
22.53 Problem Set I solutionTA: Jingli LiuSeptember 26, 2000
1 Problem 1 Solution1.1 Simulate solid at low T without T saling1.1.1 Energy equipartitionStatement The average kineti energy of moleules in the system stands for the tempera-ture. In our system( Lennard-Jones potential interation), there are three degrees of freedomfor eah moleular: x,y and z diretion. Thus, when having reahed equilibrum, we shouldexpet that the average kineti energy should be divided equally by these three degrees.That means eah omponet of the average kineti energy makes the same ontribution tothe temperature. In mathematis, we an express as:< v2x > + < v2y > + < v2z >= kTm (1)where k is Boltzman onstant (1.38x10�23J/K), T is the dimensional temperature and m isthe mass of atom ( for argon, the atomi weight is 39.948g/mol, so the mass of the atom is6.634x10�26kg).We use the Haile ode to alulate these three averages with some small modi�ations. Ourparameters are as follows:� NP (Number of Partiles): 108 1
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Figure 1: Energy Equipartition� NEQ (Number of Equilibration Timesteps): 1000� MAXKB (Number of Timesteps): 3000� TR (Redued Temperature): 0.1� DR (Redued density): 1.1Results Here the unit of horizon axis is Æt=ÆT imeUnits2



From our alulateions obtain (redued)< v2x >= 0:0983 (2)< v2y >= 0:0952 (3)< v2z >= 0:0900 (4)Temperature = 0.10.So,< v2x >�< v2y >�< v2z >� T .Disussion Atually this is a speial ase of a more general equipartion theorem of statis-tial mehanis. If there are more dgrees of freedom, suh as rotation, vibration, et., eahdegree wil have the average energy whih equals to 12KT , and total average kineti energywill be a produt of degrees of freedom and 12KT . Thus, the total kineti energy in thesystem an be evaluated. And it is a little di�erent from the potential energy, whih anonly be onerned with the on�guration of the moleules.1.1.2 ReversibilityStatements Let's investigate suh a solid whih internal moleules aare assumed to obeyNewton's law of motion. In this ase, we will think of their reversibility. Having hosen 32partiles, we will simulate a solid; after running 10 time steps, we suddenly hange the signsof the veloities. then, we an expet all the partiles go right bak. The same time later,whole system will be bak to its original position exept all the veloities are inverted.� NP: 32� NEQ: 0� MAXKB:22� TR: 0.6� DR: 1.1 3



Result We reord all these 32 partiles original positions and veloities. We suddenlyhange the signs of veloities and also X3,X5,Y3,Y5,Z3,Z5 at the 11th step. We then willsee at the 20th step, the veloities of the partiles are reversed.The following two tables are the positions and veloities of partiles of the 1st step and the20th separately.
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X Y Z Vx Vy Vz3.073499 3.074764 0.006527 -0.403826 -0.151734 1.3015840.001265 0.770241 0.775623 0.252414 0.273412 1.3450260.770666 0.000646 0.775632 0.356531 0.127730 1.3468920.766012 0.762923 3.075463 -0.573789 -1.188352 -0.0116271.533708 0.002945 0.004475 -0.807977 0.585949 0.8933881.536895 0.763510 0.765245 -0.171153 -1.070617 -0.7254302.311994 3.072210 0.766303 1.065738 -0.660597 -0.5151032.311720 0.766110 3.072026 1.013313 -0.553555 -0.6980980.001275 1.533760 3.070478 0.254681 -0.798802 -1.0056933.071372 2.311412 0.770797 -0.825548 0.949798 0.3816180.771730 1.534116 0.774141 0.567580 -0.727539 1.0502570.764010 2.305584 3.071556 -0.972209 -0.211097 -0.7894581.533540 1.536959 3.070822 -0.843675 -0.161316 -0.9382411.532865 2.304212 0.772720 -0.978470 -0.484450 0.7653912.310007 1.543589 0.768089 0.670678 1.161128 -0.1590132.302862 2.304667 0.005257 -0.755682 -0.394555 1.0474480.001221 0.001858 1.531650 0.243843 0.370387 -1.2179680.002794 0.771460 2.301258 0.557214 0.513466 -1.0757960.771803 0.001659 2.312815 0.581739 0.331035 1.2319750.766615 0.762668 1.537440 -0.450725 -1.238472 -0.0629821.542602 0.002791 1.542013 0.966641 0.556860 0.8469901.536196 0.763930 2.302721 -0.312573 -0.987248 -0.7827162.307537 3.070804 2.302152 0.180669 -0.942747 -0.8948782.307256 0.764556 1.532883 0.121800 -0.861581 -0.9744153.073480 1.543000 1.541513 -0.408008 1.046169 0.7485600.005977 2.305783 2.303527 1.190499 -0.169798 -0.6216060.766213 1.543752 2.307568 -0.530750 1.194072 0.1828390.770337 2.312963 1.539869 0.290295 1.262377 0.4204011.539862 1.544159 1.538647 0.419477 1.274989 0.1770561.537355 2.311009 2.301856 -0.080381 0.872038 -0.9542732.301967 1.535125 2.310641 -0.933737 -0.525780 0.7971422.308222 2.309693 1.532199 0.315391 0.608834 -1.1092705



