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Using a formulation based on anisotropic elasticity we determine the core energy and Peierls stress of the
a0/2f111g screw dislocation in bcc molybdenum atT=0. We show that a proper definition of the core energy
necessarily involves choosing a reference directionâ and a reference radiusr0 in order to describe dislocation
dipole rotation and dilatation respectively in the asymptotic expansion of the total energy. The core energy is
extracted from atomistic calculations for supercells containing a single dislocation dipole with periodic bound-
ary conditions in a manner that treats fully consistently the effects of image interactions, such that the core
energy extracted is invariant with respect to the supercell size and shape, image-sum aspect ratio, and dislo-
cation dipole distance and orientation. Using an environment-dependent tight-binding model we obtain

0.371 eV/Å atâ=k112̄l andr0=b and 3.8 GPa for the energy of a core with zero polarity and Peierls stress for

simple shear ins1̄10dk111l, respectively, to be compared to 0.300 eV/Å and 2.4 GPa obtained using an
empirical many-body potential for a polarized core. Our results suggest that the large Peierls stress of screw
dislocation in Mo is due to the transition from nonplanar to planar core, rather than a direct effect of the
equilibrium core polarity.
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I. INTRODUCTION

The unusual behavior of screw dislocations in bcc metals
has long been attributed to its nonplanar core structure,1–4

with further complications from the possibility of spontane-
ous polarity,5 where atomic rows closest to the core center
shift in either k111l or k1̄1̄1̄l to break the k1̄10l diad
symmetry.6,7 Whether the finite polarity of the equilibrium
core has anything to do with the high Peierls stress, in addi-
tion to the nonplanarity, is currently a topic of research.8–15

Experimentally measured yield stress of single crystal Mo
shows strong temperature dependence from 0 to,400 K,16

suggesting a significant lattice friction effect. It is commonly
believed that in theh110jk111l slip system of Mo, nonscrew
dislocations have a much higher mobility than the screw dis-
locations, which move by the double-kink mechanism,17,18

and whose kinetics is controlled by kink nucleation rather
than migration, as the kinks have nonscrew character. Recent
calculations have shown that heterogeneous nucleation of
kinks from dislocation triple junctions19 may greatly reduce
the kink nucleation stress from that of “homogeneous nucle-
ation” (spontaneous nucleation of double kinks on an infi-
nitely long, straight screw dislocation without the aid of
other defects). This may help explain why the Peierls stress
calculated for perfect screw dislocation ins110d plane is
0.015 to 0.025G (G is the resolved shear modulus) or
2.1–3.4 GPa,9,11 whereas the experimentally measured criti-
cal resolved shear stress is only,750 MPa asT→0 K.16

Nonetheless, the proper atomistic determination of the core
structure, core energy and Peierls stress of an infinitely long
straight screw dislocation in Mo is still an important problem
at the conceptual and technical levels.20,21

Two major sources of errors could arise in a quantitative
atomistic study of dislocation core structure and energetics,
the accuracy of the interatomic interaction model and the
effects of boundary conditions imposed to carry out the cal-
culation. Empirical interatomic potentials, often fitted to
equilibrium properties,22 allow large enough system sizes to
be treated; however, there is no assurance they will give
realistic results at large strains(see Fig. 1). Density func-
tional theory (DFT), on the other hand, provides accurate
energetics, but is limited to small supercells where core over-

FIG. 1. Relaxeds1̄10dk111l shear affine stress-strain response in
Mo calculated using the Finnis-Sinclair potential(Ref. 22). The
cusp in the response is due to the finite potential cutoff between the
second- and third-nearest neighbors.
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lapping and image stress effects can be significant; further-
more, in bcc Mo,k-point sampling and energy cutoff con-
vergence needs to be monitored carefully. Added to these
concerns are difficulties in extracting the dislocation core
energy and Peierls stress from atomistic calculations using
the periodic boundary condition(PBC), the problem of “con-
ditional convergence” in the image dislocation dipole sum-
mation. One approach circumventing the latter is to use in-
stead the so-called first-principles Greens function boundary
condition(FP-GFBC) to study a single dislocation.11,23Alter-
natively, we have developed a formalism for PBC calcula-
tions of the core energy20,21 and the Peierls stress20,21,24

whose results are manifestly invariant with respect to the
image-sum aspect ratio, supercell geometry, and position and
direction of the dislocation dipole. This is the approach
adopted for the present work.

