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Atomistic simulation of matter under stress:
crossover from hard to soft materials
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Abstract

Atomistic simulation can give insights to the mechanical behavior of stressed crystalline hard
materials. Theoretical strength, de*ned in the long wavelength limit through elastic stability cri-
teria, or more generally in terms of soft vibrational modes in the deformed lattice, can be studied
by direct simulation of stress–strain response. It is suggested that this approach may be applied
as well to the understanding of structural instability (failure) in soft materials, with appropri-
ate considerations of the microstructure characteristic of such systems. Simple observations are
made on the e-ects on strength and deformation of structural features—disorder, voids, surfaces
and interfaces—that are common to both classes of matter. An exploratory study of membrane
rupture is discussed to illustrate the mechanistic details on void nucleation and growth that are
available from atomistic simulations. c© 2002 Elsevier Science B.V. All rights reserved.

PACS: 61.72.−y; 62.20.−x; 62.25.+g
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1. Introduction

The aim of this paper is to explore possible connections between hard and soft
materials through their mechanical behavior in response to an applied stress or strain.
Based on the elementary notion that strength and deformation of matter are invariably
governed by the presence of defects, or equivalently the microstructure, we suggest
that this point of view could lead to a more uni*ed understanding of both classes of
materials. Currently, there is widespread interest in identifying problems in materials
research that combine fundamental challenges with technologically relevant applications
[1]. A particular focus that has emerged is the multiscale theory and simulation
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approach to study structural and functional materials such as metals, semiconductors,
and ceramics [2–4]. Given this impetus to develop simulation methods capable of
handling the microstructures characteristic of hard materials, the question of whether
the same basic techniques can be applied to soft materials arises quite naturally.

We begin by examining how the strength of crystals can be de*ned and determined
through the combination of elastic and vibrational stability criteria with atomistic simu-
lation. In this approach, the strength of the perfect crystal (microstructure-less) sets the
theoretical upper limit, and the presence of any defect causes a lowering of strength.
To apply the same notion to soft materials, we emphasize the fundamental role of mi-
crostructure in determining the response of any material to stress. For illustration, we
describe a molecular dynamics study of membrane rupture to show the correlation of
strength and deformation with microstructure evolution in void nucleation, growth, and
coalescence. In the concluding remarks, we brieFy touch on the prospects of combin-
ing not only hard and soft materials, but also scattering measurements with atomistic
simulation.

2. Atomistic measures of strength and deformation of crystalline matter

The mechanical stability of a crystal lattice can be described through stability con-
ditions which specify the critical level of external stress that the system can withstand.
Lattice stability is not only a central topic in elasticity theory, it is also fundamental in
any analysis of structural transformations in solids, such as polymorphism, amorphiza-
tion, fracture and melting. Born *rst showed that by expanding the internal energy of
a crystal in a power series in the strain and requiring positivity of the energy, one
obtains a set of conditions on the elastic constants of the crystal that must be satis*ed
to maintain structural stability [5,6]. This leads to the determination of ideal strength
of perfect crystals as an instability phenomenon, a concept that has been examined by
Hill [7] and Hill and Milstein [8], as well as used in various applications [9].

That Born’s results are valid only when the lattice is not under external stress was
explicitly noted in a derivation by Wang et al. [10] invoking the formulation of a
path-dependent Gibbs integral. The limitation is most simply displayed by considering
the relation between two second-rank tensors, the elastic sti-ness coeIcients B and the
elastic constants C [11],

Bijkl = Cijkl + �ijkl ; (1)

where

�ijkl =
1
2

(	ik
jl + 	jk
il + 	il
jk + 	jl
ik − 2	kl
ij) (2)

with 	ij being the Kronecker delta symbol and 
ij being the applied stress tensor. The
condition for the onset of lattice instability is [10]

det |A| = 0 ; (3)

where A = 1
2 (BT + B). In the absence of an external stress, the elastic sti-ness coef-

*cients are the same as the elastic constants, in which case Eq. (3) gives the Born
criteria. Conversely, at *nite external stress lattice stability, or strength, is in principle
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Fig. 1. Phonon dispersion curves of SiC (3C) at large strains, (a) hydrostatic tension, and (b) pure shear
(same k-point labeling but which only tracks one split branch of the original cubic-symmetry k-point).

not an intrinsic material property as are the elastic constants. In the derivation on
Eq. (3) [10], the origin of the term � arises clearly from the work done by the
external stress. Further discussion on Eq. (3) has been given regarding thermodynamic
(ensemble) implications and the deformation path [12], and regarding compatibility
with the condition for internal stability formulated by Gibbs in 1876 [13].

