This paper is published in

#428

Computational Fluid and Solid Mechanics : Proceedings, First MIT
Conference on Computational Fluid and Solid Mechanics, June 12-15, 200:
ed. Klaus-Jirgen Bathe (Elsevier, New York, 2001). ISBN: 0080439446.

Optimal particle controller for coupled continuum/MD fluid

simulation

1

Ju Li*, Dongyi Liao, Sidney Yip

Department of Nuclear Engineering, Rm. 24-212A, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Abstract

A general statistical approach is described to couple the continuum with molecular dynamics in fluid simulation.
Arbitrary thermodynamic field boundary conditions can be imposed on an MD system while minimally disturbing the
particle dynamics of the system. The importance of incorporating a higher order single-particle distribution function in
light of the Chapman—Enskog development is demonstrated for shear flow.
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1. Introduction

Molecular dynamics (MD) plays a unique role in the
simulation of fluids by virtue of its ability to offer insights
into atomic-level structure and dynamics that cannot be
obtained from continuum calculations. Because only a mi-
croscopic region of the fluid can be studied in this manner,
there is considerable interest to develop hybrid atomistic-
continuum methods. Though this problem has been well
recognized [1], there still appears to be no completely
satisfactory solution.

Two notable attempts have been made recently to rec-
tify this situation, both invoking the use of an overlapping
region but differing in how the molecular and continuum
descriptions are to be made compatible. O’Connell and
Thompson [2] proposed to constrain the dynamics of atoms
in the hybrid layer between the MD and continuum re-
gions to ensure continuity of property averages across the
coupling region. Hadjiconstantinou and Patera [3-5] cast
their formulation in the framework of alternating Schwarz
method [6,7] and treated the matching in terms of refining
the boundary conditions imposed on each of the overlap-
ping subdomains through an iterative process.

Our implementation [8—10] is also based on the alter-
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nating Schwarz method, but paying more attention to the
microscopic physics. In order to iterate between continuum
and MD solutions, one needs (a) to infer the macroscopic
fields that accurately represent the particle result in an
MD simulation, to be plugged into a continuum solver
as boundary conditions, and (b) to perform the inverse,
i.e., make sure that particles in an MD simulation do cor-
respond to a set of prescribed macroscopic fields at the
boundary, and that is achieved at a cost of as little artificial
disturbance to the particle dynamics as possible.

A method for (a) has been developed in our first paper
[8] in the form of an algorithm called the thermodynamic
field estimator (TFE). A method for (b) will be introduced
in Section 2. We define a particle velocity transformation
called the Optimal Particle Controller (OPC), to be imposed
on the boundary of the MD sub-domain, dC, in order to
achieve the desired field boundary conditions. We regard
this particular transformation as optimal in the sense that
the resulting artificial disturbance to the particle dynamics,
as measured in terms of the squared difference in the
particle velocities before and after the transformation, is
minimal.

In Section 3, we explain the importance of adopting
a more accurate single-particle distribution function, other
than the lowest-order Maxwellian distribution. By looking
at the Chapman—Enskog development in kinetic theory, we
work out an approximate solution to solve the outstanding
problems.
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2. Optimal particle controller

The theoretical challenge to linking continuum with MD
is that the two descriptions deal with different degrees
of freedom. The continuum description deals with fields
such as the density field p(x), velocity field v(x) and
the temperature field 7' (x), while MD deals with discrete
particles, their positions x; and velocities v;. And they
are also different in evolution equations: the fields evolve
by a set of partial differential equations like the Navier—
Stokes equation, while the particles evolve by many-body
Newton’s equation. The bridge linking the two [3-5,8—10]
is likely to be the single-particle distribution function,

dP = f(x,v; p(x), T (x), ¥(x)) dxdv

p(x) dx (_ v -V

~ d @dxd ,
AT ex T ) v+ f7dxdv
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a probability distribution in {x;, v;} parameterized by the
smooth fields p(x), V(x), T(x). f® denotes the second-
order correction to the leading-order local Maxwellian dis-
tribution when the fields have gradients. For a coupling
scheme to work, (1) must be true in the overlap region, i.e.,
p(x), v(x), T(x) must be well-defined in the sense of (1)
and having small gradients. The Navier—Stokes equation
can then be derived from the Chapman—Enskog develop-
ment [12].

