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Abstract. Recent developments in multiscale computation allow the solution of coarse equations
for the expected macroscopic behavior of microscopically evolving particles without ever obtaining
these coarse equations in closed form. The closure is obtained on demand through appropriately
initialized bursts of microscopic simulation. The effective coupling of microscopic simulators with
macrosocopic behavior requires certain decisions about the nature of the unavailable coarse equation.
Such decisions include (a) the highest spatial derivative active in the coarse equation, (b) whether
the equation satisfies certain conservation laws, and (c) whether the coarse dynamics is Hamiltonian.
These decisions affect the number and type of boundary conditions as well as the algorithms employed
in good solution practice. In the absence of an explicit formula for the temporal derivative, we
propose, implement, and validate a simple scheme for deciding these and other similar questions
about the coarse equation using only the microscopic simulator. Simulations under periodic boundary
conditions are carried out for appropriately chosen families of random initial conditions; evaluating
the sample variance of certain statistics over the simulation ensemble allows us to infer the highest
order of spatial derivatives active in the coarse equation. In the same spirit we show how to determine
whether a certain coarse conservation law exists or not, and we discuss plausibility tests for the
existence of a coarse Hamiltonian or integrability. We believe that such schemes constitute an
important part of the equation-free approach to multiscale computation.
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1. Introduction. It is often the case that a microscopic or fine description of
a physical system is available, while we are interested in its macroscopic or coarse
behavior. Consider, as an example, a biased random walk model for which the particle
density asymptotically evolves according to a macroscopic law such as the Burgers
equation. Typically, the study of macroscopic behavior starts with obtaining a closed
PDE-level description (a coarse equation) for the time evolution of the expected or
ensemble-averaged fields of a few, low order moments of the microstate phase-space
distribution. For our example, this would be the 0th moment, the density field. Then
an array of mathematical and computational tools (numerical integration, fixed-point
algorithms, etc.) can be brought to bear on the coarse equation.

Over the last few years, we have been developing a class of numerical algorithms
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which attempt to analyze the coarse behavior without ever obtaining the coarse equa-
tion in closed form [1, 2, 3]. The common character of these schemes is to use short,
appropriately initialized bursts of microscopic simulations to estimate the quantities
which, if the coarse equation were available, we would simply evaluate using the equa-
tion itself. Such quantities, estimated on demand, include the time derivative of the
evolving coarse fields, to be used in coarse projective integration [4], or the effect of
the time-evolution operator for the implicit coarse Jacobian, to be used in Newton–
Krylov-type contraction mappings like the recursive projection method (RPM) [5, 6]
or in eigenvalue/vector computations. These methods are based on matrix-free large
scale scientific computing, and we collectively refer to them as equation-free meth-
ods. What makes these computations possible is the assumption of a separation of
time scales or large spectral relative gaps in the collective dynamics. When a coarse
description is conceptually possible, one typically finds that the hierarchy of cou-
pled equations involving higher cumulants of the microscopic distribution constitutes
a singularly perturbed problem: higher-order cumulants become, in the course of
microscopic simulation, quickly slaved to (become deterministic functionals of) the
lower-order cumulants. The consequence of slaving, realized in the computer as a
black box, embodies the closure that allows us to solve for the coarse behavior. Fun-
damentally it is no different than if the closures are expressed in closed form first and
then evaluated later. This way of thinking and newly developed computing technology
can in practice exceed the traditional approach in both accuracy and cost, especially
if the constitutive relation is multidimensional and nonlinear. An example of this
type is given in [7, 8]. An additional advantage of such methods is their ability to
detect parametric regimes where the present closure model is inadequate, and hence
appropriate refinements (including higher-order moments) are necessary.

In the projective integration method [4] one takes advantage of the slow dynamics
of the coarse variables to carry out only bursts of microscopic simulations connected
via extrapolations and/or interpolations over gaps of time. In the same spirit, but
now in space, we have developed the so-called gaptooth scheme [9, 10] by evolving the
system only in an array of small spatial boxes (the teeth) separated by empty regions
(the gaps). Clearly, the two methods are closely related by the physics of the problem,
i.e., the dispersion relation of the coarse excitations. Indeed we can have a combined
gaptooth-projective integration scheme, and in fact the spatial and temporal gaps
then need to be chosen properly to satisfy exactly the same Courant–Friedrichs–Levy
(CFL) condition as in a finite-difference scheme; this is the focus of another paper [1].
Here, we simply want to point out the fact that in the gaptooth method, the teeth
communicate with each other via appropriate boundary conditions for the microscopic
simulations performed inside them. And here lies the raison d’être of this paper.

