Thermal Conductivity References


Papers


Books


WebLinks


    Experiment

  1. S.G. Mueller, R. Eckstein, J. Fricke, D. Hofmann, R. Hofmann, R. Horn, H. Mehling, O. Nilsson, Experimental and theoretical analysis of the high temperature thermal conductivity of monocrystalline SiC. Materials Science Forum 264-268 (1998) 623-6.

  2. W.S. Williams, The Thermal Conductivity of Metallic Ceramics, JOM - Journal of the Minerals Metals & Materials Society 50 (1998) 62.

  3. P.G. Klemens, Thermal Conductivity of Zirconia, from Thermal Conductivity 23 (1996) 209-220, Technomics, PA.

  4. D.K. Christen, G.L. Pollack, Thermal conductivity of solid argon. Physical Review B 12 (1975) 3380-91.

  5. F. Clayton, D.N. Batchelder, Temperature and volume dependence of the thermal conductivity of solid argon. Journal of Physics C 6 (1973) 1213-28.

  6. D. Benin, Thermal conductivity of LiF and NaF and the Ziman limit. Physical Review B 5 (1972) 2344-50.

  7. I.N. Krupskii, V.G. Manzhelii, Multiphonon interactions and the thermal conductivity of crystal argon, krypton and xenon, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 55 (1968) 2075-82. English translation: Soviet Physics - JETP 28 (1969) 1097.

    Theory

  8. I.F.I. Mikhail, N.E. Hassanen, Calculation of the complementary variational modified bounds on the phonon thermal conductivity. Journal of Physics 7 (1995) 231-53.

  9. A.A. Chialvo, P.T. Cummings, Unified expression for the calculation of thermal conductivity in the canonical ensemble. Molecular Physics 78 (1993) 791-7.

  10. Paul G. Klemens, Theory of Thermal Conductivity of Solids at High Temperatures, High Temperatures - High Pressure 15 (1983) 249-254.

  11. I.J. Gupta, S.K. Trikha, Lattice thermal conductivity of solid neon in the temperature range 0.5 to 10K. Physica Status Solidi B 88 (1978) 815-18.

  12. I.J. Gupta, S.K. Trikha, Analysis of lattice thermal conductivity of solid argon at low temperatures. Physica Status Solidi B 80 (1977) 353-9.

  13. I.J. Gupta, S.K. Trikha, On the low temperature lattice thermal conductivity of solid argon. Physica Status Solidi B 84 (1977) K95-9.

  14. G. Niklasson, Calculations of the velocity and damping of high-frequency sound in solid argon. Physik der Kondensierten Materie 14 (1972) 138-84.

  15. R.C. Zeller, R.O. Pohl, Thermal conductivity and specific heat of noncrystalline solids. Physical Review B 4 (1971) 2029-41.

  16. Paul G. Klemens, Thermal Resistance due to Point Defects at High Temperatures. Physical Review 119 (1960) 507-509.

    Lattice Dynamical Calculations

  17. M. Omini, A. Sparavigna, Role of grain boundaries as phonon diffraction gratings in the theory of thermal conductivity. Physical Review B 61 (2000) 6677-88.

  18. M. Omini, A. Sparavigna, Effect of phonon scattering by isotope impurities on the thermal conductivity of dielectric solids. Physica B 233 (1997) 230-40.

  19. M. Omini, A. Sparavigna, Heat transport in dielectric solids with diamond structure. Nuovo Cimento della Societa Italiana di Fisica D 19D (1997) 1537-63.

  20. M. Omini, A. Sparavigna, Beyond the isotropic-model approximation in the theory of thermal conductivity. Physical Review B 53 (1996) 9064-73.

  21. M. Omini, A. Sparavigna, An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Physica B 212 (1995) 101-12.

  22. M. Omini, A. Sparavigna, Thermal conductivity of rare gas crystals. The role of three-phonon processes. Philosophical Magazine B 68 (1993) 767-85.

    Molecular Dynamics Calculations

  23. F. Shimizu, H. Kimizuka, H. Kaburaki, J. Li, S. Yip, Parallel Molecular Dynamics Simulation on Elastic Properties of Solid Argon, SNA 2000, The Fourth International Conference on Supercomputing in Nuclear Applications, September 4-7, 2000, Tokyo, Japan.

  24. J.R. Lukes, D.Y. Li, X-G. Liang, C-L. Tien, Molecular dynamics study of solid thin-film thermal conductivity. Journal of Heat Transfer 122 (2000) 536-43.

  25. S.G. Volz, Gang Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters 75 (1999) 2056-8.

  26. S. Volz, G. Chen, Lattice dynamic simulation of silicon thermal conductivity. Physica B 263-264 (1999) 709-12.

  27. I. Rosenblum, J. Adler, S. Brandon, Calculation of thermal properties of diamond from simulated phonon spectra. Computational Materials Science 12 (1998) 9-25.

  28. Hideo Kaburaki, Ju Li, Sidney Yip, Thermal Conductivity of Solid Argon by Classical Molecular Dynamics, Mat. Res. Soc. Symp. Proc. 538 (1998) 503.

  29. J. Li, L. J. Porter, S. Yip, Atomistic modeling of finite-temperature properties of crystalline beta-SiC: II. Thermal conductivity and effects of point defects, Journal of Nuclear Materials 255 (1998) 139-152.

