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Abstract

We explore the gap-tooth method for multiscale modeling of systems represented by microscopic physics-based s
when coarse-grained evolution equations are not available in closed form. A biased random walk particle simulation, m
by the viscous Burgers equation, serves as an example. We construct macro-to-micro (lifting) and micro-to-macro (re
operators, and drive the coarse time-evolution by particle simulations in appropriately coupled microdomains (“teeth”) s
by large spatial gaps. A macroscopically interpolative mechanism for communication between the teeth at the part
is introduced. The results demonstrate the feasibility of a “closure-on-demand” approach to solving some hydrod
problems.
 2003 Elsevier B.V. All rights reserved.
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Traditional approaches to solving physical pro
lems that manifest separation of scales involve first
deriving a set of reduced equations to describe the
tem, and subsequently (b) solving the equations
analyzing their solutions. Recently an “equation-fre
approach has been proposed [1] that sidesteps th
cessity of first deriving explicit reduced equations. T
approach relies instead on microscopic simulatio
enabling them through a computational superstruc
to perform numerical tasksas if the reduced equation
were available in closed form. Both macroscopically
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coarse-grained equations and atomistic/stochastic
ulations can be regarded as “black boxes” from
point of view of appropriately formulated numeric
algorithms. They constitute alternative realizations
the same macroscopic input-output mapping. For
ample, a crystal’s elastic response can either beap-
proximatedby elastic constants, orevaluatedusing
a high-accuracy electronic structure program ba
on density functional theory [2], which, for a give
strain, computes the stress on-the-fly. The advan
of a simulator-based approach is that it can be u
generally, beyond the region of validity of any giv
closure—e.g., providing the correct nonlinear elas
responses in the above example. Equation-free m
ods hold the promise of combining direct physic
.
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based simulation with the strength and scope of
ditional numerical analysis oncoarsevariables (bi-
furcation, parametric study, optimization) for certa
problems—problems for which coarse equations c
ceptually exist, but are not available in closed form.
example is the so-called interatomic potential fini
element method (IPFEM) [3], a subset of the mo
general quasi-continuum method [4], used to id
tify elastic instabilities leading to defect nucleation
nanoindentation, for which no accurate closed-fo
constitutive relation is currently available due to t
complex triaxial stress state at the critical site of ins
bility.

Microscopic simulations cannot be used directly
attack problems with large spatial and temporal sc
(“macrodomains” in space and time); the amount
computation is prohibitive. If, however, the actual b
havior can be meaningfully coarse-grained to a rep
sentation that is smooth over the macrodomain, the
croscopic systems need only to be directly simula
in small patchesof the macrodomain. This is don
by interpolating hydrodynamic variables between
patches in space—the gap-tooth method (see [5
and extrapolating from one or more patches in time
projective integration [6,7]. In this Letter, we use th
“closure-on-demand”approach to solve for the coa
grained behavior of a particular microscopic syste
The illustrative example is the biased random w
of an ensemble of particles, motivated by the visc
Burgers equation,

(1)ut + uux = νuxx,

a 1D version of the hydrodynamics equations used
der various conditions to model boundary layer beh
ior, shock formation, turbulence, and transport. He
ν > 0 is the viscosity; periodic boundary conditio
are used for simplicity, and only non-negative s
lutions u(x, t) > 0 are considered. A particular m
croscopic dynamics is constructed, motivated by
Eq. (1). For a discussion of particle solvers for giv
PDEs the reader is referred to [8–11]; our goal h
is not to construct such solvers, but rather to solve
(unavailable) equations pertaining to a given partic
based microscopic scheme. In our particle simula
we interpretu as thedensity fieldof the random walk-
ers;

∫
udx = 1 corresponds toZ walkers, whereZ is

a large normalization constant.
Fig. 1. Teeth and gaps covering space.

In the micro-simulation, random walkers move
[−π,π) at discrete timestepstn = nh. At each step
an approximation to the local density,ρi , is computed
(as discussed later). Then every walker is moved
�xi ∈ N(hρi/2,2νh), a biased Gaussian distributio
xi ’s are then wrapped around to[−π,π), and the
process repeats. Sinceρi is a local estimate ofu, this
process achieves a coarse-grained flux analogou
j ≡ u2/2 − νux in Eq. (1) by assigning each walke
a drift velocity ofρi/2.

The gap-tooth scheme, first discussed in [5], c
ers space with teeth and intervening gaps as sh
in Fig. 1 for one dimension. The microscopic evo
tion is simulated in the interior of each tooth. Clea
appropriate boundary conditions have to be provi
at the edges of each tooth. Tooth boundaries coi
dent with external boundaries have the boundary c
ditions specified externally, while internal bounda
conditions must be generated by the gap-tooth sch
itself. Because this example uses periodic bound
conditions, there are no external boundaries: the t
can be viewed as equally spaced on a circle.

