρ4πr2dr
〈

N∑

j 6=i

θ(r ≤ rij < r + dr)〉. (24)

Mean Squared Displacements

MSD = 〈|∆r|2〉 =
1

N

N∑

i

〈|ri(t)− ri(0)|2〉. (25)

9

References

[1] J.M. Haile, A Primer on the Computer Simulation of Atomic Fluids by Molecular Dy-
namics (1980).

[2] J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York,
1997).

[3] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon, New York,
1987).

[4] D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University
Press, Cambridge, 1995).

[5] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C –
the Art of Scientific Computing (Cambridge University Press, Cambridge, 1992).

[6] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equation
(Prentice-Hall, Englewood Cliffs, N.J., 1971).

[7] L. Verlet, “Computer Experiments on Classical Fluids. I. Thermodynamical Properties
of Lennard-Jones Molecules”, Phys. Rev. 159, 98 (1967).

[8] D. Beeman, “Some multistep methods for use in molecular dynamics calculations”, J.
Comp. Phys. 20, 130-139 (1976).

[9] R.D. Ruth, “A Canonical Integration Technique”, IEEE Trans. Nucl. Sci. 30, 2669
(1983).

[10] H. Yoshida, “Construction of higher order symplectic integrators”, Phys. Lett. A 150,
262 (1990).

[11] J.M. Sanz-Serna, M.P. Calvo, Numerical Hamiltonian Problems (Chapman & Hall, Lon-
don, 1994).

[12] Ch. Schlier and A. Seiter, “Symplectic Integration of Classical Trajectories: A Case
Study”, J. Phys. Chem. A 102, 9399-9404 (1998).

[13] Ch. Schlier and A. Seiter, “High-Order Symplectic Integration: An Assessment”, Com-
puter Physics Communications 130, 176-189 (2000).

10