The connection between stability criteria and theoretical strength is most directly
demonstrated by simulation. For a given applied stress 
, one can imagine evaluating
the current elastic constants to obtain the sti-ness coeIcients B. Then by incrementally
increasing the magnitude of 
, one will reach a point where one of the eigenvalues of
the matrix A (cf. Eq. (3)) vanishes. The critical stress at which the system becomes
structurally unstable is the theoretical strength of the solid for the particular mode of
loading. If the simulation carried out is molecular dynamics, temperature e-ects are
taken into account naturally.

Under a uniform load, the deformation of a single crystal is homogeneous up to
the point of structural instability. For a cubic lattice held under hydrostatic strain, the
stability conditions are particularly simple,

B= (C11 + 2C12 + P)=3¿ 0; G′ = (C11 − C12 − 2P)=2¿ 0 ;

G = C44 − P¿ 0 ; (4)

where P is positive (negative) for compression (tension), and the elastic constants Cij
are to be evaluated at the current state of strain. While this result is known for some
time [14–16], direct veri*cation against atomistic simulations has been relatively recent
[10,17–21].

To see the interplay between the stability criteria, Eq. (4), and the onset of soft
phonon modes, consider the molecular dynamics simulation results on SiC in the cu-
bic phase (beta 3C) obtained using an empirical bond-order potential [22]. A single
crystal sample with periodic boundary conditions is subjected to a prescribed mode
of deformation and allowed to relax at very low temperature. The resulting atomic
con*gurations are used to construct the dynamical matrix to be diagonalized. Fig. 1
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Fig. 2. Variation of virial stress at constant strain from MD simulations of SiC (3C) under hydrostatic
tension at 300 K in perfect crystal, amorphous, and nanocrystalline phases.

shows two sets of dispersion curves, obtained at strain values close to critical for de-
formation under hydrostatic tension and shear, respectively [23]. Case (a) shows the
�′-point zone center soft mode in the [1 1 1] direction at a strain of 0.24 and stress of
39 GPa, which corresponds to an elastic instability. Case (b) shows the L-point zone
boundary soft mode at 0.20 strain and 62 GPa, which is not an elastic instability. The
implication is that lattice vibrational analysis of a deformed crystal provides the most
general monitoring of structural instability.

For the direct simulations of stress–strain response, we show in Fig. 2 molecular
dynamics results on SiC under hydrostatic tension at 300 K. At every increment of
applied strain, the system is relaxed and the virial stress evaluated. Three samples are
studied with periodic boundary conditions, a single crystal (3C), an amorphous sys-
tem that is an enlargement of a smaller con*guration produced by electronic-structure
calculations [24], and a nanocrystal composed of four distinct grains with random ori-
entations (7810 atoms). The single-crystal sample shows the expected linear elastic
response at small strain up to about 0.03; thereafter the response is nonlinear but still
elastic up to a critical strain of 0.155 and corresponding stress of 38 GPa. Applying a
small incremental strain beyond this point causes a dramatic change, with the internal
stress decreasing suddenly by a factor of 4. Inspection of the atomic con*gurations,
Fig. 3, shows the nucleation of an elliptical nanocrack in the lattice along the direction
of maximum tension. With further strain increments, the specimen deforms by strain
localization around the crack with essentially no change in the system stress.

The response curves for the amorphous and nanocrystal in Fig. 2 di-er signi*-
cantly from that of the single crystal, with interesting similarities and di-erences rel-
ative to each other. The former shows a broad peak, at about half the critical strain
and stress, suggesting a much more gradual structural transition. Indeed, the atomic
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Fig. 3. Atomic con*gurations of a single crystal of SiC (3C) just prior to (a) and after (b) structural
instability under hydrostatic loading at 300 K (see Fig. 2).

Fig. 4. Same as Fig. 3 except for the nanocrystal specimen.

con*guration (not shown) reveals channel-like decohesion at strain of 0.096 and stress
22 GPa. Another feature of the amorphous sample is that the response to other modes
of deformation, uniaxial tension and shear, shows the same failure stress. This property
of isotropy is in contrast to the pronounced anisotropic behavior of the single crystal
results, failure stresses of 70 and 55 GPa for uniaxial tension and shear, respectively.
For the nanocrystal, the critical strain and stress are seen to be similar to the amor-
phous phase, except that the instability or failure e-ect is much more pronounced,
qualitatively like that of the single crystal. The atomic con*guration, Fig. 4, shows
rather clearly the failure process to be intergranular decohesion. One can attempt to
rationalize the characteristic behavior of the three types of responses in Fig. 2 through
the e-ect of local disorder (or free volume), completely absent in the single crystal,
well distributed in the amorphous phase, and localized at the grain boundaries in the
nanocrystal. The disorder can act as a nucleation site for structural instability, and
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lowering the critical stress and strain for failure. Once a site is activated, it will tend
to link up with neighboring activated sites, thus giving rise to di-erent behavior be-
tween the amorphous and nanocrystal samples.

