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Debye proposed the following single-parameter spectrum density,

dP = d
(

ω

ωD

)3

, ω < ωD, 0, ω ≥ ωD, (1)

where the normalization is a single degree of freedom, which should possess kBT total en-

ergy under classical mechanics and harmonic approximation. In contrast, under quantum

mechanics, the total energy is

〈E〉 =
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
 h̄ω. (2)

Let us define

kBTD ≡ h̄ωD. (3)

We then have the quantum energy average,

〈E〉 = kBTD
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, (4)

which can be written as,

〈E〉 = kBTD

∫ 1
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
 y, (5)
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or,

〈E〉 = kBTD

∫ 1

0
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
 3y3. (6)

Alternatively, one can rewrite (6) as

〈E〉 = kBTD

(
T

TD

)4 ∫ TD
T

0
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(
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2
+
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ey − 1

)
3y3. (7)

Therefore, if we require the classical system to have equal energy as the quantum system on

average, we would demand

TMD = TD

(
T

TD

)4 ∫ TD
T

0
dy

(
1

2
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ey − 1

)
3y3. (8)

This form is more ready for numerical evaluation. We see that when T → 0, TMD → (3/8)TD,

a nonzero value. But when T →∞, TMD = T +O(1/T ).

To get the heat capacity, or dTMD/dT , it is easier to work on (6):
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=
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or alternatively,
dTMD

dT
=

(
T

TD

)3 ∫ TD
T

0
dy

3y4ey

(ey − 1)2 ≡ D
(

T

TD

)
, (10)

where D(x) is the well-known Debye function [1], with D(x) ∼ (4π4/5)x3 as x ∼ 0 and

D(x) → 1 as x →∞.

In practice, the phonon spectrum density or DOS is of course not in the same form as

(1). Especially, multi-component systems have optical bands that are of entirely different

structure than (1). Nevertheless, (8) and (10) provide good functional forms for TMD(T )

representation, both numerically and physically. Let us consider the temperature rescaling

procedure’s physical effect on classical MD: it can be proved that the initial h̄ω/2 and

the later flatter TMD(T ) excitation in classical MD mimics the effect of quantum phonon
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Boltzmann equation, but with the unsatisfactory aspect that this correction is incorrectly

smeared out throughout the entire spectrum (if one allows the classical system to equilibrate),

so only an average correction effect remains. Given that, the question is suppose we have

a wide spectrum which contains optical band that is far from the acoustic band, which

part should one sacrifice, that is, more incorrectly smeared out? It is not hard to see that

it should be the optical bands, since they do not contribute significantly to the thermal

conductivity. Furthermore, one often worries more about the quantum effects on thermo-

mechanical properties near room temperature, and less for when the temperature is high, say

T = 1000K. The reason is not just because these properties might be less important at high

temperature than at room temperature, but also because the quantum effects themselves are

not significant enough to have a big influence at high temperature. If we think about it, it is

common practice to do classical MD without any correction - but one is still expected to get

sound result at high temperature, so it must be all right if we apply correction but which is

not neatly fitted for high temperature. Therefore, I think it is a good idea to fit (10) to the

actual heat capacity at T = 300K, where only the acoustic band is likely to be activated.
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