X Y Z Vx Vy Vz3.073500 3.074765 0.006528 0.403601 0.151681 -1.3005890.001265 0.770241 0.775624 -0.252260 -0.273748 -1.3441670.770666 0.000646 0.775633 -0.356392 -0.127338 -1.3460740.766012 0.762922 3.075464 0.573776 1.187509 0.0115191.533707 0.002945 0.004475 0.807243 -0.585194 -0.8929751.536895 0.763509 0.765245 0.170554 1.069627 0.7249902.311996 3.072210 0.766303 -1.064643 0.660107 0.5150042.311720 0.766110 3.072027 -1.012723 0.553364 0.6977020.001275 1.533760 3.070478 -0.254625 0.798342 1.0047543.071370 2.311414 0.770797 0.824290 -0.948726 -0.3811900.771731 1.534116 0.774142 -0.566935 0.727058 -1.0497350.764010 2.305584 3.071554 0.971704 0.210939 0.7883781.533541 1.536960 3.070822 0.843478 0.161545 0.9376611.532866 2.304211 0.772721 0.978253 0.484004 -0.7647592.310007 1.543590 0.768089 -0.670075 -1.160001 0.1592312.302861 2.304667 0.005258 0.755473 0.394369 -1.0463980.001221 0.001858 1.531649 -0.243828 -0.370081 1.2168020.002794 0.771461 2.301258 -0.556816 -0.512780 1.0754870.771804 0.001659 2.312816 -0.581005 -0.330863 -1.2313420.766614 0.762666 1.537439 0.450076 1.237325 0.0626001.542603 0.002791 1.542014 -0.966306 -0.556547 -0.8461721.536196 0.763929 2.302722 0.312440 0.986471 0.7823202.307537 3.070803 2.302152 -0.181136 0.942434 0.8940122.307255 0.764555 1.532883 -0.121606 0.860678 0.9740293.073481 1.543001 1.541513 0.407803 -1.045766 -0.7481660.005978 2.305782 2.303527 -1.189182 0.169249 0.6211430.766212 1.543753 2.307568 0.530013 -1.193003 -0.1822930.770337 2.312964 1.539868 -0.290062 -1.261960 -0.4201301.539863 1.544160 1.538647 -0.419287 -1.273736 -0.1770301.537355 2.311010 2.301855 0.080124 -0.871770 0.9534372.301967 1.535124 2.310642 0.933348 0.525304 -0.7964482.308222 2.309693 1.532199 -0.315295 -0.608494 1.1083986