It is well known that certain features of a given equation affect the nature of the
appropriate numerical solver. It might be appropriate, for example, to integrate a
Hamiltonian dynamical system using a symplectic integrator; often, finite difference
solvers of PDEs are built to preserve certain properties of the PDE, such as conser-
vation laws. Most importantly, the highest spatial order of an evolution equation
critically affects the types of boundary conditions leading to a well-posed problem.

In a completely analogous manner, the way in which the microscopic model is
solved separately in each tooth in the gaptooth scheme, and the boundary conditions
applied to the edges of each tooth, must respect the nature of the unavailable equations
and their order. Furthermore, gaptooth algorithms compatible with conservation
laws (e.g., using fluxes to estimate temporal derivatives; see, for example, [11]) are



THE BABY-BATHWATER SCHEME 393

predicated upon knowing that the unavailable equation possesses certain conservation
laws.

When the closed-form equation is available, some of these questions (e.g., the order
of the highest spatial derivative in an evolution equation) can be answered by direct
inspection. Other issues (such as the existence of conservation laws or integrability)
may, in the case of closed-form equations, be relatively obvious or may require a lot
of work.

What we explore in this paper is the development of computer-assisted method-
ologies to answer the above questions when closed-form equations are not available.
The idea is that we can probe the consequences of these answers on the dynamics of
the unavailable coarse equations using microscopic particle- or agent-based simulators
by trying out large classes of appropriately chosen initial conditions. We will illustrate
what we call the baby-bathwater algorithm on examples of particle systems realizing
the Burgers and Korteweg–de Vries (KdV) equations, for the task of inferring the
highest order of spatial derivative on the right-hand side, and for answering questions
concerning coarse conservation laws.

The paper is organized as follows. In section 2 we briefly present our illustrative
particle-based example. In section 3 we discuss the determination of the highest
order spatial derivative active in the unavailable equation. In section 4 we explore the
possible existence of conservation laws. In the concluding section we discuss the scope
and limitations of the procedure, as well as additional questions that may be addressed
through this approach. An interesting twist about reverse coarse integration arises in
discussing the exploration of possible coarse Hamiltonianity of the unavailable coarse
equation.

2. Numerical experiment setup. Our illustrative example will be based on
simple numerical experiments. We will first, as a sanity check, demonstrate the ap-
proach using a traditional numerical simulator of a known evolution equation as a
black box. We will then substitute the simulator of the known continuum equation
with a particle-based simulator and repeat the procedure. Our first illustration will
be the Burgers equation,

ut + uux = νuxx,(2.1)

as well as a particle-based simulator constructed so that the evolution of its density
resembles the Burgers evolution. Since one of the issues to be explored is the number
and type of boundary conditions in evolving the equation, our simulations must be
possible without this a priori knowledge. We therefore use periodic boundary condi-
tions (PBCs) enforced on x ∈ [0, 2π) in all our exploratory simulations. One of the
attractive features of the Burgers equation is that for any initial profile u(x, t = 0),
and even with PBCs, the Cole–Hopf transformation [12, 13] provides an analytical
solution. The accuracy of the numerics can thus be checked directly.

A biased random walker–based particle simulator mimicking the Burgers dynam-
ics is constructed, following the proof of strong convergence of such methods [14]. As
a reference, the diffusion equation,

ut = νuxx,(2.2)

has the well-known microscopic realizations of Langevin dynamics or unbiased random
walkers. It is not too difficult to conjure up a similar system: a unit mass

∫
u(x, t)dx =

1 in the coarse description corresponds to Z walkers, where Z is a large integer
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constant. In the simulation, N random walkers move on [0, 2π) at discrete time-steps
tn = nh. At each step, (a) the walkers’ positions {xi} are sorted, and (b) each walker
i checks out the position of the walker m-places ahead, xm+

i , and m-places behind,
xm−
i (properly accounting for PBCs, of course). The difference xm+

i −xm−
i is inversely

proportional to the local density of walkers; therefore (c) every walker moves by ∆xi

sampled from N(mh/Z(xm+
i − xm−

i ), 2νh), a biased Gaussian distribution. The xi’s
are then wrapped around to [0, 2π), and the process repeats. This achieves a coarse-
grained flux of j ≡ u2/2− νux as motivated by (2.1) by assigning each walker a drift
speed of u/2. Here, m is analogous to the number of directly interacting neighbors in a
molecular dynamics simulation. A detailed study of the features of this particle model,
including microscopic pair correlations, is reported elsewhere [15]; it is not, however,
an important issue for this paper. It is only for benchmarking purposes that the
relation to a known macroscopic equation is brought up. One can start by presenting
a microscopic evolution law, without knowing anything about its corresponding coarse
equation, and apply our algorithms directly.

