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Abstract

Multiplane shear deformation behaviour in face-centred cubic metals,
aluminium and copper, is studied and empirical many-body potential results
are directly compared with ab initio electronic structure calculations. An
analysis of stress—displacement, atomic relaxation, and gamma-surface for
{111}(1 12) shear indicates that the potential for copper proposed by Mishin is
able to capture the essential deformation behaviour. For aluminium the Mishin
potential gives better results than the Ercolessi model in atomic relaxation
and stress—displacement, although there remain details that neither are able
to describe. Aluminium presents a greater challenge to empirical potential
description because of the directional nature of its interatomic bonding.

(Some figures in this article are in colour only in the electronic version)

1. Background/motivation

Ideal shear stress—strain behaviour is fundamental to understanding the mechanical behaviour
of a material. The maximum shear stress achievable in a crystal is the ideal shear strength,
which often marks the shear-driven breaking of nearest-neighbour (NN) bonds. This is a
microscopic process that occurs every time a dislocation core moves, reconfigures, or is
nucleated, although in an asynchronous and inhomogeneous manner. Density functional
theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) provides powerful tools for
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the study of the ideal strength behaviour of materials because of its ability to accurately model
the process of bonds breaking and reforming (Kioussis et al 2002). However, tracking valence
electron densities requires significant computational effort. The study of plastic deformation
mechanisms, such as dislocation nucleation and migration, requires larger length and time
scales than are typically accessible to ab initio calculations. Empirical potentials allow for
faster calculation by following only atomic degrees of freedom explicitly and, as a result, larger
and more complicated systems can be treated, with certain reductions in accuracy. By fitting to
a wide array of ab initio data as well as experimentally derived properties, potentials have been
developed to capture increasingly more complex behaviour pertaining to interatomic bond
breaking and its consequences. Benchmarking empirical potentials with ab initio calculations
can determine how well an empirical potential can account for the essential behaviour of shear
deformation.

2. Methods

2.1. Empirical potentials

The empirical potentials considered in this study are members of a class of potentials based on
the ‘Embedded Atom Method’ (EAM) that derives its name from the description of metals as
atoms ‘embedded’ in a cloud of electrons that generates bonding. Standard EAM potentials
contain a pair-wise interaction term and an additional term to account for the local electron
density surrounding each atom; they take the following form:
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where G; is the embedding function, p; is the electron density calculated as a sum of
contributions from neighbouring atoms, and V (r;;) is the pair-wise interaction. A wide range
of fitting schemes have been employed to develop physically meaningful potentials for a variety
of metallic systems. In general, one or both of the terms in the potential are fitted to empirical
data such as lattice constants, cohesive energy and elastic constants. More recently, the practice
is to generate a database by first-principles DFT calculations and to fit a postulated potential
form or spline functions to this database. We will study two potentials for aluminium, developed
by Ercolessi and Adams (1994) and by Mishin et al (1999), and a subsequent potential for
copper, developed by Mishin et al (2001).

2.2. Static calculation setup

For all empirical potential calculations the initial fcc supercell was built with the x, y and z-axes
along (1 12), (110) and (111) directions, respectively. For relaxed and unrelaxed affine shear,
periodic boundary conditions are imposed. In relaxed shear calculations, stress components
other than the imposed o3 are relaxed by conjugate gradient Press er al (1996) energy
minimization with respect to the supercell shape and dimensions. The observed relaxation
can be directly related to the atomic mechanism for accommodating shear (Ogata et al 2002)
and it is of interest to determine the extent to which empirical potentials can capture this
detailed behaviour.

The generalized stacking fault energy has long been used to describe material deformation
in terms of the energy penalty for shearing two adjacent planes (Vitek 1968). Recently the
multiplane generalized stacking fault energy has also been introduced to describe the energy
penalty incurred when an arbitrary number of planes, n+1, are sheared relative to the adjacent
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Figure 1. Schematic illustrating examples of the multiplane generalized stacking fault energy:
n = 1, the generalized stacking fault energy, n = 4, multiple slipped planes and n = oo, affine
shear deformation.

plane by a common displacement, x, that lies in the slip plane (see figure 1) (Ogata et al 2002).
This quantity is given by

E,(x)
nSo ’

where E,(x) is the strain energy at displacement x relative to its value at x = 0, Sy the cross-
sectional area on which shearing is taking place and n the number of adjacent planes being
sheared. The n = 1 case, y;(x), corresponds to the conventional generalized stacking fault
energy, while strain energy for affine shear is yoo (x).