In Sec. II, we propose a rigorous definition of the dislo-
cation core energy based on a thought experiment of creating
an isolated dislocation dipole in an infinite atomistic crystal.
The physical significance and mathematical utility of the
core energy are discussed. It is shown that in an anisotropic
elastic crystal, a reference directionâ is needed for the core
energy to have a properly defined value, in addition to a
reference radiusr0. In Sec. III, we review the procedure that
enables one to extract the core energy from PBC supercell
calculations, and use the empirical, many-body Finnis-
Sinclair potential22 as a test case to verify the invariance of
the results. In Sec. IV, we use an environment-dependent
tight-binding potential for Mo(Refs. 25–28) to determine the
core energy and Peierls stress of screw dislocation, and com-
pare results with the Finnis-Sinclair potential. The relation-
ship between the equilibrium core polarity and the Peierls
stress is also discussed. Finally, a summary is given in Sec.
V.

II. MATHEMATICAL DEFINITION AND PHYSICAL
MEANING OF DISLOCATION CORE ENERGY

There are two definitions of the dislocation core: a physi-
cal core and a mathematical(elasticity) core. The physical
core is defined by atoms whose local atomic order like the
coordination number or inversion symmetry is drastically
different from that of the crystalline bulk, from which we
may define a core sizer0

phys. Obviously, r0
phys is significant

and useful, but needs not be a precise real number due to
lattice discreteness. In contrast, the mathematical core radius
r0 and core energyEcore can be defined as precise real num-
bers from an asymptotic expansion of the total energy of a
dislocation dipole in an infinite, and otherwise perfect,
atomic lattice,

Esdd = 2Ecore+ 2Asud +
Ksubu2

2p
log

udu
r0

+ Osudu−1d, s1d

at large udu. Here, Esdd is defined to be the total energy
increase in a thought experiment of an infinite discrete lattice
whose atoms displace according to the leading-order Stroh
solution29 uGsxd at ux±d /2u@ r0

phys, but which are allowed to
relax atomistically near the physical cores. As the Stroh so-

lution is self-equilibrating(stress equilibrium is satisfied) in
the far field, the above thought experiment is well-posed and
Esdd is the final increase in the atomistic total energy. At
large udu, the leadingd-dependent term inEsdd must be
Ksubu2slogud u d /2p, with Ks proven invariant with respect to

the displacement cut directiond̂;d / udu.30 Let us defineu to

be the angle betweend̂ and an arbitrarily chosen reference

directionâ, with d̂'j andâ'j, ud̂u= uâu=1, andj is the line
direction of the straight dislocation. An asymptotic expan-
sion of Esdd at large udu would yield Oslogudud, Os1d,
Osudu−1d , . . . terms. TheOs1d term may generally contain a
u-dependent component 2Asud, and au-independent compo-
nent. For the sake of definiteness, we requireAsu=0d=0, and
â will be called the zero-angle reference axis.Asud is entirely
given by anisotropic elasticity,

2Asud = o
a=1

3
bTK ab

4p
log

sd̂x + pa
r d̂yd2 + spa

i d̂yd2

sâx + pa
r âyd2 + spa

i âyd2 , s2d

wherepa;pa
r + ipa

i , a=1, . . . ,3, are the three Stroh eigenval-
ues with nonnegative imaginary parts, andK a

;−2fResL adImsL adT+ImsL adResL adTg is the mode-specific
modulus,30 with oa=1

3 bTK ab=Ksubu2. Physically, 2Asud is
the rotational energy landscape of a dislocation dipole with
fixed udu in an infinite anisotropic crystal21 when udu is as-
ymptotically large. It is seen from Eq.(2) that Asud=Asu
+pd. To illustrate,Asud’s for Si a0/2f11̄0g shuffle-set screw
and Mo a0/2f111g screw dislocations are evaluated and
shown in Fig. 2.