Relating the fine with the coarse description requires the use of lifting and re-
striction operators µ̂, M̂ [6]. Lifting µ̂ constructs a particle system sample (a phase
point) conditioned on some of the phase-space distribution’s lower moment fields (here
the zeroth moment, the coarse density field); it clearly is a one-many operator, and
multiple microscopic realizations of a given macroscopic initial condition are often
required [1, 6, 16]. The restriction operator M̂—here estimating the moment fields
of a given particle distribution [17]—is a form of projection. Clearly, M̂µ̂ should be
the identity, or close to it, due to noise effects. The lifting and restriction operators
we construct for this work, with u interpreted as the coarse density on [0, 2π) with
PBCs, are given in Appendix A. Figure 1 shows a result of the “reversibility test”:
we randomly generate a coarse density u(x), lift it to a random walker sample, then
restrict back to ũ(x), and observe the very good agreement between ũ(x) and u(x).
Notice that the only point where this agreement may be less satisfactory is close to
local maxima or minima, where the derivative changes sign.

While the proximity of our particle scheme to the Burgers evolution is not the
issue in this paper, we briefly illustrate the correspondence of the evolution of an
initial profile through the two approaches. Figure 2 shows the analytical solution
obtained through the Cole–Hopf transformation; it also contains the result of a 21991-
particle simulation after the configurations have been processed by the M̂ operator
of Appendix A to extract the coarse density field. A small value of viscosity ν = 0.1
is picked to accentuate the behavior of the steepening wavefront with time. The
microscopic simulation clearly captures the important features of the coarse behavior.
Ensemble averaging with the same initial condition in coarse field u(x, 0) would reduce
the error, but, as we can see, even a single microscopic simulation using a reasonable
number of particles may still perform quite well.

Last, we mention the existence of particle methods [14, 18, 19, 20] in solving PDEs
such as the following KdV equation:

ut = 6uux − uxxx,(2.3)

which can be formulated as conservation laws. In this paper we use our construction
above for the Burgers example. We should highlight once more that our ultimate goal
is not to construct particle solvers of given equations but rather to deduce features of
the unavailable coarse equations for given microscopic schemes.
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Fig. 1. Reversibility test (M̂µ̂ ≈ Î) of the µ̂,M̂ operators constructed in Appendix A: Z = 1000,
M = 10, and u(x) is generated by randomly drawing nan,nbn from N(0, 1), n = 1, . . . ,M (see the
appendix for details).

3. Identifying the highest spatial order of coarse variables. As we men-
tioned in the introduction, system identification lies at the heart of the equation-free
approach. Here, we suppose the coarse dynamics follows a certain time-evolution
equation of the following form:

ut = f(u, ux, uxx, . . . , u
(N)
x ),(3.1)

which is unavailable. However, suppose we have already identified u, the coarse
variable for which we believe a coarse deterministic equation exists, and constructed
the lifting and restriction operators that connect macro-/micro-descriptions. We seek
a general approach to answer qualitative questions such as (a) what N is and (b)
whether f can be written as −∇ · j, without having f in closed form. The motivation
for this is that equation-free computation (for example through the gaptooth scheme)
does not require knowledge of f , but is affected by the knowledge of N , through
teeth boundary conditions. What we have is a microscopic simulator embodied in a
computer code that can be initialized at will, which we use as a coarse input/output
(I/O) black box. By probing the I/O response of the black box, the question is
whether we can decide on (a) and/or (b).

It may appear that we are trying to answer a circular question: in order to probe
the coarse I/O response of a microscopic simulator we need to run it, and to run it
we need well-posed boundary conditions which, among other factors, depend on (a)
and (b). To cut the knot, we use the Born–von Karman PBCs at the decision stage.
We are going to assume that the microscopic simulations can be carried out in PBCs,
which is an option prevalent among microscopic simulators. This enables us to probe
the system’s response to only the initial profile u(x, 0) input.