In a previous paper [8] we have shown how to infer
the macroscopic fields in an MD region of interest C
from the current particle data, using a technique called
thermodynamic field estimator (TFE). Now, suppose one
has inferred the current fields to be p'(x), T'(x), V/(X) on
dC using TFE, but actually wants the fields to be p(x),
T (x), v(x), how should one modify the particle phase space
coordinates such that the desired distribution is achieved?
That is, say there is a random variable sequence {X,}
satisfying distribution f(X), but we want them to satisfy
another distribution g, so we replace X,’s by Y,’s such
that {Y,} will satisfy g(Y), what should be the optimal
T: X, — Y, transformation (Fig. 1)?

We propose the criterion for optimality to be the mini-
mization of

B=3) vy =P, 0

f aft

where vP and v are the velocities of the nth particle
before and after the 7 transformation, under the constraint
that vi" now satisfy the desired single-particle distribution
described by fields p(x), T'(x), v(x). 7 is then called the
Optimal Particle Controller (OPC). One may choose to
operate 7 in a finite-volume region outside of C, or just
on a certain boundary such as dC, which are called bulk
or boundary OPC, respectively. The subtleties of bound-
ary OPC involving conditional probability are already dis-
cussed in a previous paper [9,10].

current

T[T[ T?T (X)

desired

X—Y transformation

i $T% TI%\E am
| !

Fig. 1. Given that an incoming sequence {X} (circles) satisfies a
current distribution f(X), but one would like to change {X} to
{Y} (dots) such that Y satisfy the desired distribution g(Y’), what
T : X — Y transformation should one use? Note that the average
difference between circles and dots represent the magnitude of
the artificial action one applies onto the atoms.

We believe that, in general, a unique OPC exists for a
given problem. Especially, we show that for one- or de-
coupled multi-dimensional (factorizable) distributions, the
following transformation is OPC,

Y

X
X—7Y: /f(é)d§=/g(§)d5, 3)
—00 —00

where one solves the implicit equation for Y, given each X.
It can be checked that Y indeed conforms to distribution g
if the input random variable X conforms to f. The proof
that (3) is OPC in 1D with discussions on general 3D
boundary OPC is to be given in a longer paper [11].

3. Second-order single-particle distribution functions

Our discussion in Section 2 is general with respect to the
single-particle distribution function f. That is, we only as-
sume f exists, and its leading order is the local Maxwellian
distribution f©, without insisting on a certain form of
f@. Indeed, it is all right to just use f© if the so-called
extended boundary condition [9,10] is used to impose the
boundary conditions, since f® and higher-order terms will
appear automatically at dC. But, if one directly imposes
OPC on dC as boundary conditions, he should be more
careful about £ to at least ensure the continuity of stress
and heat current across dC. An example is shown in Fig. 2,
where direct boundary OPC is imposed on the center plane
to achieve a shear flow speed of 0.3, in an MD simulation
of 5184 LJ6-12 atoms at a reduced temperature of 1.1, with
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Shear flow velocity profile of 5184 Ar atoms avg. over 485000 steps (3880 ps)
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Fig. 2. Result of applying direct boundary OPC with and without £@ in a simple shear flow scenario.

solid walls on both sides. However, if one just uses f© to
derive and implement a boundary OPC, the flow speed will
not reach the desired value but actually drop to 0.25.