With the Oslogudud and u-dependentOs1d parts known,
the udu- andu-independentOs1d part of Esdd can be used to
select the mathematical corer0, Ecorepair. Imagine for a fixed
u, we plot Esdd data with udu on a chart(d can only take
discrete lattice spacing), and we would like to fit the data to

a smooth functionẼsdd. We need to shift the function
Ksubu2slogud u d /2p up or down to get a good fit at largeudu.
That shift operation is well defined asymptotically and is
unique. If we ignoreudu−1 etc. terms in the fitting template

Ẽsdd;2Ecore+2Asud+sKsubu2/2pdlogsudu / r0d, 2Ecore+2Asud
would be the abscissa ofẼsdd at udu=r0. It doesnot mean,

however, thatEsr0d=2Ecore+2Asud, as Ẽsdd only fits Esdd
well at large udu (satisfying at leastudu@2r0

phys). It is thus
clear thatr0, Ecore (andâ) are mathematical instruments to fit
Esdd to an asymptotic form and do not carry physical mean-
ing in either quantity alone. If one likes, one may choose

r0=1000ubu and selectEcore accordingly soẼsdd remains the
same function and nothing is changed. There are several
popular choices, however, such as(a) taker0= ubu, (b) choose
r0 so Ecore=0, (c) r0=r0

phys to minimize confusion,(d) r0
=1 Å to simplify numerical calculation, etc. It is seen that
except for(c), none of ther0’s has anything to do with a

physical core size. It is also clear that althoughẼsdd by defi-
nition must fit Esdd well at largeudu, there should be a big
error asudu→2r0

phys and the physical cores begin to overlap.
Finally, â, r0, and Ecore combined do carry physical
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meaning—as much as any other defect formation energies—
for example, in evaluating the absolute energy needed for
creating a large dislocation loop out of a perfect crystal. The
atomistically evaluatedEcore is essential for developing accu-
rate potential energy landscapes for coarse-grained models
like nodal dislocation dynamics. It is needed, for example, in
determining how much plastic work is converted into heat as
versus defect creation for a given dislocation microstructure.
In theory, the numerical values ofEcore (for the sameb, j, â,

r0) can be used to determine which core configuration is the
ground state when multiple metastable core configurations
are found in an atomistic calculation,21 although in practice
this is often unnecessary, because the difference inEcore val-
ues is trivially related to the total energy difference between
calculations with identical supercells. Thus, the main utility
of Ecore is for calibration and information exchange, and to
feed coarse-grained models, rather than for analyzing an ato-
mistic calculation itself.

From the above, it is apparent that the choice of the zero-
angle reference axisâ influences the numerical value of
Ecore, in addition to the choice of the reference radiusr0. This
point is not widely appreciated. Indeed, even the existence of
the dipole rotational energy landscape 2Asud has usually
been ignored in the analyses of atomistic modeling results in
the literature. Note from Eq.(2) thatAsud originates entirely
from elasticity.AsuÞnpd is generally nonzero for disloca-
tion dipole except screw dislocation dipole in isotropic me-
dium. For example, even edge dislocation dipole in isotropic
medium has nonzeroAsud. Ecore completely characterizes the
net energy consequence of core atomic relaxations, but one
must report what elasticity parametersr0 andâ are chosen as
the elasticity matching partners. For instance, it was reported

previously20 that Ecore of a0/2f11̄0g shuffle-set screw dislo-
cation in diamond cubic Si was 0.502 eV/Å, withr0= ubu and
using the Stillinger-Weber potential. Later, a separate, inde-
pendent calculation givesEcore=0.526 eV/Å for the same
setup. It is then traced back and determined that while the

latter calculation usesâ=k112̄l, the former calculation in ef-
fect used â=k111l. The offset is exactly given byAsu
=p /2d=0.024 eV/Å as shown in Fig. 2(a). So both calcula-
tions are completely correct, with the only difference in the
choice of the zero-angle reference axisâ and a trivial con-
version ofEcore’s between them.

To summarize, the numerical value ofEcore carries no
physical meaning unlessâ and r0 are specified. The conver-
sion of Ecore to other sâ,r0d “elasticity references” can be
performed easily with the understanding thatEsdd of Eq. (1),
being a physical measurable in a well-posed thought experi-
ment, is invariant, whileâ, r0, Ecore are merely parameters in
a mathematical partition of its asymptotic behavior. All our
Ecore values below for Mo screw dislocations are based on

choosingr0= ubu and â=k112̄l.

