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A general goal in multiscale modeling is to analyze macroscale (system-level)
phenomena using information on the system at the microscale. In this ped-
agogical note we revisit the time-stepper approach to performing nonlinear
dynamics analysis through the use of a microscopic simulator, molecular dy-
namics in this case. Using simple illustrative examples we suggest that there
are better ways of using a molecular simulator than observing temporal evo-
lution of the system in a hands-off manner alone. Continuum numerical anal-
ysis algorithms can be transformed into alternative computational protocols
for microscopic solvers: macroscopic nonlinear dynamics information, such
as stationary solutions, stability boundaries or similarity exponents, can be
obtained through the design and execution of appropriately initialized short
bursts of direct microscopic simulation.

1 Introduction

In the computer-assisted study of nonlinear dynamical systems, direct tem-
poral simulation is not the only available approach. A host of computational
tools, such as numerical bifurcation analysis, aimed at efficiently extracting
quantitative information have been developed. Such tools include Newton-
Raphson and other fixed point algorithms that accelerate the location of
steady states, continuation of solution branches in parameter space, eigen-
solvers that quantify stability, boundary value solvers to accelerate the loca-
tion of limit cycles, algorithms for codimension-one or higher order bifurcation
points to locate transitions, etc. When explicit evolution equations (“macro”-
level equations for the purpose of this note) are available, such techniques
(given a good initial guess) can be remarkably efficient compared to direct
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temporal simulation. Over the last ten years, a trend has arisen in continuum
numerical analysis towards so-called time-stepper based methods, like the Re-
cursive Projection Method (RPM) introduced by Shroff and Keller [SK93],
see also [TB00]. These methods are aimed at enabling deterministic dynamic
simulators to perform tasks beyond direct temporal simulation: bifurcation
analysis, but also long-term prediction, stability analysis, control and op-
timization. This is achieved through computational protocols implemented
through a software superstructure: what, in this discussion, we will call “the
wrapper”. The wrapper is then a way of combining continuum numerical tools,
such as bifurcation analysis techniques, as the outer component, with a time
integrator (time stepper), as the inner component. The functional relation of
the two components is indicated schematically in Fig. 1 for the case of coarse
projective integration and coarse bifurcation analysis [TQK00, GKT02].

Fig. 1 goes beyond the deterministic time-stepper case: it illustrates the
use of this wrapper-based computational enabling technology; system level
coarse “outer” algorithms (integration, RPM or GMRES-based fixed point
location) are wrapped around inner fine scale atomistic / stochastic timestep-
pers. It is interesting that the same wrapper can be operated transparently in
two modes, depending on whether a deterministic coarse equation is available
or not. For a given set of parameters the time-stepper component is called
along with a coarse initial condition, which is evolved forward in time -with
a deterministic coarse PDE solver- to produce a coarse output (see the lower
part of Fig. 1). The results are processed, and new trial initial conditions are
constructed and evolved; after this procedure is repeated a sufficient number
of times, bifurcation results are obtained. When a coarse equation is not avail-
able the time-stepper protocol operates transparently, but with one additional
feature - the “lifting” of the coarse initial condition to one or more consistent
microscale initial conditions, and the “restriction” of evolved microscale in-
formation back to macroscopic observables.

The lifting step is shown on the left in both parts of Fig. 1. For each mi-
croscale initial condition thus produced, the system is evolved forward using
the microscopic timestepper, and the evolved microscale conditions are “re-
stricted” to give a coarse output that is then returned to the integration or
bifurcation code. Notice that the first mode requires the availability of coarse
PDE, whereas such equations are not needed in the second mode: the coarse
input-output map for the macroscopic observable has been estimated through
short computational experimentation with the micro solver. The microscopic
timestepper mode implicitly takes into account microscale processes in the bi-
furcation analysis; it makes the analysis feasible even if the appropriate coarse
PDE for the system is not known. On the other hand, it remains to be shown
that good results can be obtained using the microscopic timestepper. The dis-
tinction between coarse (PDE-based) and detailed (microscopic) timesteppers
has been discussed in [TQK00, GKT02, RTK02, MMPK02] and reviewed in
[KGHKRT03].
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Fig. 1. Schematic of timestepper-based numerical computation: (a) coarse inte-
gration and (b) RPM-based coarse bifurcation analysis. Macro-initial conditions are
lifted to consistent microscopic ones, evolved through the timestepper, and restricted
back to the macroscale. The wrapper is templated on continuum numerical analysis
algorthms. It designs and executes these short bursts of computational experimen-
tation with the micro-solver, processes their results, and uses them to estimate the
quantities required in the macro-numerics.
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We are interested in the use of molecular dynamics (MD) simulation,
a well-known method for following the dynamical evolution of a system of
atoms and molecules, as the inner, microscopic timestepper. Since molecular
dynamics is not designed to perform system-level analysis, running the MD
simulation in the conventional manner does not lead naturally to results on
nonlinear dynamics behavior on the coarse scale. In what follows we argue that
a wrapper can be constructed to enable bifurcation analysis to be performed
with MD as the timestepper. We use MD results from existing simulations to
illustrate the general utility of the timestepper/wrapper notions, pointing to
what has been done (without such notions) to show what more can be done
with such notions. While the correspondence and language may not yet be
as precise as one would like, it appears that the new connections being made
between NLD and MD can be potentially useful.