The multiplane generalized stacking fault energy was the basic quantity that we calculated
using empirical potentials and DFT. From this we derive corresponding stress—displacement
response curves as defined by dy, (x)/dx. The calculation of dy,(x)/dx was performed
using a supercell containing thirty-six {111} planes with free surfaces in the (111) direction
and periodic boundary conditions in the two in-plane directions. The undeformed crystal
regions above and below the series of stacking faults are constrained to move as rigid blocks.
Comparison of the stress—displacement responses, particularly for n = 1 and n = oo, allows
one to scrutinize the efficacy of the empirical potentials in accounting for the mechanistic
details of the deformation behaviour. The information extracted in this manner can be further
correlated with atomic relaxation patterns given by the empirical potentials and DFT. Another
useful comparison which we will also examine is between aluminium and copper; this will
give a measure of the relative degree of directional bonding between the two metals (Ogata
et al 2002).

Yu(x) = n=12,..., 2)

2.3. DFT calculation setup

We perform DFT calculations using the Vienna ab initio simulation package (Kresse and Hafner
1993). The exchange-correlation density functional adopted is the Perdew—Wang generalized
gradient approximation (GGA) (Perdew et al 1992). An ultrasoft (US) pseudopotential
(Vanderbilt 1990) is used. The cut-off energies for the plane wave basis set for Al and Cu are
162 eV and 292 eV, respectively. The Brillouin zone (BZ) k-point sampling is performed using
the Monkhorst—Pack algorithm (Monkhorst and Pack 1976) whose convergence is carefully
monitored. The BZ integration follows the Methfessel-Paxton scheme (Methfessel and Paxton
1989) with the smearing width being chosen so the entropic free energy (‘-TS’ term) is less
than 0.5 meV per atom. In the relaxed affine shear calculations, subsidiary stress components
are relaxed to within a convergence tolerance of 0.05 GPa.
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Figure 2. {111}(112) pure shear stress—displacement response for copper using the Mishin copper
potential (O) and DFT (m).

3. Results/discussion

The relaxed {111}(112) stress—displacement response for copper calculated with the Mishin
copper potential is shown in figure 2. The calculated displacements are normalized by the
partial Burgers vector, b, = ao[1 12]/6, where aj is the equilibrium lattice parameter for the
potential in use. The normalization allows the direct comparison of strain deformation between
the empirical potential and DFT. It is seen in figure 2 that the elastic part of the shear response is
well described by the empirical potential up to a strain of about 0.13, close to the onset of yield.
This is perhaps to be expected since the Mishin potential gives the elastic constants accurately.
Figure 2 shows that while DFT results (Ogata 2002) signify the onset of yielding at a strain
of 0.19, the Mishin potential allows the lattice to continue elastic deformation appreciably
further, although the behaviour is clearly nonlinear. The ideal shear strength obtained using
the Mishin potential is 2.91 GPa compared to 2.16 GPa for DFT. For the strain at yielding the
Mishin potential value is 0.28, about 45% greater than DFT. On the basis of this comparison
alone one can conclude that while the Mishin potential gives qualitatively the same stress—strain
behaviour, it significantly overestimates the shearability of the metal.

To quantify the relaxation details during affine {111}(112) shear deformation in
copper we examine the interplanar spacings in the (112), (110) and (111) directions as a
function of shear displacement. Figure 3 shows this analysis for the Mishin potential and the
DFT calculations. Asbefore, the displacement is normalized by the partial Burgers vector of the
system. Both results show an expansion in the (110) direction, contraction in the (112) direction
and essentially no relaxation in the (111) direction. The performance of the Mishin potential
appears to be rather satisfactory from this comparison, in the sense that the relaxed interplanar
spacing agrees with DFT results not only at small deformations (x /b, ~ 0) as prescribed by
the elastic constants, but near the saddle point (x /b, = 0.5) as well. The maximum expansion
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Figure 3. Atomic relaxation patterns as a function of displacement during {111}{112) pure shear
of copper are presented as interplanar distance normalized by the equilibrium interplanar spacing.
Calculations were performed with the Mishin copper potential (A, l, ®) and DFT (4, [J, O).

in (110) is ~7%, the maximum contraction in (112) is ~6%, while (111) spacing fluctuates
less than 1%.