396 J. LI, P. G. KEVREKIDIS, C. W. GEAR, AND I. G. KEVREKIDIS

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

x

u(
t=

0)

Initial profile: 3.5+3sin(x); Total number of random walkers = 21991

actual    
estimation

(a)

2 4 6 8 10 12
0

1

2

3

4

5

6

7

x

u

ν = 0.1, t = 0.2

(b)

2 4 6 8 10 12
0

1

2

3

4

5

6

7

x

u

ν = 0.1, t = 1

(c)

Fig. 2. Analytical solution of the Burgers equation at ν = 0.1 and solutions of our particle-
based scheme. (a) Initial condition u(x, 0) = 3.5 + 3 sin(x); comparison between designated profile

and after M̂µ̂ for Z = 1000, M = 10; (b) comparison of analytical solution and simulation (after
restriction) at t = 0.2 (tiled for ease of seeing the wave steepening); and (c) t = 1. The microscopic
simulation is carried out with m = 10, h = 5× 10−4.
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The so-called baby-bathwater identification scheme works as follows:

(i) Take an integer n, starting from 1.
(ii) Pick a random point x0 in the spatial periodic box.
(iii) Generate n random numbers, designated as u(x0, 0), ux(x0, 0), uxx(x0, 0),

. . . , u
(n−1)
x (x0, 0) of u(x, 0).

(iv) Generate a conditionally random profile u(x, 0) compatible with the PBC and

consistent with the above u(x0, 0), ux(x0, 0), uxx(x0, 0), . . . , u
(n−1)
x (x0, 0) re-

quirements. This can almost always be accomplished, for example, by sum-
ming 2L sine and cosine harmonics of the PBC:

u(x, 0) = b0 +

L∑
i=1

al sin(lx) + bl cos(lx), x ∈ [0, 2π),(3.2)

with L > 	n/2
. Because we have 2L + 1 coefficients, even though there
are n constraints to satisfy, we still have some random degrees of freedom
left in (3.2). In practice, this initialization can be accomplished by applying
conjugate gradient minimization of the n-dimensional residual norm starting
from a random {al, bl} vector.

(v) Lift u(x, 0) of (3.2), run it in the microscopic simulator for time ∆, restrict it
back to ũ(x,∆), and estimate:

ũt(x0, 0) ≡ ũ(x0,∆)− ũ(x0, 0)

∆
.(3.3)

Note that ũ(x0, 0) is used here instead of u(x0, 0) in the finite difference.
This will cancel out some numerical noise from the lifting and restriction
operations.

(vi) Repeat step (v) I times to obtain an ensemble-averaged ũt(x0, 0) to reduce
the microscopic noise.

(vii) Repeat step (iv) J times; collect the ũt(x0, 0) estimates:

(ũ1
t (x0, 0), ũ

2
t (x0, 0), . . . , ũ

J
t (x0, 0));(3.4)

compute the sample variance σ2(ũt(x0, 0)).
(viii) Repeat step (ii) K times; compute the averaged sample variance 〈σ2(ũt)〉n.
(ix) Go back to step (i); n → n+1. N is identified when from n = N to n = N+1

the averaged sample variance 〈σ2(ũt)〉N+1 decreases drastically to practically
0.

Figure 3 shows such families of constructed initial profiles with progressively more
controlled initial derivatives. The basic idea is very simple: even though f could

have complicated functional dependencies on u, ux, uxx, . . . , u
(N)
x if they are all fixed,

ut should have no dispersion even as u
(N+1)
x , u

(N+2)
x , . . . are varied randomly. The

“critical integer order” N is identified when the variance at N controlled derivatives

u(x0, 0), ux(x0, 0), uxx(x0, 0), . . . , u
(N−1)
x (x0, 0) jumps to a finite value; we then have

already thrown out the “baby” (the highest relevant spatial derivative u
(N)
x ) with the

“bathwater” (the higher, nonrelevant ones).

It is important to recognize that the time derivative estimation (3.3) does not oc-
cur instantaneously. A short “healing” period should elapse, during which the higher
cumulants of the lifted phase space distribution become functionals of the lower order,
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Fig. 3. Families of random initial profiles u(x, 0) (J = 4). (a) n = 1, (b) n = 2, (c) n = 3,
(d) n = 4 controlled initial derivatives. To avoid confusion notice that control of n = 1 derivatives
means that only u(x0, 0) is identical between the runs, n = 2 means that u(x0, 0) and ux(x0, 0) are
identical, and so on.

slow governing cumulants. This separation of time scales, which fundamentally under-
lies the existence of a deterministic coarse equation closing with the lower cumulants,
is discussed in more detail in [1].