2 Linking Scales (Practical Determinism)

What is the precise meaning of the statement that “macroscopic equations
close at a certain level of description”? Colloquially this implies that one can
be practically predictive at that level: given the value of “a few” system observ-
ables at a moment in time, one can predict the evolution of these observables
at a later time without additional information. If equations for the evolution
of these observables are not known, can we put practical determinism (i.e.,
the information that equations conceptually exist) to good use in microscopic
simulations ? Our answer is that the timestepper-wrapper method does not
require explicit formulas for the equations. There are reasons to believe that a
time-stepper approach, wrapped around a microscopic simulator, can succeed
in solving the equations without writing them down.

The challenge, put in a different way, lies in the linking of micro and
macro scales; one would like to make macroscopic predictions on the basis of
“just enough” input from the microscale. For our example we consider the
prediction of the onset of elastic instability in nanoindentation of a thin-film
sample, which leads to the homogeneous nucleation of a dislocation loop, a
microcrack or a deformation twin [LVZYS02, VLZYS03, ZLVOYS04]. At the
macro scale, the strain induced in the sample may be described in the finite-
element method (FEM) by a mesh of grid points (nodes). The FEM governing
equations may not be closed because the constitutive (stress-strain) relations
capable of describing large-strain deformation at the nodes are generally not
known in closed form. On the other hand, MD is a method of simulating the
phenomenon at the micro scale without the use of equations describing the
manifestation of the instability at the level of macroscopic observables. The
challenge is then in passing just enough microscopic information (obtained by
running the molecular simulator as parsimoniously as possible in space and
time) up to the macro scale, where the manifestation of this instability can be
efficiently pinpointed and practically analyzed. If we think of direct dynamic



Nonlinear Dynamics Analysis through Molecular Dynamics Simulations 5

simulation as “nature”, we are in a sense attempting to outsmart nature:
obtain the information of interest by doing as little microscopic simulation
as possible; hopefully with much less effort than direct simulation of the full
system in space, time and parameter space.

Timestepping can thus form the basis of a robust procedure for scale-
linking: passing information between the micro- and macroscales. Scale linking
is generic to practically all fundamental studies of complex systems behavior.
We mention in passing that, while in some problems the relevant macroscopic
observables are obvious (e.g. concentration for chemical reactions, or stress
and strain in our case), the selection of the right observables (order parame-
ters, phase field variables, reaction coordinates) constitutes an important and
difficult part of any procedure for linking scales. This selection determines the
level at which we can be practically deterministic.
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Fig. 2. Nanoindentation displacement-load (h-P ) response showing initial elastic
deformation of the thin film up to a critical indentation distance where the load
suddenly drops (signaling the nucleation of a dislocation loop), prediction by FEM
with Cauchy-Born hypothesis (smooth curve) and direct MD simulation (wiggly
curve).

Our example of linking scales in the modeling of nanoindentation of
metal thin film involves two distinctly different simulation methods, finite-
element method (FEM) and molecular dynamics (MD) [LVZYS02, VLZYS03,
ZLVOYS04]. The instability in question occurs when the indenter force reaches
a critical threshold, or equivalently, when the indenter penetration reaches a
critical distance. The resulting phenomenon is a sudden transition from elastic
to plastic response of the thin film. To map the nanoindentation study onto
the present discussion we regard FEM and MD as the coarse and detailed
timesteppers respectively. In FEM the strain at each node is evolved subject
to a constitutive relation that specifies the stress field. Since this information
is usually not known for strains large enough to induce elastic instability, one
can say that determinism does exist but the constitutive relations required
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to the close at FEM level are not available. However, in this case it is pos-
sible to link FEM with MD using an approach known as the Cauchy-Born
hypothesis. In this hypothesis one (a) converts the strain at a given node into
a deformation tensor, (b) deforms a perfect crystal according to this tensor,
and (c) uses an appropriate interatomic potential to calculate the stress re-
sponse of the deformed infinite lattice. The resulting stress is then returned to
the given node as if it were given by a constitutive relation. By applying this
procedure to every node in the FEM calculation and doing it on-the-fly at
every step in the evolution one arrives at a prediction of the nanoindentation
response. Relative to Fig. 1 we see that the Cauchy-Born hypothesis, steps (a)
through (c), are, in effect, the “lifting”, “evolving” and “restriction”. In Fig.
2 we show a comparison of the predicted response as simulated by the modi-
fied FEM, which we denote as interatomic potential FEM, with that obtained
by direct MD simulation (detailed timestepper evolution) without projection
to the coarse level. This example of linking atomistic (MD) and mesoscale
(FEM) illustrates how prediction at the coarse scale can be achieved using
the notion of a wrapper. Our use of the Cauchy-Born hypothesis is a special
case of a general formulation linking atomistic simulation and FEM, known as
the Quasicontinuum Method [TOP96, MT02]. While in this case we evaluate
the atomic-level stress immediately upon lifting, in general one may want to
run the detailed timestepper a little to “heal” the errors introduced by the
lifting process [GKT02].

