Least-Square Atomic Strain

Ju Li, Futoshi Shimizu

June 12, 2005

Since strain is by definition a relative measure[1], usually one needs two atomistic configurations, the reference and the current, in order to compute the local strain. A specialized trick could work if the reference configuration is known to be of high symmetry, and that only provides the shear invariant[2, 3]. To compute the full transformation matrix \mathbf{J} and strain tensor $\boldsymbol{\eta}$, one needs two configurations.

Define integer N_{i} to be the number of neighbors of atom i in the present configuration. For each neighbor j of atom i, their present separation is

$$
\begin{equation*}
\mathbf{d}_{j i} \equiv \mathbf{x}_{j}-\mathbf{x}_{i}, \tag{1}
\end{equation*}
$$

and their old separation was

$$
\begin{equation*}
\mathbf{d}_{j i}^{0} \equiv \mathbf{x}_{j}^{0}-\mathbf{x}_{i}^{0} . \tag{2}
\end{equation*}
$$

Note that in our present programs $[4,5,6], \mathbf{d}_{j i}$ and $\mathbf{d}_{j i}^{0}$ etc. are all considered to be row vectors.

We seek a locally affine transformation matrix \mathbf{J}_{i}, that best maps

$$
\begin{equation*}
\left\{\mathbf{d}_{j i}^{0}\right\} \rightarrow\left\{\mathbf{d}_{j i}\right\}, \quad \forall j \in N_{i} \tag{3}
\end{equation*}
$$

in other words, we seek \mathbf{J}_{i} that minimizes:

$$
\begin{align*}
\sum_{j \in N_{i}}\left|\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right|^{2} & =\sum_{j \in N_{i}}\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right)\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right)^{T} \\
& =\sum_{j \in N_{i}} \operatorname{Tr}\left(\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right)^{T}\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right)\right) \\
& =\operatorname{Tr} \sum_{j \in N_{i}}\left(\mathbf{J}_{i}^{T} \mathbf{d}_{j i}^{0 T}-\mathbf{d}_{j i}^{T}\right)\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right) \tag{4}
\end{align*}
$$

Performing arbitrary matrix variation $\delta \mathbf{J}_{i}^{T}$ in above, we get

$$
\begin{align*}
0 & =\operatorname{Tr} \sum_{j \in N_{i}} \delta \mathbf{J}_{i}^{T} \mathbf{d}_{j i}^{0 T}\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right) \\
& =\operatorname{Tr} \delta \mathbf{J}_{i}^{T} \sum_{j \in N_{i}} \mathbf{d}_{j i}^{0 T}\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right) . \tag{5}
\end{align*}
$$

For the above to be true for any $\delta \mathbf{J}_{i}^{T}$, the matrix

$$
\begin{equation*}
\sum_{j \in N_{i}} \mathbf{d}_{j i}^{0 T}\left(\mathbf{d}_{j i}^{0} \mathbf{J}_{i}-\mathbf{d}_{j i}\right) \tag{6}
\end{equation*}
$$

has to be zero. In other words, there must be:

$$
\begin{equation*}
\left(\sum_{j \in N_{i}} \mathbf{d}_{j i}^{0 T} \mathbf{d}_{j i}^{0}\right) \mathbf{J}_{i}=\sum_{j \in N_{i}} \mathbf{d}_{j i}^{0 T} \mathbf{d}_{j i} . \tag{7}
\end{equation*}
$$

If we define

$$
\begin{equation*}
\mathbf{V}_{i} \equiv \sum_{j \in N_{i}} \mathbf{d}_{j i}^{0 T} \mathbf{d}_{j i}^{0}, \quad \mathbf{W}_{i} \equiv \sum_{j \in N_{i}} \mathbf{d}_{j i}^{0 T} \mathbf{d}_{j i} \tag{8}
\end{equation*}
$$

then there is simply

$$
\begin{equation*}
\mathbf{J}_{i}=\mathbf{V}_{i}^{-1} \mathbf{W}_{i} \tag{9}
\end{equation*}
$$

The Lagrangian strain matrix is then calculated as

$$
\begin{equation*}
\boldsymbol{\eta}_{i}=\frac{1}{2}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{T}-\mathbf{I}\right) . \tag{10}
\end{equation*}
$$

And we can then compute its hydrostatic invariant

$$
\begin{equation*}
\eta_{i}^{\text {hydro }}=\frac{1}{3} \operatorname{Tr} \boldsymbol{\eta}_{i} \tag{11}
\end{equation*}
$$

calibrated to $\eta_{x x}=\eta_{y y}=\eta_{z z}=a$, and the local shear invariant,

$$
\begin{align*}
\eta_{i}^{\text {Mises }} & =\sqrt{\frac{1}{2} \operatorname{Tr}\left(\eta-\eta_{m} \mathbf{I}\right)^{2}} \\
& =\sqrt{\eta_{y z}^{2}+\eta_{x z}^{2}+\eta_{x y}^{2}+\frac{\left(\eta_{y y}-\eta_{z z}\right)^{2}+\left(\eta_{x x}-\eta_{z z}\right)^{2}+\left(\eta_{x x}-\eta_{y y}\right)^{2}}{6}} \tag{12}
\end{align*}
$$

calibrated to $\eta_{x y}=\eta_{y x}=b$, and all others zero.

Note that

1. The order of \mathbf{J}_{i} and \mathbf{J}_{i}^{T} in (10) matrix product is important. The wrong product order would also give you a symmetric matrix, but that symmetric matrix has nothing to do with the strain.
2. The product order of (10) appears to be the reverse of that of [1], because we adopt row-based vector scheme now $[4,5,6]$, while column-based scheme was adopted in [1].

References

[1] J. H. Wang, J. Li, S. Yip, S. Phillpot, and D. Wolf. Mechanical instabilities of homogeneous crystals. Phys. Rev. B, 52:12627-12635, 1995.
[2] J. Li. http://alum.mit.edu/www/liju99/Graphics/A/Doc/vonMisesInvariant.pdf.
[3] J. Li. Atomeye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng., 11:173-177, 2003.
[4] J. Li. Basic molecular dynamics. In S. Yip, editor, Handbook of Materials Modeling, chapter 2.8. Kluwer Academic Publishers, 2005.
[5] J. Li. Atomistic calculation of mechanical behavior. In S. Yip, editor, Handbook of Materials Modeling, chapter 2.19. Kluwer Academic Publishers, 2005.
[6] J. Li. Atomistic visualization. In S. Yip, editor, Handbook of Materials Modeling, chapter 2.31. Kluwer Academic Publishers, 2005.