III. EXTRACTING CORE ENERGY AND PEIERLS
STRESS FROM SUPERCELL CALCULATIONS

Even with the tight-binding potential25–28and using state-
of-the-art supercomputers, to perform calculations with more
than 1000 Mo atoms to satisfactoryk-sampling convergence
still requires nontrivial computational effort. Thus, we first
calibrate the error of small supercells using the Finnis-
Sinclair potential22 before embarking on more expensive
tight-binding calculations. From these numerical experi-
ments, we verify that the core energy of Mo screw disloca-
tion can be extracted to high accuracy with a 231-atom su-
percell dipole configuration using our new PBC image-sum

formalism.20,21 The setup is as follows. Definee1=a0f112̄g,

FIG. 2. (Color online) (a) The angular functionAsud of

a0/2f11̄0g shuffle-set screw dislocation in Stillinger-Weber poten-

tial Si (Ref. 20), with k112̄l as the zero-angle reference axisâ. The
corresponding core energy is computed to be 0.502 eV/Å forr0

= ubu. In a separate calculation,20 with k111l as the zero-angle refer-
ence axis, the core energy was computed to be 0.526 eV/Å. The
0.024 eV/Å difference is verified to be exactlyAsu=p /2d, as
shown above in the circle.(b) The angular functionAsud for Mo
a0/2f111g screw dislocation using the Finnis-Sinclair potential
(dashed line) and the tight-binding potential(solid line), both withâ

chosen to bek112̄l. There is Asud=Asu+p /3d due to crystal
symmetry.
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e2=a0f1̄10g, e3=a0/2f111g. An orthogonal supercell 7e1

311e23e3 is almost square and contains 462 atoms, in
which we can put in 4 equally spaced screw dislocations to
form a quadrupole.10,12 Because of symmetry redundancy,
this quadrupole cell can be mapped to an entirely equivalent
dipole cell half its size[Fig. 3(i)], with three edgesh1=7e1,
h2=3.5e1+5.5e2+0.5e3, h3=e3. The 0.5e3 in h2 is critical in
this mapping, in view of the fact thatetotal=eelastic+eplastic,
where etotal is total strain corresponding to the tilt of the
supercell,eplastic is the plastic strain generated by the dis-
placement cut in the dipole cell(in the quadrupole cell,eplastic
is zero as there are two opposing cuts), and eelastic is the
volume-averaged elastic strain in the supercell, which relates
directly to the volume-averaged Virial stresstvirial according
to linear elasticity. So, by “preemptively” makingetotal
=eplastic, we make sure that theeelastic=0 andtvirial <0. It can
be shown that(a) tvirial =0 minimizes the supercell total en-
ergy Eatomistic with respect to the supercell shape
sh1,h2,h3d,20,21 andsbd at dipole separationd=h1/2, the lo-
cal stresses at the first and second dislocations vanish simul-
taneously:t1=t2=0. This stabilizes the two dislocations so
they do not annihilate, which often happens in small super-
cell calculations. Even if spontaneous annihilation does not

occur, a finitet1 or t2 would push the dislocation core
against the lattice barrier and distort its shape from equilib-
rium, which would introduce error to the computed core en-
ergy Ecore.

We can now briefly discuss the image sum procedure for
extracting the core energy from periodic supercell calcula-
tions. A detailed account is given in Ref. 21. An instructive
approach to this problem is to think about how to explicitly
construct a displacement fieldusxd in the supercell, that(a)
satisfies the displacement cut(discontinuity in the displace-
ment field) required by the dipole,(b) is self-equilibrating,
and (c) is compatible with the PBC:usx+hi

0d=usxd and all
orders of derivatives including the first, withhhi

0j being the
supercell edges before the dipole cut. The following Green’s
function sum:

ũlsxd ; lsuGsxd + o
RÞ0

uGsx − Rdd s3d

conceivably could lead tousxd, whereuGsxd is the displace-
ment field of an isolated dislocation dipole in an infinite
medium (the same one used in the thought experiment of
Sec. II). The dislocation lines are all parallel toh3