3. Crossover toward soft matter

We have just seen how the stress–strain response of a hard material can vary sig-
ni*cantly depending on its microstructural state, whether it is defect-free, amorphous,
or nanocrystalline. One can readily imagine how through atomistic simulation similar
studies can be applied to more complex situations. Indeed, many structural and func-
tional materials of practical interest tend to be defective crystals containing vacancies,
dislocations, and grain boundaries, and it is a current challenge to understand at the
atomistic and mesoscale levels how the defects a-ect the material strength. Any solid
material can be characterized by its microstructure, which is equivalent to the speci*-
cation of the defects present in the system. In turn a knowledge of the microstructure
is essential to understand all the physical properties of the material. This is the concept
of structure–property correlation that underlies the *eld of materials science.

As a *rst step toward developing a microstructure-based atomistic measure of strength
for soft materials, we note at the outset there exists a vast array of microstructural
features that are generally not encountered in hard materials. Since soft matter can
refer to polymers, colloids, supramolecular systems, gels, surfactants, liquid crystals,
membranes, as well as various biomaterials, 1 it would be hopeless to confront all the
structural complexities. Instead one might begin at the opposite end by probing how
strength varies with local disorder, surfaces and interfaces which are microstructural
features common to many of these systems. Posing the problem in this manner means
that simulation can be used to systematically develop a basic strength–microstructure
correlation that is tied to generic atomic-level mechanisms, initially at least without
regard to the distinction between soft and hard materials.

4. Simulation study of membrane rupture

Following a previous discussion of mechanisms of membrane rupture [11], we have
performed a molecular dynamics study of void nucleation and growth in the context
of rupture of a two-dimensional membrane model under dilatational strain. The initial
system, composed of 6000 atoms interacting through the Lennard–Jones interatomic
potential, is a triangular lattice with periodic border conditions, relaxed under zero
pressure at a prescribed temperature T which is maintained by velocity rescaling. All
physical variables are expressed in dimensionless units with length measured in �,
energy in �, and time in 
=

√
m�2=�, where (�; �) are the distance of closest approach

and well-depth parameters of the Lennard–Jones potential model, and m is the molecular

1 For general introductions to the many problems of current interest in soft matter, see several recent
special issues of the MRS Bulletin, Neutron Scattering in Materials Research (December 1999), Biomaterials
(January 2000), and Supramolecular Materials (April 2000).
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Fig. 5. Tension–strain response of a ductile membrane at three rates of strain deformation.

mass. A simulation run consists of imposing an incremental strain rate on the system,
allowing the atoms to relax in the (N; V; T ) ensemble, and calculating the resulting
stress using the virial expression. A special routine for determining void clusters has
been implemented in which the simulation cell is divided into a large number of small
cells, and for each small cell, the distance from the cell center to the nearest atom
is found. If this distance is greater than a predetermined value, then that small cell is
treated as empty (void cell). Void cells adjacent to each other are considered to be
connected, they then belong to the same void cluster (henceforth simply called a void).
As the simulation proceeds, new voids are continually being formed while the existing
voids can expand or contract. Our routine proves to be e-ective in determining at any
time instant the number of voids N , the total area they occupy Vtot, and other statistics
such as the size of the largest void Vmax.

In this study, our interest lies primarily in the behavior of the void distribution
as the membrane is strained toward rupture at di-erent strain rates and temperatures.
Three strain rates will be considered, �̇ = 5 × 10−7; 2 × 10−6; and 1:2 × 10−5 in
units of 
−1, and two temperatures, T = 0:1 and 0:37; where the melting point is
known to be Tm = 0:42. Over this range, we will be able to discern the e-ects of slow
versus fast strain rate, and low versus high temperature. In all situations, the membrane
responds to the imposed strain by breaking up with the appearance of voids either in
the form of slits (nanocrack) or more-rounded shapes (pores) depending on the system
temperature. Generally, at low strain rate, one observes a few isolated cracks which
enlarge (grow) upon further straining until failure occurs suddenly. In contrast, at high
strain rate, many cracks appear but rather than growing they tend to coalesce, with
failure occurring relatively more gradually. We refer to the two regimes as cavitation
instability and percolation respectively [25,26].

We *rst consider the rupture of the low-temperature membrane, T = 0:1: Fig. 5
shows the variation of tension � with true strain �s (no relation to the above Lennard–
Jones potential parameters) at the three strain rates. The yield stress �Y is de*ned as
the stress at which nonlinear behavior set in, thus the three curves are normalized to
coincide in the elastic or linear region of small strains. Comparing Figs. 5 and 2, we
see a similar behavior of nonlinear deformation up to the point of instability, indicated
by a maximum tension, followed by an unstable portion of the response curve. The
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Fig. 6. Same as Fig. 5 for variation of total void area, normalized to the value before deformation, with
strain.

