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Abstract

We explore the gap-tooth method for multiscale modeling of systems represented by microscopic physics-based simulators,
when coarse-grained evolution equations are not available in closed form. A biased random walk particle simulation, motivated
by the viscous Burgers equation, serves as an example. We construct macro-to-micro (lifting) and micro-to-macro (restriction)
operators, and drive the coarse time-evolution by particle simulations in appropriately coupled microdomains (“teeth”) separated
by large spatial gaps. A macroscopically interpolative mechanism for communication between the teeth at the particle level
is introduced. The results demonstrate the feasibility of a “closure-on-demand” approach to solving some hydrodynamics
problems.
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Traditional approaches to solving physical prob- coarse-grained equations and atomistic/stochastic sim-
lems that manifest separation of scales involve first (a) ulations can be regarded as “black boxes” from the
deriving a set of reduced equations to describe the sys-point of view of appropriately formulated numerical
tem, and subsequently (b) solving the equations and algorithms. They constitute alternative realizations of
analyzing their solutions. Recently an “equation-free” the same macroscopic input-output mapping. For ex-
approach has been proposed [1] that sidesteps the neample, a crystal’s elastic response can eitheape
cessity of first deriving explicit reduced equations. The proximatedby elastic constants, avaluatedusing
approach relies instead on microscopic simulations, a high-accuracy electronic structure program based
enabling them through a computational superstructure on density functional theory [2], which, for a given
to perform numerical taskas if the reduced equations  strain, computes the stress on-the-fly. The advantage
were available in closed fornBoth macroscopically  of a simulator-based approach is that it can be used
generally, beyond the region of validity of any given
closure—e.g., providing the correct nonlinear elastic

mspondmg author. responses in the apove examplt_a._Equa_ltion-free meth-
E-mail addressyannis@princeton.edu (I.G. Kevrekidis). ods hold the promise of combining direct physics-
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based simulation with the strength and scope of tra-
ditional numerical analysis onoarsevariables (bi-
furcation, parametric study, optimization) for certain
problems—problems for which coarse equations con-
ceptually exist, but are not available in closed form. An
example is the so-called interatomic potential finite- ;
element method (IPFEM) [3], a subset of the more v

general quasi-continuum method [4], used to iden- | || | | Gap

tify elastic instabilities leading to defect nucleation in
nanoindentation, for which no accurate closed-form - - - - D=~ > -- p-- -
constitutive relation is currently available due to the

complex triaxial stress state at the critical site of insta- Fig. 1. Teeth and gaps covering space.
bility.

Microscopic simulations cannot be used directly to In the micro-simulation, random walkers move on
attack problems with large spatial and temporal scales [—x, ) at discrete timesteps = nh. At each step,
(“macrodomains” in space and time); the amount of an approximation to the local densipy, is computed
computation is prohibitive. If, however, the actual be- (as discussed later). Then every walker is moved by
havior can be meaningfully coarse-grained to a repre- Ax; € N(hp; /2, 2vh), a biased Gaussian distribution.
sentation that is smooth over the macrodomain, the mi- x;'s are then wrapped around {e-7, ), and the
croscopic systems need only to be directly simulated process repeats. Singgis a local estimate af, this
in small patchesf the macrodomain. This is done process achieves a coarse-grained flux analogous to
by interpolating hydrodynamic variables between the j = u?/2 — vu, in Eq. (1) by assigning each walker
patches in space—the gap-tooth method (see [5])— a drift velocity of p; /2.
and extrapolating from one or more patches in time—  The gap-tooth scheme, first discussed in [5], cov-
projective integration [6,7]. In this Letter, we use this ers space with teeth and intervening gaps as shown
“closure-on-demand” approach to solve for the coarse- in Fig. 1 for one dimension. The microscopic evolu-
grained behavior of a particular microscopic system. tion is simulated in the interior of each tooth. Clearly
The illustrative example is the biased random walk appropriate boundary conditions have to be provided
of an ensemble of particles, motivated by the viscous at the edges of each tooth. Tooth boundaries coinci-
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Burgers equation, dent with external boundaries have the boundary con-
ditions specified externally, while internal boundary
Up + Ully = Vilyy, (1) conditions must be generated by the gap-tooth scheme

itself. Because this example uses periodic boundary
a 1D version of the hydrodynamics equations used un- conditions, there are no external boundaries: the teeth
der various conditions to model boundary layer behav- can be viewed as equally spaced on a circle.
ior, shock formation, turbulence, and transport. Here,  The microscopic simulation operates on the posi-
v > 0 is the viscosity; periodic boundary conditions tion of each particle. We are interested in a meaning-
are used for simplicity, and only non-negative so- ful coarsedescription, possibly averaged over several
lutions u(x, t) > O are considered. A particular mi- realizations of the computational experiment [1]. The
croscopic dynamics is constructed, motivated by the lifting operator that maps a given(x, t) to consis-
Eqg. (1). For a discussion of particle solvers for given tent particle positions is straightforward in this case.
PDEs the reader is referred to [8—11]; our goal here From the density function over a tooth we can compute
is not to construct such solvers, but rather to solve the its integral, so we know the number of particles that
(unavailable) equations pertaining to a given particle- should be present in that tooth. The indefinite integral
based microscopic scheme. In our particle simulation of the density function over the tooth provides the cu-
we interpret: as thedensity fieldof the random walk- mulative distribution function for that tooth which per-
ers; [ udx =1 corresponds t& walkers, whereZ is mits the particles to be placed as a discrete represen-
a large normalization constant. tation of that function [12]. If the density approxima-
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Fig. 2. Right-going input and output fluxes.

tion is constant in each tooth (as has been found to be
adequate in the examples here) this simply means that

the particles are uniformly distributed in each tooth ac-
cording to the density in that tooth.