  30. H. Kitagawa, Y. Shibutani, S. Ogata, Ab-initio simulation of thermal properties of AlN ceramics. Modell. Simul. Mater. Sci. Eng. 3 (1995) 521-531.

  31. R. Eggenberger, S. Gerber, H. Huber, D. Searles, M. Welker, Ab initio calculation of the thermal conductivity of neon in the liquid and hypercritical state over a wide pressure range. Molecular Physics 76 (1992) 1213-19.

  32. P.J.D. Lindan, M.J. Gillan, A molecular dynamics study of the thermal conductivity of CaF2 and UO2. Journal of Physics 3 (1991) 3929-39.

  33. P. Sindzingre, M.J. Gillan, A molecular dynamics study of solid and liquid UO2. Journal of Physics C 21 (1988) 4017-31.

  34. Anthony J.C. Ladd, Bill Moran, W.G. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics, Phys. Rev. B 34 (1986) 5058-5064.

  35. M.J. Gillan, M. Dixon, The calculation of thermal conductivities by perturbed molecular dynamics simulation, J. Phys. C 16 (1983) 869-878.

  36. D.J. Evans, Homogeneous NEMD algorithm for thermal conductivity-application of non-canonical linear response theory. Physics Letters A 91A (1982) 457-60.

    Amorphous Systems

  37. K. Takase, I. Akiyama, N. Ohtori, Thermal conductivity of silica glass at high temperature by molecular dynamics simulation, Materials Transactions JIM 40 (1999) 1258-1261. Japan Inst. Metals, Japan.

  38. P.B. Allen, J.L. Feldman, J. Fabian, F. Wooten, Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philosophical Magazine B 79 (1999) 1715-31.

  39. J.L. Feldman, P.B. Allen, S.R. Bickham, Numerical study of low-frequency vibrations in amorphous silicon. Physical Review B 59 (1999) 3551-9.

  40. S.R. Bickham, J.L. Feldman, Molecular dynamics simulations of vibrational lifetimes in amorphous silicon. Philosophical Magazine B 77 (1998) 513-21.

  41. J.L. Feldman, S.R. Bickham, G.E. Engel, B.N. Davidson, Modes in amorphous silicon. Philosophical Magazine B 77 (1998) 507-12.

  42. S.R. Bickham, J.L. Feldman, Calculation of vibrational lifetimes in amorphous silicon using molecular dynamics simulations. Physical Review B 57 (1998) 12234-8.

  43. V. Malyshkin, A.R. McGurn, Computer-simulation study of the thermal conductivity of amorphous insulating solids. Physical Review B 54 (1996) 2980-3.

  44. V.A. Luchnikov, N.N. Medvedev, Yu.I. Naberukhin, Localization of modes on the inhomogeneities of structure in computer models of amorphos argon, Russian Journal of Physical Chemistry 69 (1995) 28-32, translated from J.Fiz.Khim. 69 (1995) 33-37.

  45. M. Singh, Z.C. Tao, C.S. Ting, Self-consistent calculation of the phonon self-energy and thermal conductivity for disordered solids. Physical Review B 48 (1993) 10457-65.

  46. Y.H. Lee, R. Biswas, C.M. Soukoulis, C.Z. Wang, C.T. Chan, K.M. Ho, Molecular-dynamics simulation of thermal conductivity in amorphous silicon. Physical Review B 43 (1991) 6573-80.

  47. P. Sheng, M. Zhou, Heat conductivity of amorphous solids: simulation results on model structures. Science 253 (1991) 539-42.

  48. P.B. Allen, J.L. Feldman, Thermal conductivity of glasses: Theory and application to amorphous Si. Physical Review Letters 62 (1989) 645-8.

  49. D.G. Cahill, R.O. Pohl, Heat flow and lattice vibrations in glasses. Solid State Communications 70 (1989) 927-30.

  50. C.C. Yu, J.J. Freeman, Thermal conductivity and specific heat of glasses. Physical Review B 36 (1987) 7620-4.

  51. J.J. Freeman, A.C. Anderson, Thermal conductivity of amorphous solids. Physical Review B 34 (1986) 5684-91.

  52. J.E. Graebner, B. Golding, Phonon localization in aggregates. Physical Review B 34 (1986) 5788-90.

  53. J.E. Graebner, B. Golding, L.C. Allen, Phonon localization in glasses. Physical Review B 34 (1986) 5696-701.

    Nanocrystalline Systems

  54. V.V. Meshcheryakov, Cutoff of long-wave phonons in a nanocrystal due to a nonuniform strain field. Journal of Experimental and Theoretical Physics 84 (1997) 1010-15.

  55. P.G. Klemens, Theory of thermal conductivity of nanophase materials. Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials. TMS. 1997, pp.97-104. Warrendale, PA, USA.

    Reviews

  56. G.A. Slack, The Thermal Conductivity of Nonmetallic Crystals. Solid State Physics 34, pp.1-71.

  57. G.L. Pollack, The Solid State of Rare Gases, Rev. Mod. Phys. 36 (1964) 748-791.

  58. P. Carruthers, Theory of Thermal Conductivity of Solids at Low Temperatures, Rev. Mod. Phys. 33 (1961) 92-138.

Email: lij@matsceng.ohio-state.edu, phone: 617-253-3830.