Figure 4 shows a comparison not only between the Mishin potential and DFT results, but
also between the two extreme cases of unrelaxed multiplane shear, single-plane shear (n = 1)
and affine shear (n = o0). It is seen that there is not much difference between the various
cases. Since the energy is normalized by the number of planes being sheared, the similarity
between n = 1 and n = oo indicates that the interatomic interactions are similar in the two
environments. The implication is that the interaction range for atomic bonding in copper is
of the order of the NN separation. In a cluster expansion of the shear deformation energy
landscape, if we regard y;(x) as characterizing ‘double deck’ or doublet interactions, then
y2(x) should contain additional ‘triple deck’ or triple interaction information, and so on. The
fact that DFT gives y;(x) & y»(x) for Cu suggests that doublet interactions dominate over
triplet and higher order interactions in Cu. In fcc and hcp materials, an atom in the middle
plane forms three NN bonds with the top plane and another three NN bonds with the bottom
plane. Therefore, an equivalent statement of weak triplet interaction is that it is bond-angle
(formed between two NN bonds) insensitive. Figure 5 shows the extension to the multiplane
case, which would be relatively difficult to calculate with ab initio techniques. This result
strengthens our interpretation of short-ranged and bond-angle insensitive bonding in copper,
and shows that the low additional penalty due to the boundary between sheared and unsheared
lattice is quickly divided among atomic planes. The n = 15 case is seen to be indistinguishable
from the normalized penalty for affine deformation.
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Figure 4. Unrelaxed generalized stacking fault energy for copper {111}(11§> slip calculated
with the Mishin copper potential (O) and DFT (@) as well as the unrelaxed affine shear stress—
displacement response computed with each method: Mishin copper potential ((J) and DFT (M).

Turning to aluminium, we show in figure 6 the relaxed {111}(112) shear stress—
displacement responses calculated with the Ercolessi and Mishin potentials. The relaxed ideal
shear strengths are 3.12 GPa and 1.91 GPa for the Mishin and Ercolessi potentials, respectively,
compared to 2.84 GPa for DFT. Neither potential describes satisfactorily the characteristic DFT
feature of an asymmetric stress—strain variation. The Mishin potential now underestimates the
strain at yielding, while the Ercolessi potential displays an unphysical step behaviour at very
high strains.

The relaxation patterns during {111}(112) shear are summarized in figure 7. The Mishin
potential gives relaxation results similar to DFT in an increase in the {111} interplanar distance
and a contraction in the (110) direction (see figure 7(a)). However, the potential also gives
a 2% increase in the {112} interplanar spacing, whereas this change was not seen in DFT.
A direct correlation between the expansion in the (1 12) direction and an artefact exhibited
by the Mishin aluminium potential near the theoretical energy peak, which corresponds to
o13 = 0 at x/b, = 0.5 (figure 6), has been observed by constraining the relaxation in that
direction. This relaxation corresponds to a decrease in energy near x /b, = 0.5 that creates a
depression in the energy peak forming a local energy maximum at x /b, = 0.45 and a local
energy minimum at x /b, = 0.5.

The Ercolessi potential has a more serious discontinuity that can be traced to non-physical
atomic relaxation (see figure 7(b)). The variations in interplanar spacing in all three directions
calculated with this potential show abrupt changes near x/b, = 0.5 which correspond to
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Figure 5. The multiplane generalized stacking fault energy calculated with the Mishin copper
potential as stress—displacement functions, dy, (x)/dx. The n = 15 case is essentially overlaid on
the n = oo case.

discontinuities in the second derivative of the energy with displacement. The discontinuity
is associated with the energy cut-off in the Ercolessi potential at the third-NN position.
The relaxation patterns do not follow the final trend until a displacement of approximately
x/b, = 0.35 where the interplanar spacing begins to change abruptly. Up until this
displacement, contraction in the (112) direction and nominal expansion in the (110) and (111)
directions are observed. This overall relaxation behaviour is neither physically intuitive nor in
agreement with DFT results and should be regarded as an artefact.