The mapping of a phase point or points to coarse

fields is called arestriction operator. In addition to
the density field (Oth-moment), smooth 1st-moment,
momentum (alternatively, velocity) and 2nd-moment,
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Fig. 3. Flux redistribution for right-going fluxes.

this caseO,. g and O, 1. If we use linear interpolation,
we can write

Ir,i =a0r,i—1+ (1_a)0r,i~ (2)

The interpolation coefficients depend (in this case
througha) only on the gap-tooth geometry.
However, the “fluxes” under discussion here are not

energy (alternatively, temperature) fields can be ex-
tracted from molecular microscopic simulations based continuous quantities, but discrete events as particles
on maximum likelihood inference (see [13] for the cross a boundary, so Eq. (2) needs a different interpre-

molecular dynamics case). If the interior of a tooth
were to be simulated by solving a PDE, we would need

tation. Consider instead the role played by eadk
goingflux in the interpolation foincomingfluxes. An

to prescribe appropriate boundary conditions at each interpretation of Eq. (2) foif = 1 andi = 2 would be
tooth at each timestep. The same is still true when the that the portion1 — «) of O, 1 contributes to the flux

tooth is realized using particle simulations. Creating

I1 while « of it contributes tol, ». A similar proce-

an appropriate match between the coarse fields at thedure applies to the left-going fluxes. Thus, rather than
boundaries and the particles in the teeth is an area ofthinking in terms of flux interpolation we can think
extensive research [14,15]. Sometimes one knows soin terms offlux redistribution Interpreting the linear
little about the nature of the coarse equation that even interpolation stochastically (on regularly spaced gap-

the correctorder for imposing well-posed boundary

teeth) we direcr of the outgoing particles as input

conditions at the teeth edges is unknown. This issue is to the neighboring tooth, and redirgdt— «) of them

addressed in [16].

back to the left boundary of the same tooth as shown

Here we use an alternative approach suggested inin Fig. 3.

[17], based on “effective smoothness” of the coarse
solution. In a 1D particle based random walk sim-
ulation we distinguish two “fluxes”—left-going and
right-going. The particle simulation in the interior
of each tooth generatemitgoingfluxes, that is, the
left(right)-going fluxes at the left(right) boundaries,
directly. Boundary conditions are needed to provide
matching incoming (right(left)-going) fluxes at the
same boundaries. IP-dimensions, there will be’2

boundaries to deal with and the corresponding incom-

ing fluxes to provide.
Consider the estimation of the right-going, incom-
ing flux I, 1, as shown in Fig. 2. Assuming macro-

Flux redistribution has to recognize the position
of a particle after it leaves a tooth. If it had moved
to a distances beyond the boundary of the tooth,
it must be inserted a distanéeinside the receiving
tooth. If § were larger than the tooth width, it would
have exited a tooth boundary again, and a further
redistribution would be required following the same
rule. (In multiple dimensions, the boundaries in each
dimension are treated independently so that a particle
will be redistributed for each boundary that it crosses
until it lies inside a tooth.)

The above method implements effective linear in-
terpolation. As discussed in [17], linear interpola-

scopic flux smoothness suggests that we can interpo-tion is not adequate for second-order problems: at

late its values from neighboringutgoingfluxes, in

least quadratic interpolation must be used. A possible
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alpha=1 nu=0.05 h =0.002

guadratic interpolation formula is 16/
—— N = 10000
o(l+«o —— N = 40000
I;= ¥Or,ifl+(l_0[2)0r,i 1.4/l =~ N = 160000
2 — Te
Ol(l —a) —o - Finite Diff
- Tor,i+l~ (3 12