3 Initializig at Will

In the spirit of linking scales, we now take up the question of how to find
the inflection-point and saddle-point configurations of a dynamical system.
The premise here is that a saddle point is best located through fixed point
schemes (like Newton-Raphson) that exploit macroscopic smoothness through
the use of derivatives. Interestingly, under appropriate assumptions on sepa-
ration between fast attracting and slow repelling time scales, saddles can be
located by performing integration of an explicitly available equation backward
in time. This opens up the intriguing possibility (used in MD studies of ala-
nine dipeptide folding [HK03]) of integrating an equation backward in time to
find an unstable solution [GK04]. This can be effected by initializing consis-
tently with a macroscopic observables, evolve microscopically for a short time
interval, estimate the time derivative of the macroscopic observables, and use
it to project the state of the system for a longer interval backward in time.
The overall procedure consists of short forward runs, postprocessing of their
results, and reinitializations of the system at “effectively earlier in time” val-
ues of the macroscopic trajectory. Such a backward integration procedure has
been used to escape free-energy minima and explore free energy surfaces; we
believe it has potential in detecting transition states and exploring nucleation
phenomena.



Nonlinear Dynamics Analysis through Molecular Dynamics Simulations 7

(a) screw-screw (b) screw-notch

1000
 1500
 2000
 2500

1


1.5


2


2.5


3


3.5


Applied Shear Stress 
 [MPa]


∆
E
 
[e

V
]


∆
�


E  
converts to 2899 MPa


screw moves
screw moves


A

B

(c)

Fig. 3. Variation of virtual energy release ∆E with applied shear stress for a screw
dislocation in silicon in two different microstructure environments (A and B), one
in the form of a dislocation dipole, two dislocation cores as shown in (a), and the
other in the form of a dislocation core with a notch nearby, as shown in (b). The left
dislocation core is seen to to move at the same value of ∆E but different values of the
applied shear stress. This signifies ∆E is not affected by the samepl microstructure
environment and therefore it can be converted to a value for the Peierls stress that
is an intrinsic material property.
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Our example for illustrating the advantages of “detailed” system initial-
ization is the determination of the stress required to move an existing, isolated
dislocation in a crystal, the so-called Peierls stress in the problem of disloca-
tion dynamics. Since simulations generally can be initialized at will, we take
advantage of this flexibility to prepare the crystal model containing a dislo-
cation such that its subsequent behavior provides physical insight. The basic
notion of preconditioning the system is not new, yet there are not many simu-
lations that exercise this degree of control in the manner described below. Our
simulation consists of setting up two runs, each involving a single dislocation
in a lattice with a different sample microstructure environments (denoted as
A and B). We subject both systems to incremental values of pure shear to de-
termine the threshold shear stress at which the dislocation will start to move.
Given that the two sample environments are quite distinct, it is no surprise
that the threshold strain values are different for the two cases. In each run we
also calculate the virtual energy release ∆E of the defect by taking a small,
localized region around the defect (with dimension about 1 nm) in a manner
similar to the J-integral but using atomic sums, and evaluating the energy
change within this region plus the border contributions that represent the vir-
tual work done by the environment [Li00]. Fig. 3 shows a plot of the computed
local virtual energy releases ∆E with applied shear stress. It is interesting that
for the two cases the critical ∆E’s for A and B turn out to have the same value.
This signifies that even though the sample environments A and B are differ-
ent, their influences on the local environment of the dislocation is accurately
portrayed through the evaluation of ∆E. From the critical value of the virtual
energy release, one backs out a value for the Peierls stress, in agreement with
results obtained by an entirely different method [Li00, CBCLY01, CBCLY03].