A plot of dy,(x)/dx versus x for aluminium calculated with the Mishin potential
shows significant deviation between affine shear—displacement behaviour (n = co) and the
generalized stacking fault behaviour (n = 1) (figure 8). As the displacement, x, approaches
b, aluminium does not recover a large portion of the energy penalty incurred during shear
deformation which results in an intrinsic stacking fault energy about three times that of copper.
The energy recovery characteristic of aluminium is clearly reflected in the asymmetry of the
shear response, dy;(x)/dx, in figure 9. Even for the n = 15 case, the behaviour of affine
deformation has not been fully recovered. The energy maximum calculated with the Mishin
potential, for the n = 1 case, occurs at x/b, = 0.70, where dy;(x)/dx = 0. This can
be contrasted with the behaviour observed in copper (figure 5) where the maximum energy
penalty for n = 1 shear occurs at x /b, = 0.53.

Aluminium has been shown to exhibit anisotropic electron density, which is closely
associated with directional bonding (Feibelman 1990, Robertson et al 1993). As aresultcharge
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Figure 6. {111}(1 12) pure shear stress—displacement response for aluminium using the Mishin
aluminium potential (O), the Ercolessi aluminium potential (A) and DFT (OJ).

redistribution associated with breaking and reforming bonds is more difficult in aluminium than
in copper (Kioussis ef al 2002). Bonding in copper can be described as isotropic because of
spherically symmetric charge density; the uniform charge density is able to adapt more quickly
to the changing local environment associated with shear deformation and is therefore less
sensitive to the local structure (fcc versus hcp) than it is to coordination. When an intrinsic
stacking fault is formed copper is able to recover most of the energy penalty caused by shear
(Ogata 2002).

4. Discussion

In this work, which deals with benchmarking the description of shear deformation using
empirical interatomic potentials for copper and aluminium against first-principles calculations,
we find the Mishin potential for copper accounts for the qualitative behaviour of the metal
reasonably well. The potential gives good results for the detailed relaxation mechanism in
affine shear and the generalized stacking fault energy. On the other hand, it does overestimate
the ideal shear strength and strain. Our results reinforce the general understanding that EAM-
type potentials are most applicable to metals with isotropic charge densities, as in the case
of copper. The level of agreement between the Mishin potential and DFT results obtained
here constitutes a best-case scenario in terms of modelling deformation behaviour beyond the
database for fitting.

The Mishin potential for aluminium, which preceded the copper potential in development,
has been found to be not as satisfactory. It gives a reasonable value of ideal shear strength,
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Figure 7. Atomic relaxation patterns as a function of displacement during {111}{112) pure shear
of aluminium are presented as interplanar distance normalized by the equilibrium interplanar
spacing. Calculations were performed with (@) the Mishin aluminium potential (A, W, @)
and (b) the Ercolessi aluminium potential (A, B, @) with each compared to the same DFT
calculation (A, (0, O).
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Figure 8. Unrelaxed generalized stacking fault energy for aluminium {111}(112) slip calculated
with the Mishin aluminium potential (O) and DFT (®) as well as the unrelaxed affine shear
stress—displacement response computed with each method: Mishin aluminium potential ((J) and
DFT (m).

while appreciably underestimating the extent of nonlinear elastic deformation. The relaxation
pattern was not as accurately described as in the case of copper using a different potential of
essentially the same form. In describing the multiplane generalized stacking fault energy the
potential qualitatively captures the asymmetry observed with DFT that we attribute to difficulty
in redistributing the localized charge density in systems with directional bonding.

The Ercolessi potential for aluminium, which was developed even earlier, does not perform
as well as the Mishin aluminium potential. The former significantly underestimates the ideal
shear strength and gives unphysical relaxation patterns arising from an energy cut-off at the
third-NN distance. The apparent agreement in relaxation patterns near the saddle point at
x/bp = 0.5 with DFT results is probably fortuitous.