Fig. 7. Variation of area of largest void (scaled) with total void area (arbitrary units) for the three strain
rates.

e-ect of higher strain rate is to extend the stable portion to reach a higher strength,
and correspondingly larger strain at the point of instability. The tendency toward a
relatively more rounded peak as the strain rate increases is also clear. Fig. 6 shows
the change in relative porosity during deformation following the same general pattern,
an essentially linear increase initially and the sudden onset of an instability, the latter
being strain-rate-dependent in the same manner as seen from the constitutive behavior
in the preceding *gure. Looking at Figs. 5 and 6 together gives us an idea of how
microstructural details, in this case void nucleation and growth, can a-ect mechanical
behavior, illustrating again the concept of structure–property correlation.
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Fig. 8. Instantaneous atomic con*gurations of the ductile membrane at four values of total void area,
Vtot ∼ 80; 150; 300; 4000; under deformation at the fast strain rate.

Stress, strain, and porosity are quantities which have macroscopic meaning, even
though in the present study they are determined from the atomistic data produced by
simulation. To see the detailed atomic con*gurations underlying a particular macrostate,
we show in Fig. 7 the ratio Vmax=Vtot, a measure of the void growth, during deformation,
again comparing the three strain rates. The initial decrease of the ratio signi*es that
there is essentially no void growth during early deformation, but some growth begins
to appear before the onset of instability. As before, strain-rate-dependence is most
pronounced at the instability. Notice that at slow strain rate, the response shows only a
hint of a plateau before the steep rise, whereas for the intermediate and fast strain rate
deformations, the plateau behavior prior to the rise is well established. For the case
of the fast strain rate, we show in Fig. 8 instantaneous atomic con*gurations of the
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Fig. 9. Time varying responses in void behavior of a porous membrane subjected to slow strain rate de-
formation, showing how the three stages, nucleation (I), nucleation and growth, and growth, manifest in
each case. Characteristic time 
 depends on the interatomic potential parameters and the atomic mass and is
typically of the order of a picosecond.

membrane (plotted on the same scale) at the four instants indicated in Fig. 7. These
results con*rm that under high deformation rate, void growth through coalescence rather
than void nucleation dominates the membrane response prior to rupture. In contrast,
one might interpret that the response curve for the slow strain rate as showing the
dominance of cavitation failure with only limited extent of coalescence.

Turning to the high-temperature membrane at T = 0:37, we note that in this case
pores are already present in the membrane before the imposition of strain rate. Fig. 9
shows the time variation of the tension, number of pores, total void area (in arbitrary
units), and the average void area per pore 〈Vtot〉 = Vtot=N; for the case of slow strain
rate. In these results, three stages of the deformation response can be delineated, initial
nucleation (I), void nucleation and growth (II), and void growth (III). As regards
scaling behavior, Fig. 10 shows that the data clearly follow two regimes, a nucleation
and growth period which can be *tted to the form, Vtot(t)˙ [1 − exp{−k(t − ti)n}]
[27], and a later stage of exponential growth, Vtot(t)˙ e��̇t . The data on pore size
distribution data can be analyzed by *tting to N (V )˙V−m and obtaining an exponent,
m∼ 1:59; which essentially is strain-rate-independent. It is tempting to associate this
value with a certain fractal behavior [28]. The exponent of 1.59 is within the range of
values reported for fractal systems where growth is described by the di-usion limited
aggregation (DLA) model—a di-using particle becomes attached to a nucleation seed
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Fig. 10. Fitting the data on total void area from Fig. 9 to the Avrami form for nucleation and growth (stage
II) and exponential growth (stage III).

when it reaches the seed [29]. The DLA-analog mechanism together with pure growth
induced by the dilatation are the predominant factors in the pore size evolution.

5. Concluding remarks

We close with some thoughts on the prospects of improved understanding of soft
matter strength through atomistic simulations. A considerable literature already exists on
molecular dynamics studies of lipid bilayers and biomembranes [30,31]. Although the
emphasis thus far has been on structural and transport properties, some recent attention
is being directed toward mechanical behavior [32,33]. From the experimental side,
measurements of constitutive behavior such as rupture toughness of vesicles [34] are
beginning to appear. Thus we can look forward to further insight into how soft materials
deform under stress, at the atomistic and mesoscale levels. In view of the theme of
this conference, it would be appropriate to make note of the complementarity between
neutron scattering and atomistic simulation in probing structure and dynamics of matter
on the same molecular spatial and temporal scales. With each technique capable of
providing details that cannot be obtained by other means, a combined approach would
be that much more powerful if the two techniques can be combined synergistically.
The availability of mechanistic details on stress-induced deformation means that this is
also a good time to revisit the early, classic notions on rupture and Fow in solids [35]
and fracture in liquids [36] for drawing parallels between hard and soft matter.
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