A simple mechanical reason for this behavior is that
f©, the local Maxwellian distribution, does not carry any
shear stress (or heat current) since the net flux of momen-
tum (or energy) across any small area vanish whenever the
velocity distribution is isotropic. On the other hand, shear
stress and f® do exist in the fluid bulk as in Fig. 2, and
atoms near the center plane, newly assigned the low-order
distribution f©, have to satisfy stress continuity by sac-
rificing parts of their own inertia. f® is only approached
gradually as atoms leave the center plane and come into the
bulk, at the cost of v,.

In the Chapman—Enskog development, the velocity dis-
tribution is expanded as

_ P(X) |V — {’(X)|2 o
1= Garooyn P (‘ 2T(x) ) (14¢@) 4 .

which is then plugged into the Boltzmann equation. It
happens that there exists exact solution for a so-called
quasi-Maxwell model [12], where ¢® turns out to be a
linear sum of several terms,

P =P+ Do+ )

For the purpose of this discussion we will only consider the
shear flow term,

The classical description on f® is the Chapman—Enskog @ —i T _
development [12]. Although that theory is meant for gases, Poear = 0(x)T (x)2 (V= v(x) DE)(v - v(x)), ©)
we nevertheless use it for liquids. The big difference be- where
tween a liquid and a gas is that the interatomic interaction is _ _
a dominant contribution to fluxes (shear stress, heat current) Das(x) = l <3va n 3& ) )
in a liquid, whereas it is relatively less importance in a gas. 2 \dxp  Bxq

Thus in liquids, spatial correlation like g(r) should con-
tribute roughly the same to fluxes as velocity distribution
f@. However, we are only able to modify f®, a single-
particle rather than a two-particle distribution, in our present
formalism. The plausibility argument for doing so would be
a mechanical one: so long as we satisfy flux continuity at
the interface by assigning enough fluxes to f®, the internal
conversion between f® and g(r) can be carried out in a
relatively non-disturbing manner in the skin region near the
boundary, unlike the case where not enough flux is assigned
to £, and the fluids have to pay for it by themselves.

is the fluid strain rate tensor, and

Q1)'”?
20')\.()2

is fluid shear viscosity, expressed in terms of the collisional
cross-section o and some kernel eigenvalue Aq;.

We then approximate 1 + ¢ in (4) by exp(¢$),.) to
show that the leading-order effect of ¢y, is to distort the
velocity distribution f from an isotropic Gaussian distri-
bution f© to a tilted Gaussian distribution. In the simple

shear flow scenario depicted in Fig. 2, the principal axes of

®
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the tilted Gaussian are {(D, + 9,)/+/2, ¥y, (U, — 0.)/+/2},
as

1 0 0
(x =@, vyov)- | 0 1 0
0 0 1
1 0 y vy — U,(2)
— o 1 0| v, : ©
y 0 1 v,

in the exponent, with off-diagonal coupling coefficient y (x)
defined to be
Tz (%)
oT

The merit of (10) is that it is readily computable on
the fly in a coupled continuum-MD simulation, without any
other extra parameters. And one can easily check that by
including off-diagonal coupling in (4), the stress carried
by f is exactly t,,(x), which is demanded by mechanical
equilibrium. To include y (x) in the bulk OPC is very easy:
£ is still factorizable in the {(3,+7.)/~/2, by, (0, —1.)/+/2}
frame, so (3) can be readily used. The boundary particle
controller is a lot more complicated because the boundary
velocity distribution is not a Gaussian [9,10] and cannot
be factorized. It is not clear yet what transformation is the
OPC in that case. Some preliminary tests suggest that by
giving each atom which hits the z-plane an extra —2y (x)v,
in v,, in addition to the boundary OPC as if £ is not
present, the results are satisfactory, as shown in Fig. 2.

Finally, we mention that in the spirit of the Chapman—
Enskog expansion, it is all right to use f© in the TFE
to estimate the current fields p(x), T(x), v(x), calculate
the spatial gradients, and then impose direct f©@ + f@
OPC using Chapman-Enskog f@® using those gradients.
It achieves the same level of accuracy as initially using
fO+ O TFE.

y(x) = (10)
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