Our findings are consistent with a similar study benchmarking empirical EAM potentials
against DFT calculations through the generalized stacking fault energy (Zimmerman et al
2000). While the conclusion of this study was that EAM potentials are not suited to modelling
the behaviour of aluminium, we feel that our results show that the Mishin potential does capture
some of the significant behaviour observed in DFT calculations. Several copper potentials were
evaluated in the previous study; however, the Mishin potential for copper had not appeared at
the time. On the basis of the present benchmark of shear deformation, we regard the Mishin
copper potential as the most accurate interatomic potential available at present for this metal.
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Figure 9. The multiplane generalized stacking fault energy calculated with the Mishin aluminium
potential as stress—displacement functions, dy, (x)/dx. Aluminium shows significant asymmetry
for the n = 1 case and has not converged to the affine case even at n = 15.

When comparing copper with aluminium, DFT shows aluminium to have higher ideal
shear strength and a longer range of elastic deformation before the onset of plasticity (Ogata
2002). The Mishin potentials for these two metals give the same order of the ideal shear
strengths while showing copper to have the longer range of elastic deformation. We attribute
this to the difficulty of treating directional bonding or angle-dependent forces with EAM-
type formulations. We observe that an EAM potential of the form of equation (1), though
it involves no explicit angular variables, can still represent angular dependence implicitly, if
the potential cut-off is chosen to include many neighbouring shells, and if the fitting is done
carefully. The reason is because angular information is inferable from distance information.
For example, if the lengths of all three sides of a triangle are known, the three angles are also
known (triangulation). Thus, with flexible choices for G;(p) and V (r;;), one may consciously
or unconsciously ‘fold in’ angular dependence into these radial functions. However, an
unfortunate consequence of this in a setting of large-scale numerical optimization of the
potential parameters is that one may no longer understand the outcome of fitting. Both the
Mishin and the Ercolessi potentials for aluminium contain oscillations of unclear physical
origin in the pair- and/or embedding functions, which are absent in almost all the empirical
potentials for Cu. Thus one may suspect that strong angle-dependent effects in Al have been
vaguely ‘folded in’ into the G;(p) and V (r;;) functions through the numerical fitting procedure.

The above view, however, could be too narrow. Dagens ef al have shown that in a
perturbational limit where interatomic interaction reduces to a sum of pair interactions, Al does
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have a longer-ranged pair potential with oscillations (Dagens et al 1975). Thus, should we
describe the abnormal behaviour of Al as due to ‘long-ranged angle-independent’ interactions,
or ‘short-ranged but angle-dependent’ interactions like those in Baskes (1992), Lee et al (2001)
and Li et al (2003)? The answer is probably that only the N-body Born—Oppenheimer (BO)
surface is a true physical measurable. Interatomic potentials are merely cluster expansion
schemes to approximate the true BO surface, and individual terms in a potential model are not
physical measurables. Thus, choosing to use ‘long-ranged angle-independent’ terms or ‘short-
ranged but angle-dependent’ terms in expanding the BO surface becomes a matter of most easily
capturing the essential behaviour of interest while maintaining computational efficiency, not
always an easy task. Baskes et al have shown that both EAM (long-ranged angle-independent)
and modified-EAM (short-ranged but angle-dependent) potentials give reasonable descriptions
of defects in Al (Baskes 2001). However, in the limit of a large enough basis, all types of cluster
expansion schemes should give not just reasonable descriptions, but the same converged result
for the BO surface, at least theoretically.

Lastly, we would like to point out the usefulness of rigorously benchmarking empirical
potentials against ab initio calculations. Many problems of interest are inaccessible owing to
the length and time scales of ab initio calculations. However, by thoughtfully comparing
the results of simple calculations obtainable with both empirical potentials and ab initio
calculations, simulations using empirical potential can be more thoroughly understood. It
is important in this process to choose benchmark calculations that accurately reflect the
behaviour of interest to the larger-scale simulations. The current work explores the detailed
behaviour under shear deformation of fcc metals, with the goal of better understanding
molecular dynamics simulations of deformation and defect nucleation in these metals
(Van Vliet et al 2003, Choi et al 2003, Zhu et al 2004, Kimizuka et al 2004). An accurate
understanding of the successes and limitations of empirical potentials allows for a more
informed interpretation of the results of simulations using these potentials.
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