As before we consider the impact of each outgoing Z
flux on incoming fluxes. The fractions of outpd. 1 El
should be sent to the inputs as followd — o?)
to I,1; (1 + a)/2 to I.2; and —a(1 — a)/2 to
I.0. Note that the last value is negative. Any linear
higher-order interpolation formula contains negative
coefficients. Our solution is to sendnti-particles
to the appropriate teeth. There they must annihilate 0.4, o y
with regular particles—we simply annihilate with the }n
nearest regular particle. With this approach, the
particles are redistributed as follows: a fractidn—
a(l + «)/2) is sent tol,1; a? to I,; and a(1 —
«a)/2 are cloned to get two regular particles sent
to 1,1 and 1,2 and one anti-particle sent tho. It
is noteworthy that this scheme conserves the total least expensive technique is to assume that the density
number of particles in the teeth. is piece-wise constant across each tooth. Its value can
There are three sources of numerical error in the be found by simply counting particles in each tooth. It
computation just described—Dby “error” we mean the is easy to see that this also leads to errors of the same
difference between the computed solution and the so- order as the simplest finite difference method. We will
lution of the closed (continuum) equation. These are use piece-wise constant density in the tests reported
(a) the stochastic errors due to the finite number of below. Other tests using linear and quadratic approxi-
particles, (b) the errors in interpolation for the teeth mations to the density in each tooth have given no sig-
boundary conditions, and (c) the error in estimating nificant improvement in accuracy. We believe this is
the local density. The stochastic errors will be propor- because the errors from the other sources are of com-
tional to N~1/2 where N is the number of particles.  parable significance.
Of course, if the actual system contains few particles, Fig. 4 shows the results fox = 1 (no gaps).
errors of type (a) should more appropriately be called The microscopic evolution rules were simulated at
“noise”. The boundary interpolation errors are going conditions corresponding to = 0.05 and timestep
to be of the order of the errors in a finite difference & =0.002 in Eq. (1) over € [0, 2] (1000 time steps)
method of the same order based on point values of theusing the gap-tooth scheme with 20 equally spaced
density at the center of each tooth. (For this reason, we teeth in the interval—x, 7). Results are given for
will show the finite-difference solution for comparison three different values oi: 10%, 22 x 10, and £ x
in the tests reported below.) A physically realistic local 10*. The analytical solution [18,19] of Eq. (1) is also
density estimate should use a suitable particle density plotted, as is the finite-difference solution using the

0.81

0.63%_,

Fig. 4. Simulation results at= 2. N is number of particles, 20 teeth,
no gaps ¢ = 1). Piece-wise constant local density estimate in each
tooth.

influence functiong (z), that specifies the contribution
of each particleP; to the local density at particlg;,
wherez is the distance betwed?y and P;. When there

sameh andéx = /10.
Fig. 5(a)—(c) show the results for the same problem
with « = 0.5, 0.2, and 01 with the three example

are few particles we also get stochastic errors similar values ofN scaled by so that the average number of
to type (a) errors. If differentiability of the density is  particles per unit distance is unchangedashanges.
neededy should be smooth, as in Refs. [10,11], which Because the largest errors occur near the peak, we
use a Gaussian spreading function for each particle; have plotted just the vicinity of that region. As can be
this, however, requires additional computations. The seen, the results far= 0.5 and 02 are comparable to
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alpha=0.5 nu=0.05 h =0.002

1.61 those for the case of no gaps. Since the computational
.| e H:ggggo time is mainly proportiqnal td\_f, t_his indicates that

| 2 = 80000 the gap-tooth method is achieving some speed-up.
1.5/ —a - Finite Diff / - "\ The number of particles that cross tooth boundaries

increases a® decreases, leading to some increase
in cost. A careful study of relative costs will require
careful programming of the method rather than the
present Matlab coding. The purpose of this Letter is
to demonstrate the feasibility of the method.

Fora = 0.1 the errors appear to be larger. We be-
lieve this is because at= 0.1, as a significant number
of particles cross multiple teeth in one step, each ad-
ditional crossing leads to an additional “interpolation”

u(x.t)
IS

0.1 0.2 0.3 0.4 0.5

xin error.
@ We have demonstrated that the gap-tooth scheme
can be successful in solving some problems using mi-
. alpha=02 nu=0.05 h =0.002 croscopic models based on the stochastic simulation
—— N=2000 of particle motion; we also introduced a novel ap-
1551 —— N=8000 . . .
5511 o N =32000 proach for dealing with the inter-tooth boundary con-
— True - i
15| —a - Finite Diff L q\ ditions.

In earlier work we have proposed combining this
with projective integration [6] and some prelimi-
nary numerical experiments have been performed in
this direction. However, projective integration requires
smoothness of the time derivative estimates. The sto-
chastic nature of the microscopic model leads to sig-
nificant noise. In this simulation we tried using a least-
squares linear estimate from a large number of time
steps to get a reasonably accurate time derivative es-

u(x.t)

0.1 0.2 0.3 0.4 0.5

in timate. However, by then, the total time step at the

(b) microscopic level was large relative to the size of

alpha=0.1 nu=005 h =0.002 a projective step in time (which is limited by the
e 7000 smoothness of the solution). If the stochastic noise
155 “f?gggo is reduced by using a much Iarger number _of par-
— Tre s ticles, or a large number of “copies” of the simula-

1.5 = - Finite Diff . \ tion, the time derivative estimates would allow the

application of projective integration. In some sense
there is a trade-off between saving computation in
the spatial domain with fewer teeth and fewer parti-
cles, and saving computation in the time domain by
getting more accurate estimates of the time deriva-
tives. We believe that for problems in which there is
a significant gap between the timescales of the mi-
croscopic dynamics and those of the hydrodynamic
01 02 03 04 05 variables, projective integration would be a useful
(C)"”‘ additional acceleration step. We will report on such
“patch dynamics” numerical experiments in a future

Fig. 5. Simulation results at= 2 for « = 0.5, 0.2, and 01. paper.

u(x,t)
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