0, and R
=n1h1

0+n2h2
0, n1=−N, . . . ,N, n2=−aN, . . . ,aN. l is from 0

FIG. 3. (Color online) Differential displace-
ment map of Mo screw dislocation using the
Finnis-Sinclair potential.(i) h1=7e1, h2=3.5e1

+5.5e2+0.5e3, h3=e3 cell. (ii ) h1=8e1, h2=16e2

+0.5e3, h3=e3 cell.
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to 1 to label the magnitude of the cut displacement from 0 to
b. Presence of theuGsxd term in ũlsxd will satisfy condition
(a). Condition(b) is trivially satisfied as all Green’s function
displacements are self-equilibrating away from the cores.
Condition (c) is a bit more subtle. It can be mathematically
proved that,

ũlsx + hi
0d − ũlsxd = lDsadhi

0 + OS 1

N
D s4d

asN→`, whereDsad is a 333 affine transformation matrix
that depends solely on the image-sum aspect ratioa. Dsad is
the cause of the apparent conditional convergence. To get rid
of it, we write

ulsxd = ũlsxd − lDsadx. s5d

It is seen now thatulsxd satisfies(a), (b), (c) simultaneously,
so one can useul=1sxd to transform atoms in the PBC super-
cell without creating gaps or stress imbalence. In practice,
Dsad is evaluated numerically by analyzing the behavior of
ũlsxd from image summations at a constanta and progres-
sively largeN’s.

Suppose we start out with a PBC supercellhhi
0j containing

a stress-free crystal. We adiabatically changel by effecting a
cut incrementdlb along the dipole cut in the cell. At each
instant, the displacement field in the cell isulsxd, so the
stress fieldslsxd is available by plugging in¹ulsxd. The
incremental work is simply

dW= dlE b · slsxd ·ndS, s6d

which is converted to potential energy. Equations(3), (5),
and(6) combined give a total energy expression that consists
of:

(1) Dipole self-energy in the form of Eq.(1);
(2) Image dipole/displacement-cut, or dipole-dipole, cou-

pling energy;
(3) Dsad stress/displacement-cut coupling energy.

Summation over individual Stroh modes in the manner of
Eq. (2) is required to account for the dipole-dipole interac-
tion energyEdipole-dipole. The expression

Edipole-dipole=
Ksubu2

2p
log

uR + duuR − du
uRu2

s7d

is simply incorrect in anisotropic medium as it ignores the
2Asud angle-coupling terms. Note also that one needs to have
an extra factor of 1/2,

DWimage dipole=
1

2
Edipole-dipole s8d

for the RÞ0 dipole-dipole interaction energy, since one di-
pole “owns” only one-half of the interaction energy. In con-
trast, it “owns” 100% of its self-energy. All these follow
automatically from Eq.(6).

An alternative to the above procedure is to start with the
isolated-dipole-in-infinite-medium thought experiment, and
add an additional displacement fieldwsxd;ul=1sxd−uGsxd
to a cut-out regionV spanned byhhi

0j. Becausewsxd is
singularity-free inV and self-equilibrating, we can effect
that change by dragging the boundary ofV. The energy in-
crease during this process is simply the boundary work done

on ]V (the outside regionV̄ needs to be relaxed also, by

letting go]V̄). Furthermore, addingwsxd in V has such an
effect that we now can “glue” the opposing sides of]V
together to produce the self-equilibrating PBC configuration
that we seek. In topological terms, we cut a rectangle con-
taining the dipole out of an infinite plane, roll it and stitch it
to form a toroidel surface.wsxd needs to be injected for the
edges to match. In this procedure, we bypass integrating over
the singularities all together, and the literal implementation
of this process actually leads to a viable numerical scheme.
But, it has been verified, both analytically and numerically,
that the outcome of this procedure is exactly equal to the
image dipole sum plusDsad work derived nominally from
Eq. (6).

