
2.1.1 Atomistic Local Strain

It is not too difficult to define local strain when the reference state is known: one

may carry out a least-square fitting procedure outlined in (6.34) to get a best fit of

the affine transformation matrix J to the relative positions of atoms nearby. The

problem is harder when there is no given reference system, for example a dislocation

would cause lattice mis-registry that makes the original reference hard to keep track

of. What we need is a geometrical characterization of the local atomic environments

that works in much the same way as the coordination number, but provides strain

information when the measure is applied to a piece of deformed yet perfect lattice.

Because there is no reference frame, it can at best output the matrix invariants of

the strain tensor, e.g., the dilatational component

ηm ≡ 1

3
Trη, (2.22)

and the shear component,

ηs ≡
√

1

2
Tr(η − ηmI)2, (2.23)

calibrated to the cases of hydrostatic dilatation ηxx = ηyy = ηzz = ηm, and pure shear

ηxy = ηyx = ηs.

Consider 3× 3 matrix,

Mi ≡ ∑

j∈Ni

qijq
T
ij, (2.24)

defined at each atom i, where qij is the relative position between atom j and i,

qij ≡ qj − qi, (2.25)

and j ∈ Ni is the set of i’s neighbors, whose definition is to be chosen. Two possible

choices are,

NR
i : {j ∈ NR

i | |qij| ≤ R} , (2.26)

where R is a cutoff distance, usually picked to be between the first and second nearest
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neighbors at the material’s perfect crystalline state; or,

NC
i ≡ NRi

i , with |NRi
i | = C, (2.27)

i.e., we sort j according to |qij| and pick only the nearest C atoms, where C is the

ordinary coordination number of the crystal, like 12 for fcc, etc. Anyway, Ni must be

chosen such that,

M0
i = d0I, (2.28)

at the material’s perfect crystalline equilibrium. Satisfying (2.28) may seem quite

impossible at the first glance, but actually materials with cubic or Td symmetry

automatically do, including fcc, bcc, hcp (perfect c/a ratio), diamond cubic, and

NaCl, ZnS, CsCl binary structures.

Consider how local strain and rotation influences (2.24) of a perfect crystal. For

a given local affine transformation J,

qij → q′ij = Jqij. (2.29)

Therefore, if neighbors do not enter or leave Ni,

Mi =
∑

j∈Ni

q′ijq
′T
ij = J


 ∑

j∈Ni

qijq
T
ij


 JT = JM0

i J
T . (2.30)

But if requirement (2.28) is satisfied, there would be

Mi = J(d0I)J
T = d0JJT . (2.31)

As the local Lagrangian strain at atom i is defined to be,

η =
1

2
(JTJ− I), (2.32)
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the local strain hydrostatic invariant is,

ηm =
1

3
Trη =

1

6
(TrJTJ− 3) =

1

6
(TrJJT − 3) =

1

6
(d−1

0 TrMi − 3), (2.33)

and the local strain shear invariant is,

ηs =

√
1

2
Tr(η − ηmI)2

=

√
1

2
Trη2 − 3

2
η2

m

=

√
1

8
Tr(JTJ− I)2 − 3

2
η2

m

=

√
1

8
TrJTJJTJ− 1

4
TrJTJ +

TrI

8
− 3

2
η2

m

=

√
1

8
TrJJTJJT − 1

4
TrJJT +

TrI

8
− 3

2
η2

m

=

√
1

8
Tr(JJT − I)2 − 3

2
η2

m

=

√
1

8
Tr(d−1

0 Mi − I)2 − 3

2
η2

m

=

√
1

8
Tr(d−1

0 Mi − I)2 − 1

24
(d−1

0 TrMi − TrI)2

= d−1
0

√
1

8
Tr(Mi − TrMi

3
I)2. (2.34)

After obtaining {Mi} for all atoms, one may also compute system average 〈M〉
and evaluate local deviations from 〈M〉. The above scheme (2.24) to (2.34) works

extremely well in practice, allowing one to directly visualize microstructures and

their strain fields with color-encoding. Successful examples include point defects,

dislocations, cracks, grain boundaries, stacking faults and even kinks.

2.2 Thermodynamic Ensembles and Fluctuations

This section deals with the thermodynamic state of an atomistic simulation which can

either be molecular dynamics (MD) or Monte Carlo (MC) [7]. In MD, one numerically
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