As a sanity check, this algorithm is applied to a traditional continuum PDE time-
stepper “black box” first. Figures 4(a) and 4(b) show the results of applying our
decision scheme to forward Euler finite-difference PDE solvers of the Burgers and
KdV equations, respectively. A spatial mesh of ∆x = 2π/100 is adopted, and we
define

umk
x ≡u(m+1)∆x,kh − u(m−1)∆x,kh

2∆x
,(3.5)

umk
xx ≡u(m+1)∆x,kh + u(m−1)∆x,kh − 2um∆x,kh

∆x2
,(3.6)

umk
xxx ≡um+1,k

x + um−1,k
x − 2umk

x

∆x2
,(3.7)

umk
avg ≡u(m+1)∆x,kh + um∆x,kh + u(m−1)∆x,kh

3
.(3.8)
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Fig. 4. (a) Identification of the order of the highest (spatial) derivative in the Burgers finite-
difference PDE time-stepper (3.9). (b) Identification of the order of the highest (spatial) derivative
for the KdV finite-difference PDE time-stepper (3.10).

We use

um∆x,(k+1)h − um∆x,kh

h
= νumk

xx − um∆x,khu
mk
x(3.9)

to integrate the Burgers equation forward and

um∆x,(k+1)h − um∆x,kh

h
= 6umk

avgu
mk
x − umk

xxx(3.10)

to integrate the KdV equation forward. u(x0, kh) is obtained by cubic splines over
{um∆x,kh}, and ut(x0, 0) is evaluated by finite differences, the same as in (3.3). As
can be seen in Figures 4(a) and 4(b), N is identified to be 2 using the Burgers PDE
time-stepper and 3 using the KdV PDE time-stepper: the variances drop by more
than four decades in both cases when going from N to N + 1 controlled derivatives.
To see where the remaining “noise” comes from, note that

u(x0,∆)− u(x0, 0) = ut(x0, 0)∆ + utt(x0, 0)
∆2

2
+ · · · ,(3.11)

and clearly utt(x, 0) has higher-than-u
(N)
x spatial derivative dependencies, which are,

however, scaled by ∆ compared to the leading term. Thus the sample variances should
drop by ∼ ∆2 for n > N , which explains the observed magnitude of the four-decade
decrease.

We then apply the identification scheme to the microscopic simulator of section
2, with the lifting and restriction operators constructed in Appendix A. The results
are shown in Figure 5. Under favorable conditions such as ν = 1 and m = 100, it
takes about 10 minutes of computer time on a single 1GHz-CPU personal computer
to obtain a reasonably good microscopic noise reduction so that the variance drops
by about two decades going from n = 2 to n = 3. Under unfavorable conditions
such as ν = 0.1 and m = 1, it can take up to 1, 000 minutes of computer time to
obtain the same two-decade drop. Compared to the deterministic finite-difference
PDE time-steppers, identification of a microscopic simulator is undoubtedly much
more computationally intensive, even though fundamentally there is no difference be-
tween the two black boxes. The problem of microscopic noise reduction is a persistent
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Fig. 5. Identification of the Burgers microscopic simulator of section 2 with the lifting and
restriction operators of Appendix A. Here, ν = 1, Z = 10000, m = 100, I = 10, ∆ = 0.01.

issue among all equation-free methods including bifurcation [1], projective/gaptooth
integration [9, 10], and identification, and calls for a unified treatment.

Here, one must pay special attention to the rank (M) of the restriction operator
(see Appendix A). As can be seen in Figures 1 and 2, our proposed restriction
operator satisfies the constraint of reversibility and also accurately represents the
profile’s long-time evolution. However, these merits do not guarantee automatically
good short-time ũt estimates by finite difference. Special attention must be paid to
the restriction operator M̂: for example, if the highest harmonic in (3.2) for u(x, 0)
is L, then with M = L we can get a good reversibility test of u(x, 0). Unless we
use M = 2L for restricting the Burgers microscopic dynamics, however, we would
not get a good estimate of ut, because the nonlinear interaction uux in (2.1) creates
higher harmonics in ut up to 2L. If M = L is still used, it is equivalent to forcing
a least-square projection of a 4L + 1 vector to a 2L + 1 subspace, which may work
well enough in the long term but is too inaccurate for short-term finite-difference
estimates. Unless this point is taken care of, the ut estimate using our M̂ is found to
not even be superior to a crude bin-count density estimator with bin-width (2π/n)/8
about x0, as 2π/n is the shortest wavelength in u(x, 0).

Last, we note that (3.1) represents a wide category of coarse dynamics; those
with higher time-derivatives and mixed derivatives can be converted to a multivariate
version of (3.1), and the identification scheme will still, in principle, work. A notable
exception is the incompressible fluid case, where the sound-speed is infinite and the
pressure plays the role of a global Lagrange multiplier. The incompressible fluid model
is but a mathematical idealization of a certain physical limit. It is nonetheless useful
and important enough; the fact that it is not directly amenable to our identification is
worth mentioning. In general, the identification scheme presented here will not work
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for dynamics with instantaneous remote-action over macroscopic lengthscales such as

ut(x, t) =

∫
dξu(ξ, t)K(x− ξ),(3.12)

for which it is easy to show that ut(x, t) correlates with infinite number of local spatial

derivatives {u(n)
x (x, t)}.