Equation(5) setup is easier to explain, but gives a large
supercell virial stress, as

eplastic;
Dplastic+ Dplastic

T

2
, Dplastic;

bsd 3 h3
0dT

V
,

eelastic= − eplastic s9d

sinceetotal=0. Therefore in practice we use

ulsxd = ũlsxd + lsDplastic− Dsaddx s10d

solution, with a new supercellhi =hi
0+lDplastichi

0 that is in-
troduced at the beginning of this section. The total energy of
this setup can be related to the previous one by accounting
for the additional boundary work, which leads to a very
simple result.20,21

To validate the above, we relax the Mo screw dislocation
dipole in four supercell geometries using the Finnis-Sinclair
potential:22

(i) h1=7e1, h2=3.5e1+5.5e2+0.5e3, h3=e3 cell, contain-
ing 231 atoms;

(ii ) h1=8e1, h2=16e2+0.5e3, h3=e3 cell, containing 768
atoms;

(iii ) h1=16e1, h2=64e2+0.5e3, h3=e3 cell, containing
6144 atoms;

(iv) h1=32e1, h2=32e2+0.5e3, h3=e3 cell, containing
6144 atoms.

The differential displacement(DD) maps33 of (i) and (ii )
are shown in Fig. 3, in which the spontaneous polarities5 are

manifest, which is characterized by the breaking of thek1̄10l
diad symmetry operations.6,7 If we use Å as the length unit,
then we can write
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Esupercell= Eelastic+ 2SEcore−
Ksubu2

4p
log r0Duh3

0u, s11d

whereEsupercellis the increase in the total energy of the PBC
supercell compared to the perfect crystal,Eelastic is the result
of the elastic energy summation without ther0, Ecore con-

stants, and also by choosingâ=k112̄l so the 2Asud term in
Eq. (1) gives no contribution(but its equivalent effects are
present in the image dipole coupling energies). Ksubu2/4p,
the single dislocation energy prefactor, is 0.499 eV/Å for the
Finnis-Sinclair potential. Numerical results for(i)–(iv) are
shown in Table I, respectively. We see that by varying the
supercell size and shape, the elastic energyEelasticdominates
the total energy landscape. However, the differences between
Esupercell and Eelastic remain remarkably constant. If we take

r0= ubu and â=k112̄l, then Ecore=0.300±0.001 eV/Å, a de-
finitive result. Thus supercell(i), which contains only 231
atoms, is capable of providing very accurate core energy.

IV. TIGHT-BINDING MODEL RESULTS

The transferable tight-binding model for Mo(Refs.
25–28) used in our calculations has been shown to give the
correct band structure, cohesive energy curves for bcc, A15,
fcc, hcp, and simple cubic lattices, vacancy and interstitial
formation energies, phonon dispersion curve including pho-
non anomalies at H- and N-points, and(100) surface recon-
struction. The equilibrium lattice constanta0, elastic con-

stants, thes1̄10dk111l ands112̄dk111l resolved shear moduli
G, and screw dislocation energy coefficientKs,

30 are given in
Table II, along with the experimental and Finnis-Sinclair po-
tential results.

Numerical experiments of Sec. III indicate that the tilted
supercell(i) of 231 atoms would be a good setup for higher-
level calculations if the physical core size is comparable to
that of the Finnis-Sinclair potential, which turns out to be

true with our tight-binding potential25–28. In the following
calculations we use 131328 k-sampling mesh and a
Gaussian smearing width of 0.1 eV. We carry out energy
minimization with two initial core structures: one freshly
generated using Eq.(10) that has no core polarity, and one
already fully relaxed by the Finnis-Sinclair potential that has
finite polarity as shown in Fig. 3(i). In both cases, it relaxes
to the same configuration by the tight-binding potential, with
a zero-polarity core structure whose DD map is plotted in
Fig. 4(a).

The core energy accounting is given in Table III. As the
tight-binding potential has slightly different elastic constants
from the Finnis-Sinclair potential, the analytic elastic energy
sum Eelastic is slightly different from that of the Finnis-
Sinclair potential(see the first row of Table I), even though
the cell geometries are identical. To minimize the error of
k-sampling, the total energy incrementEsupercellis computed
with reference to a zero-stress perfect crystal ath1=7e1, h2
=3.5e1+5.5e2, h3=e3. From Eelastic and Esupercell we deduce
the core energyEcore to be 0.371 eV/Å, which is not very
different from the Finnis-Sinclair potential result of
0.300 eV/Å.

TABLE I. Mo screw dislocation core energy withr0= ubu and

â=k112̄l using the Finnis-Sinclair potential(Ref. 22).