The microscopic simulation operates on the po
tion of each particle. We are interested in a mean
ful coarsedescription, possibly averaged over seve
realizations of the computational experiment [1]. T
lifting operator that maps a givenu(x, t) to consis-
tent particle positions is straightforward in this ca
From the density function over a tooth we can comp
its integral, so we know the number of particles th
should be present in that tooth. The indefinite integ
of the density function over the tooth provides the
mulative distribution function for that tooth which pe
mits the particles to be placed as a discrete repre
tation of that function [12]. If the density approxim
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Fig. 2. Right-going input and output fluxes.

tion is constant in each tooth (as has been found t
adequate in the examples here) this simply means
the particles are uniformly distributed in each tooth
cording to the density in that tooth.

The mapping of a phase point or points to coa
fields is called arestriction operator. In addition to
the density field (0th-moment), smooth 1st-mome
momentum (alternatively, velocity) and 2nd-mome
energy (alternatively, temperature) fields can be
tracted from molecular microscopic simulations ba
on maximum likelihood inference (see [13] for th
molecular dynamics case). If the interior of a too
were to be simulated by solving a PDE, we would ne
to prescribe appropriate boundary conditions at e
tooth at each timestep. The same is still true when
tooth is realized using particle simulations. Creat
an appropriate match between the coarse fields a
boundaries and the particles in the teeth is an are
extensive research [14,15]. Sometimes one know
little about the nature of the coarse equation that e
the correctorder for imposing well-posed boundar
conditions at the teeth edges is unknown. This issu
addressed in [16].

Here we use an alternative approach suggeste
[17], based on “effective smoothness” of the coa
solution. In a 1D particle based random walk si
ulation we distinguish two “fluxes”—left-going an
right-going. The particle simulation in the interio
of each tooth generatesoutgoingfluxes, that is, the
left(right)-going fluxes at the left(right) boundarie
directly. Boundary conditions are needed to prov
matching incoming (right(left)-going) fluxes at the
same boundaries. InD-dimensions, there will be 2D

boundaries to deal with and the corresponding inco
ing fluxes to provide.

Consider the estimation of the right-going, inco
ing flux Ir,1, as shown in Fig. 2. Assuming macr
scopic flux smoothness suggests that we can inte
late its values from neighboringoutgoingfluxes, in
Fig. 3. Flux redistribution for right-going fluxes.

this caseOr,0 andOr,1. If we use linear interpolation
we can write

(2)Ir,i = αOr,i−1 + (1− α)Or,i .

The interpolation coefficients depend (in this ca
throughα) only on the gap-tooth geometry.

However, the “fluxes” under discussion here are
continuous quantities, but discrete events as part
cross a boundary, so Eq. (2) needs a different inter
tation. Consider instead the role played by eachout-
goingflux in the interpolation forincomingfluxes. An
interpretation of Eq. (2) fori = 1 andi = 2 would be
that the portion(1− α) of Or,1 contributes to the flux
Ir,1 while α of it contributes toIr,2. A similar proce-
dure applies to the left-going fluxes. Thus, rather th
thinking in terms of flux interpolation we can thin
in terms offlux redistribution. Interpreting the linea
interpolation stochastically (on regularly spaced g
teeth) we directα of the outgoing particles as inpu
to the neighboring tooth, and redirect(1− α) of them
back to the left boundary of the same tooth as sho
in Fig. 3.

Flux redistribution has to recognize the positi
of a particle after it leaves a tooth. If it had mov
to a distanceδ beyond the boundary of the toot
it must be inserted a distanceδ inside the receiving
tooth. If δ were larger than the tooth width, it wou
have exited a tooth boundary again, and a furt
redistribution would be required following the sam
rule. (In multiple dimensions, the boundaries in ea
dimension are treated independently so that a par
will be redistributed for each boundary that it cross
until it lies inside a tooth.)

The above method implements effective linear
terpolation. As discussed in [17], linear interpo
tion is not adequate for second-order problems
least quadratic interpolation must be used. A poss
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quadratic interpolation formula is

Ir,i = α(1+ α)

2
Or,i−1 + (

1− α2)Or,i

(3)− α(1− α)

2
Or,i+1.

As before we consider the impact of each outgo
flux on incoming fluxes. The fractions of outputOr,1
should be sent to the inputs as follows:(1 − α2)

to Ir,1; α(1 + α)/2 to Ir,2; and −α(1 − α)/2 to
Ir,0. Note that the last value is negative. Any line
higher-order interpolation formula contains negat
coefficients. Our solution is to sendanti-particles
to the appropriate teeth. There they must annihi
with regular particles—we simply annihilate with th
nearest regular particle. With this approach, theOr,1
particles are redistributed as follows: a fraction(1 −
α(1 + α)/2) is sent toIr,1; α2 to Ir,2; and α(1 −
α)/2 are cloned to get two regular particles s
to Ir,1 and Ir,2 and one anti-particle sent toIr,0. It
is noteworthy that this scheme conserves the t
number of particles in the teeth.