Disussion Sine our equations of motion are symmetri in time, that will inevitably ausethe reversibility. For a simple example, let's look at some partile moving under Newton'slaw: d2rdt2 = F (5)And after solving that equation, one would obtain a trajetory of this partile as r = r(t).Suppose we an let time go bak, whih allows us to live in a time of t0 = �t. Then we arevery surprised to �nd out that the form of Newton's law doesn't hange. And that's theorigin of the reversibility . It's thus very naturally to hek our ode to see if it an performthe rever sibility. this is a very simple but onvenient way.Also , I have more to speak is about the signs of veloities and higher derivat ives. Ourtransformation is t0 = �t, and dnrdt0n = (�1)n dnrdtn , therefore, we should not forget that we haveto hange 3rd and 5th order derivatives, not only the 1st derivatives( whih are veloities).1.1.3 Cheking Energy Conservation by varying ÆtStatement� NP: 108� NEQ: 1000� MAXKB: 1000� TR: 0.6� DR: 1.1In order to be ompared, four di�erent values of Æt( 0.001, 0.005, 0.007, 0.01) are hosen.From these four di�erent values of Æt(0.001, 0.005, 0.007, 0.01), we �nd that 0.005 and 0.001are better. At Æt =0.01, we an see that the total energy inrease with time and it is veryabnormal. It shows that the time step is too large that the displaement is too far. At7
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Figure 2: Energy Conservation
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this time, the onservation of energy is inreasingly damaged. However, if we would like toextend our time sale, we have to improve the Æt as large as possible. Here, we will haveto deal with this dilemma. And I think the most important thing is to have a diret imagewhat this simulation is, then we will have to get some praties from some tests to knowwhih value is the best.1.2 Study a solid at several di�erent TemperaturesOur simulation are arried out at the following onditions:� NP: 108� NEQ: 1000� MAXKB: 4000� DR: 1.2And we hoose four di�erent temperatures as 0.5, 1.0, 2.0 and 1.2(redued temperature).Running results are the follows.From �gure 3 we an see that the on�guration energy inreases as the temperature goes up.However, at high temperatures, for example TR = 5:0, the on�guration energy no longeronserves. This an hint us that something has hanged inthe system. At least, our systemis no longer stable at high temperatures. Realling our knowledge of phase transition, wean inger from the on�guration energy's hanges that there exists some similar hanges inthe system, beause at this time temperature is onstant while the energy of the systeminreases. The �g 4 shows the variation of pressure.From Figure 5, we an see that the higher the temperature is, the biger the Mean SquareDisplaement is. this is reasonable sine the temperature indiates the average kineti energyof the moleules. when the moleule has bigger kineti energy, it will have moretendeny tobreak out the ontrol otf the bound potential. At low temperature, it might only vibratearound its balane position. But as temperature goes suÆiently high, it has the hane to9
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Figure 6: Distribution of G(R)go out to move freely. And that is a basi feature of liquids. so, in some sense, we an saythat the solid is melting.Next, we will ompare the g(r) of under these four temperatures with the ideal FCC struture,whih means T=0 and the atom is stritly bound in its position.As the �gure 6 has shown, the funtion g(r) beomes more and more at as temperature goesup. The ideal FCC struture is a sum of Æ funtions. So its �gure is feally very sharp andhigh. when temperatuer inreases, the partiles moves bak and through. Therefore, g(r)beomes more and more at just as the �gures have shown. The number of peaks dereasesand it is more diÆult to �nd whih position is peak.13



1.3 Determine the thermal expansion oeÆient at approximatelyzero pressureThermal expansion oeÆient is de�ned as:� = 1V (�V�T )N;P (6)Aording to this de�nition, we should simulate our Lennard-Jones system at onstant pres-sure if we want to alulate from the above de�nition diretly. However, our simulationismoleular dynamis simulation at onstant temperature and onstant temperature or energy.And, we annot keep the pressure onstant in Haile ode. Thus we need to transform thisde�nitionof thermal expansion oeÆient to another form.First sine we use the density as our parameter as our input parameter in Haile ode, it ismore onvenient to use the density (�) instead of volume (V). Substituting V = N� into (6)yields that � = �1�( ���T )N;P (7)Seond, we would like to hange the derivative at onstant pressure. In thermodynamis,we know that there is a relation among the state quantities (pressure, temperature, density)whih is alled the state equation, i.e., f(P; T; �) = 0 (8)Thus, ( ���T )N;P = � �f�T�f�� = (� �f�T�f�P )(� �f�P�f�� ) = � (�P�T )N;�(�P�� )N;T (9)Thermal expansion oeÆient an then be written as:� = 1� (�P�T )N;P(�P�� )N;T (10)In Simulation, we will determine the quantities in (10)to get the �nal results of thermal14



expansion oeÆient. In order to be at approximately zero pressure, we would hoose hightemperature and low density as follows:� TR = T � = 2:0� DR = �� = 0:01In simulation, we have done as folowing proedures ( a star on the variable means it is inredued units.):1. Determine the urrent pressure at given temperature and density.The input parameters of Haile ode are set asNP=864, NEQ=4000, MAXKB=4000, TR=2.0, DR=0.01.Then we got tge result of pressure asP � = 0:0202. Determine the term (�P�T )N;TAt this step we should vary the density instead. Let Haile ode run at followingNP=864, NEQ=4000, MAXKB=4000, TR=2.0, DR=0.015The resultant pressure is 0.030. So,(�P�� )� = 0:030� 0:0200:015� 0:010 = 0:5 (11)And � = 0:5=120:0 = 0:004167(K�1):This is one ase alulation of thermal expansion oeÆient at approximately zero pressure.From the table handed out in lass, we an �nd that � for argon at zero pressure is:� = 0:3The two data mathes eah other. 15