This example illustrates the notion that initializing a microscopic simu-
lation at special initial states (which is effectively impossible experimentally,
but eminently doable computationally), evolving for short times and postpro-
cessing the results, can be instrumental in extracting intrinsic properties of
the system. By virtue of its invariance to the sample microstructure environ-
ment, the procedure demonstrates that the resulting critical energy release
∆E is indeed an intrinsic property of the material. This conclusion could
not be reached in a convincing fashion by simply running the simulation of
a dislocation dipole in a crystal lattice and determining the apparent crit-
ical (supercell-averaged Virial) shear stress at which the dislocation begins
to move, due to image dislocation interactions [CBCLY01, CBCLY03]. Our
computation of the Peierls stress did not require any knowledge of the coarse
theory, i.e. equations of anisotropic elasticity; but it gave the correct coarse
result based entirely on numerical evaluations of atomic sums, with a ring size
as small as 1 nm. Knowing a functional of the local dislocation environment
that correlates with the onset of dislocation motion could form the basis for
the systematic exploration of this onset [HSK04].
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4 Dynamic rescaling and the formation of singularities.

A third issue we will examine is the question of determining self-similarity
and scaling exponents from the system behavior at the onset of explosive in-
stabilities. We believe that it is reasonable to look for rescaling space, time
and observables in a way that will transform an apparently violently explod-
ing instability scenario into a smooth stationary one. For our example we
have in mind the visualization of a wave instability physically correspond-
ing to the localization of lattice strain, as manifested in the simulation of
the homogeneous nucleation of a dislocation loop or deformation twin em-
bryo. We argue that coarse timestepping and successive rescaling (dynamic
coarse renormalization) can transform the increasingly steepening of the wave
front (which apparently explodes in finite time) to a time-invariant profile
[ABK04, SKK03, RM00, RKML03, CBGK03]

Just as in the first example, where the system undergoes an elastic to
plastic response transition in the form of dislocation nucleation under inden-
tation, we may also ask for details of the transition from affine shear defor-
mation to the nucleation of a deformation twin, say in the {1̄1̄2}〈111〉 shear
system of BCC Mo [Chang03]. In contrast to dislocation nucleation which
involves the relative shear of two adjacent planes, twinning is a competing
process which involves relative shear among three or more adjacent planes.
Recent MD simulations have shown that twinning can be homogeneously nu-
cleated by shearing a single crystal [Chang03]. By treating the relative shear
between two adjacent planes as a reaction coordinate one can formulate a
one-dimensional model (a chain of these coordinates) to visualize the onset
of twinning as a dynamical process of strain localization. Fig. 4 shows MD
results on dislocation loop / deformation twin nucleation through the profile
evolution of a small sinusoidal wave superimposed along the reaction coor-
dinates. What one sees is a four-stage scenario: linear wave, nonlinear wave
which begins to steepen, strongly singular behavior just prior to shock wave
formation, and emergence of a localized shear. We believe that dynamic renor-
malization can be applied to these results to show that what appears to be
rapidly varying transient behavior, under suitable transformation, is actu-
ally a stationary front. Here we seek a fixed point of the composition of the
coarse timestepper with dynamic rescaling of the results of coarse timestep-
ping [CBGK03]. The sequence involves lifting from macroscopic observables
(deformation field) to consistent molecular configurations, short molecular dy-
namics evolution, restriction to macroscopic observables, and then rescaling
of space and the macroscopic observable fields; the latter is performed based
on an established, time-stepper based methodology using template functions
[RKML03]. Upon convergence, the self-similar shape as well as the exponents
of the macroscopically apparent explosion can be estimated for both types of
self-similar solutions [Barenblatt96].

We have argued here that timestepper-based methods provide a systematic
bridge between molecular dynamics timesteppers and traditional continuum
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Fig. 4. Visualizing shear strain localization in a crystal under uniform shear de-
formation. The simulation cell with periodic boundary conditions is shown first
undeformed, and then at deformation just before the instability (a), along with an
initial sinusoidal shear wave perturbation injected into the system. At the onset of
strain localization the perturbation wave profile undergoes four stages of temporal
evolution (at a fixed overall strain on the system) that can be classified as linear
growth (b), non-linear growth (c), shear-shock formation (d) and formation of an
atomic defect, the embryonic dislocation loop / deformation twin (e). After the nu-
cleation, the system strain, previously uniformly distributed, is essentially entirely
localized at the glide plane(s) of the dislocation loop / deformation twin.
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numerical analysis. Also that, in the presence of coarse determinism at the
level of well-chosen observables, mathematical techniques can be translated
into protocols for the judicious design of microscopic computational exper-
iments toward system-level analysis goals. Lifting and restriction protocols
between macroscopic observables and microscopic initial conditions provide
the dictionary that enables the performance of tasks like coarse fixed point
and bifurcation computation, coarse integration, optimization and control,
as well as coarse dynamic renormalization. This closure-on-demand approach
circumvents the derivation of macroscopic closures; by exploiting the exis-
tence of practical determinism, it allows us to solve system-level problems
with the least possible extent of microscopic simulation. “On the fly” trans-
fer of information across scales, which relies on variance reduction, filtering
and estimation, enables the performance of tasks like reverse integration or
the location of transition states, would be essentially impossible with direct
temporal simulation.
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