There are three sources of numerical error in
computation just described—by “error” we mean t
difference between the computed solution and the
lution of the closed (continuum) equation. These
(a) the stochastic errors due to the finite numbe
particles, (b) the errors in interpolation for the tee
boundary conditions, and (c) the error in estimat
the local density. The stochastic errors will be prop
tional to N−1/2 whereN is the number of particles
Of course, if the actual system contains few partic
errors of type (a) should more appropriately be ca
“noise”. The boundary interpolation errors are go
to be of the order of the errors in a finite differen
method of the same order based on point values o
density at the center of each tooth. (For this reason
will show the finite-difference solution for compariso
in the tests reported below.) A physically realistic loc
density estimate should use a suitable particle den
influence function,σ(z), that specifies the contributio
of each particlePj to the local density at particlePi ,
wherez is the distance betweenPj andPi . When there
are few particles we also get stochastic errors sim
to type (a) errors. If differentiability of the density
needed,σ should be smooth, as in Refs. [10,11], whi
use a Gaussian spreading function for each part
this, however, requires additional computations. T
Fig. 4. Simulation results att = 2.N is number of particles, 20 teeth
no gaps (α = 1). Piece-wise constant local density estimate in e
tooth.

least expensive technique is to assume that the de
is piece-wise constant across each tooth. Its value
be found by simply counting particles in each tooth
is easy to see that this also leads to errors of the s
order as the simplest finite difference method. We w
use piece-wise constant density in the tests repo
below. Other tests using linear and quadratic appr
mations to the density in each tooth have given no
nificant improvement in accuracy. We believe this
because the errors from the other sources are of c
parable significance.

Fig. 4 shows the results forα = 1 (no gaps).
The microscopic evolution rules were simulated
conditions corresponding toν = 0.05 and timestep
h = 0.002 in Eq. (1) overt ∈ [0,2] (1000 time steps
using the gap-tooth scheme with 20 equally spa
teeth in the interval[−π,π). Results are given fo
three different values ofN : 104, 22 × 104, and 42 ×
104. The analytical solution [18,19] of Eq. (1) is als
plotted, as is the finite-difference solution using t
sameh andδx = π/10.

Fig. 5(a)–(c) show the results for the same prob
with α = 0.5, 0.2, and 0.1 with the three exampl
values ofN scaled byα so that the average number
particles per unit distance is unchanged asα changes
Because the largest errors occur near the peak
have plotted just the vicinity of that region. As can
seen, the results forα = 0.5 and 0.2 are comparable t
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Fig. 5. Simulation results att = 2 for α = 0.5, 0.2, and 0.1.
those for the case of no gaps. Since the computati
time is mainly proportional toN , this indicates tha
the gap-tooth method is achieving some speed
The number of particles that cross tooth bounda
increases asα decreases, leading to some incre
in cost. A careful study of relative costs will requi
careful programming of the method rather than
present Matlab coding. The purpose of this Lette
to demonstrate the feasibility of the method.

For α = 0.1 the errors appear to be larger. We b
lieve this is because atα = 0.1, as a significant numbe
of particles cross multiple teeth in one step, each
ditional crossing leads to an additional “interpolatio
error.

We have demonstrated that the gap-tooth sch
can be successful in solving some problems using
croscopic models based on the stochastic simula
of particle motion; we also introduced a novel a
proach for dealing with the inter-tooth boundary co
ditions.

In earlier work we have proposed combining th
with projective integration [6] and some prelim
nary numerical experiments have been performe
this direction. However, projective integration requir
smoothness of the time derivative estimates. The
chastic nature of the microscopic model leads to
nificant noise. In this simulation we tried using a lea
squares linear estimate from a large number of t
steps to get a reasonably accurate time derivative
timate. However, by then, the total time step at
microscopic level was large relative to the size
a projective step in time (which is limited by th
smoothness of the solution). If the stochastic no
is reduced by using a much larger number of p
ticles, or a large number of “copies” of the simu
tion, the time derivative estimates would allow t
application of projective integration. In some sen
there is a trade-off between saving computation
the spatial domain with fewer teeth and fewer pa
cles, and saving computation in the time domain
getting more accurate estimates of the time der
tives. We believe that for problems in which there
a significant gap between the timescales of the
croscopic dynamics and those of the hydrodyna
variables, projective integration would be a use
additional acceleration step. We will report on su
“patch dynamics” numerical experiments in a futu
paper.
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