4. Identifying conservation laws. In section 3 we addressed the concern of
how to identify the highest spatial derivative of an unavailable coarse equation of
the type (3.1). It is natural to try to decide other qualitative questions, for example
whether the coarse dynamics conserve a specific quantity,

G ≡
∫

g(u, ux, uxx, . . . , u
(N ′′)
x )dx,(4.1)

or not. In the simplest case, we ask whether g ≡ u is conserved. We note that it is
equivalent to asking whether the right-hand side of (3.1) can be written as

f(u, ux, uxx, . . . , u
(N)
x ) = −∂xj(u, ux, uxx, . . . , u

(N ′)
x )(4.2)

or not. Alternatively, we ask whether there exists j(u, ux, uxx, . . . , u
(N ′)
x ) such that

d

dt

∫ x1

x0

u(x, t)dx = j(x0, t)− j(x1, t)(4.3)

for arbitrary x0,x1. Whereas in section 3 we try to identify features of f(u, ux, uxx, . . . ,

u
(N)
x ) through (3.1), here we can try to identify consequences of j(u, ux, uxx, . . . , u

(N ′)
x )

and its features through (4.3). The process of the baby-bathwater identification can
be carried over; the only difference is that it is going to be a boundary scheme. In one
dimension, the boundary sheme reduces to a two-point scheme as follows:

(i) Take an integer n, starting from 1.
(ii) Pick two random points x0 and x1 in the spatially periodic box.
(iii) Generate 2n random numbers, which are to be designated u(x0, 0), ux(x0, 0),

uxx(x0, 0), . . . , u
(n−1)
x (x0, 0) and u(x1, 0), ux(x1, 0), uxx(x1, 0), . . . ,

u
(n−1)
x (x1, 0) of u(x, 0).

(iv) Generate a conditionally random profile u(x, 0) compatible with the PBC that

is consistent with the above u(x0, 0), ux(x0, 0), uxx(x0, 0), . . . , u
(n−1)
x (x0, 0),

and u(x1, 0), ux(x1, 0), uxx(x1, 0), . . . , u
(n−1)
x (x1, 0) requirements. This can

always be done by (3.2) with L > n. As we discussed above, we have 2L+ 1
coefficients, even though there are 2n constraints to satisfy, and we still have
some random degrees of freedom left in u(x, 0).

(v) Lift u(x, 0) of (3.2), run it in the microscopic simulator for time ∆, restrict it
back to ũ(x,∆), and estimate:

Ũt(0) ≡
∫ x1

x0
ũ(x′,∆)dx′ − ∫ x1

x0
ũ(x′, 0)dx′

∆
.(4.4)

(vi) Repeat step (v) I times to obtain an ensemble-averaged Ũt(0) to reduce the
microscopic noise.
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Fig. 6. Families of random initial profiles u(x, 0) (J = 4) for conservation law identification.
(a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4 controlled initial derivatives.

(vii) Repeat step (iv) J times; collect the Ũt(0) estimates:

(Ũ1
t (0), Ũ

2
t (0), . . . , Ũ

J
t (0));(4.5)

compute the sample variance σ2(Ũt(0)).
(viii) Repeat step (ii) K times; compute the averaged sample variance 〈σ2(Ũt)〉n.
(ix) Go back to step (i); n → n+1. A conservation law is positively identified when

going from n = N ′ to n = N ′+1 the averaged sample variance 〈σ2(Ũt)〉N ′+1

decreases drastically to practically 0.
Figure 6 plots families of initial profiles thus constructed with progressively more

controlled initial derivatives. Figures 7(a) and 7(b) show the results of applying the
identification scheme to the Burgers finite-difference PDE time-stepper (3.9) and the
KdV finite-difference PDE time-stepper (3.10), respectively. N ′ is identified to be 1
for (3.9) and 2 for (3.10).

Two comments are in order: first, we probe the consequence of conservation (i.e.,
that boundary fluxes are the only cause of change for the conserved quantity in a
domain); second, we obtain the highest spatial derivative of the conserved quantity u
in the constitutive equation for the flux. It is important to note that if the procedure
progressively returns negative answers (e.g., if the sample variance is nonzero for a
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Fig. 7. (a) Conservation of the Burgers finite-difference PDE time-stepper (3.9). (b) Conser-
vation of the KdV finite-difference PDE time-stepper (3.10).

given number n of controlled derivatives), this does not imply that a conservation law
does not exist. It implies only that a conservation law with spatial derivatives up to
the tested order n does not exist. So it is sufficient but not necessary confirmation.

Note that N ′ is one order less than N identified in section 3 in both cases. This
is true in one dimension because of (4.2). So in one dimension, the baby-bathwater
schemes give a definite answer to whether u is conserved or not in finite N − 1 steps,
as long as N is identified first.

5. Discussion. In section 4 we proposed methods to check whether a coarse

quantity (such as the mass corresponding to the coarse density g(u, ux, uxx, . . . , u
(N ′′)
x ))

is conserved, without knowledge of the coarse evolution equation. The obvious ques-
tion that arises is, How do we know which g to check? The path that we suggest here,
in the equation-free setting, is to examine the consequences of conservation laws. For
example, consider the conservation of (linear) momentum. An equivalent statement,
through Noether’s theorem [21], is the existence of translational invariance. If we
numerically establish the latter, then we can claim the former. Let us then consider
initial conditions to the available integrator which are shifts of an original profile (e.g.,
u(x−x0), u(x− (x0+ ε)), u(x− (x0+2ε)), etc.). Then if we time evolve the problem,
using our microscopic time-stepper, and the equation is translationally invariant, upon
reaching the integration reporting horizon we can backshift the profile (by the original
shift amount). If all back-shifts provide an identical profile, we can conclude trans-
lational invariance and hence linear momentum conservation. An additional note of
caution is that the examination of such consequences is relevant when Noether’s theo-
rem applies and hence when there is an underlying Lagrangian/Hamiltonian structure
in the problem (we discuss separately the issue of Hamiltonian nature below). Notice,
however, that modulo the proviso of “Hamiltonianity”; this methodology can be used
to establish additional dynamical invariants; e.g., the invariance with respect to phase
of the evolution of a field can be related to norm invariance, etc.

Testing for an underlying Hamiltonian structure can proceed in a similar fashion
through its correlation with invariance with respect to time reversal. The crudest way
to examine this is by simply running the integrator with a negative time-step (if that
option is available). A more refined way to check the same symmetry is by examining
computations of the spectrum (e.g., eigenvalues) of linearization of the coarse PDE.
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In particular, a straightforward consequence of the Hamiltonian nature is that all
linearization eigenvalues should come in quartets; namely, if λ is an eigenvalue, then
so are −λ, λ,−λ, where  denotes complex conjugation. It is fortunate that time-
stepper based numerical analysis techniques for the numerical approximation of the
leading spectrum of such a linearization are well developed for the case of large scale
continuum simulations (see, for example, [22, 23, 24, 25, 26, 27]). If an eigenvalue λ
of the linearization is identified, matrix-free eigencomputations with shift can be used
to explore the existence of the −λ eigenvalue (in general, real eigenvalues will come
in pairs and complex conjugate eigenvalues in quartets).

While coarse time reversibility can be tested by exploring the spectrum of the lin-
earization, it raises the interesting question of how to integrate backward in time with
the microscopic code. If the coarse dynamic behavior is slow (i.e., under appropriate
spectral gap conditions for the coarse equation), we can use short bursts of forward
in time microscopic simulation to estimate the time derivative of the coarse variables.
We can then use this (regularized through forward integration) estimate to take a
backward projective integration step. The procedure is then repeated: short forward
integration, coarse time-derivative estimation, and a new backward projective step.
This “see-saw” forward-backward coarse integration procedure can also be used on
stiff systems of ODEs and even dissipative PDEs under the appropriate conditions
to evolve trajectories backwards on a slow manifold. The numerical analysis of these
algorithms in the continuum case is an interesting subject in itself, and we are cur-
rently pursuing it [28]. It is interesting that the technique, in the molecular dynamics
case, can be used to coarsely integrate backward in time on a free energy surface
and thus help molecular simulations escape from free energy minima; we have already
confirmed this in the case of Alanine dipeptide folding in water at room temperature
through molecular dynamics simulations [29].

Finally, a more complicated question than checking the existence of one (a specific,
and hence related to a specific invariance, in accordance with the above discussion)
integral of the motion is the one of integrability. The latter necessitates infinite inte-
grals of the motion, normally established by means of identifying Lax pairs and using
the inverse scattering transformation machinery [30]. However, one can also use in
this case consequences of integrability to establish it. For instance, in recent work [31]
it was qualitatively argued (and verified through numerical experiments in different
settings) that a feature particular to integrable Hamiltonian systems is the presence
of double continuous spectrum eigenvalues when linearizing around a (coarse PDE)
solitary wave under PBCs. These as well as other criteria (such as the existence of
point spectrum eigenvalues in the spectral gap [32]) can also be (conversely) used
to potentially rule out the existence of integrable structure. In short, the spectral
properties of the coarse PDE linearization can be used to establish or disprove not
only the Hamiltonian (see above) but also potentially the integrable nature of the
flow. While these are just initial thoughts towards attempting to decide vital ques-
tions about the nature of the unavailable closed equation, it is important to note
that what is computationally involved is a time–stepper-based identification of facts
about the spectrum of the linearization of an operator. This “computational technol-
ogy” is quite mainstream in the case of large scale continuum simulators and can be
straightfowardly adapted to the case of coarse time-steppers in conjunction with the
lifting-restriction steps. Variance reduction will clearly be the most significant step
in the wide applicability of these and similar-spirited approaches.
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Appendix A. Coarse density lifting/restriction operators. For a coarse
field u, the lifting operator µ̂ generates a microstate U: U = µ̂u. Similarly, for a
microstate U, the restriction operator M̂ returns a coarse field estimate ũ: ũ = M̂U.
Both µ̂ and M̂ can be one-to-one or one-to-many operators, but we demand that
M̂µ̂ → Î asymptotically when the wavelength of u is large enough compared to
the microscopic length scale [6]. For one-dimensional coarse density field u(x) under
x ∈ [0, 2π) PBCs, we use the following µ̂, M̂ operators for the sake of definiteness in
numerical experiments, even though their construction is not unique.

The lifting operator µ̂, u(x)→ {xi}:
(i) Estimate uapprox

max ≈ umax ≡ maxx∈[0,2π) u(x). Pick usafe that is “safely”
greater than umax; for example, usafe = 1.1uapprox

max .
(ii) Define N ′ ≡ 	2πusafeZ
. Create N ′ particles {xi} with each xi independently

drawn from uniform distribution on [0, 2π).

(iii) Go to each particle i; randomly decimate it with probability 1− 2u(xi)
uapprox

max +usafe
.

Count the total number of surviving particles N ′′.
(iv) Compute quadrature,

Q ≡ Z

∫ 2π

0

u(x)dx;(A.1)

randomly round to N = 	Q
 or N = 	Q
+ 1 such that 〈N〉 = Q. Randomly
pick N ′′ −N particles out of the N ′′ survivors and decimate them. We now
have a set of particles {xi}, totally numbered either 	Q
 or 	Q
+ 1.

The restriction operator M̂, {xi} → ũ(x):
(i) Define a microscopic density function,

a(x) ≡ 1

Z

N∑
i=1

δ(x− x−
i ),(A.2)

and a corresponding cumulant function,

c(x) ≡
∫ x

0

a(x′)dx′.(A.3)

Clearly, at the the first, second, and third particle positions xn1
, xn2

, xn3
,

c(xn1) = 1/Z, c(xn2) = 2/Z, c(xn3) = 3/Z, etc. And we have c(0) = 0,
c(2π) = N/Z.

(ii) Define a residual function r(x),

r(x) ≡ c(x)− Nx

2πZ
,(A.4)

which is the difference between c(x) and the cumulant of a homogenized
particle gas background. The idea is that r(0) = r(2π) = 0, so it is a periodic
function and can be approximated by

r(x) ≈ r̃(x) =
M∑
n=1

an(cos(nx)− 1) + bn sin(nx).(A.5)

In fact, a sound strategy is to least-square fit r̃(x) (its {an},{bn} coefficients)
to r(x) at x = xni

’s, where {xni} is the sorted list of {xi}. r(x) can be easily
evaluated at xni ’s, noting the last sentence of step 1.
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(iii) The coarse density estimate can be obtained by taking the derivative of c̃(x) ≡
Nx/2πZ + r̃(x),

ũ(x) =
N

2πZ
+

M∑
n=1

−nan sin(nx) + nbn cos(nx).(A.6)

It is worth noting that although the constructed M̂ depends on M , it satisfies
the particle number conservation exactly because the finite harmonics all integrate
to zero, and only the background contribution remains. In fact, 〈M̂µ̂〉 also satisfies
exact particle number conservation to the original u(x) under probabilistic average.
Further, one can show 〈M̂µ̂〉 = Î exactly for u(x) in the first M harmonics subspace.
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