EsupercellseVd EelasticseVd EcoreseV/Åd

(i) 6.0410 7.1361 0.2995

(ii ) 7.0069 8.0955 0.3006

(iii ) 8.8935 9.9838 0.3003

(iv) 11.0432 12.1318 0.3007

TABLE II. Comparison of equilibrium properties of bcc Mo
using the Finnis-Sinclair(Ref. 22) and tight-binding(Ref. 25–28)
potentials with experiments(Refs. 31 and 32).

a0sÅd C11sGPad C12sGPad C44sGPad GsGPad KssGPad

F-S 3.147 464.7 161.5 108.9 137.4 135.2

TB 3.141 475 145 99 143.0 137.8

Expt. 3.147 479 165 108 140.7 137.9

TABLE III. Mo screw dislocation core energy withr0= ubu and

â=k112̄l using the tight-binding potential(Refs. 25–28).

EsupercellseVd EelasticseVd EcoreseV/Åd

(i) 6.50704 7.26528 0.37065

FIG. 4. (Color online) Differential displacement map of Mo
screw dislocation using the tight-binding potential.(a) t1=t2=0, (b)
t1=t2<3.8 GPa,(c) transient configuration during the stress-driven
instability.

LI, WANG, CHANG, CAI, BULATOV, HO, AND YIP PHYSICAL REVIEW B 70, 104113(2004)

104113-6



Besides the core energy, the formalism outlined in Sec. III
also provides a full account of the stress distribution in the
cell, local stresst1,t2 on either of the dislocations leading to
Peach-Koehler force, and cell-averaged virial stresstvirial. As
a special case, we predict that supercell(i) leads tot1=t2
=tvirial =0. These predictions have been verified explicitly.
tvirial is easy to check as it is directly calculable in most
atomistic simulation codes. As fort1, t2, we compare the
predictions with numerical results from the so-called local
driving force approach,24 where one evaluates the difference
in total energiesDEsupercell between two relaxed configura-
tions of identical cell geometries but with one dislocation
displaced by one lattice spacing. Both comparisons agree
well numerically.

Using cell(i) as a starting point, we may apply additional
strain as,

h1 = 7e1, h2 = 3.5e1 + 5.5e2 + s0.5 +xde3, h3 = e3, s12d

in the tight-binding calculations to study stress-driven insta-
bility of the dislocation core. Equation(12) corresponds to

simple(unrelaxed) shear in thes1̄10dk111l slip system of bcc
Mo. As x is increased, we observe a gradual transition of the
screw dislocation core from a threefold symmetric nonplanar
structure to one that is more and more localized between two

adjacents1̄10d planes. At a critical value ofxc<0.24 [see
Fig. 4(b)], we find the core structures can no longer be sta-
bilized and the two cores move toward one another and
eventually annihilate, accompanied by large energy drops. A
transient configuration is plotted in Fig. 4(c). One may alter-
natively apply pure(relaxed) shear. In the present setup, the

s1̄10dk111l applied shear strain only generates a small

s1̄10dk112̄l parasitic shear stress on the order of
0.8 GPa(0.5 GPa with the Finnis-Sinclair potential), which
is too small to induce significant pressure-hardening.34 So
the two loading schemes should give very similar Peierls

stress results. Using thes1̄10dk111l resolved shear modulus
of G=143 GPa, we estimate that the Peierls stresstp
<0.026G=3.8 GPa with our tight-binding potential. In com-
parison, under the same supercell setup, Finnis-Sinclair po-
tential givestp<2.4 GPa. Using model generalized pseudo-
potential theory(MGPT),35 Xu and Moriarty computedtp to
be ,3.4 GPa.9 Instead of relying on PBC, Woodward and
Rao implemented FP-GFBC with planewave ultrasoft
pseudopotential DFT and obtainedtp<2.1 GPa for Mo
screw dislocation.11,23

Current results suggest that the equilibrium core polarity
has no apparent correlation with the high Peierls stress of
screw dislocation in bcc Mo.12 If we regard the
Finnis-Sinclair,22 ultrasoft pseudopotential DFT,11,23

MGPT,9,35 and tight-binding models25–28as four independent
attempts at approximating the true Mo Born-Oppenheimer
surface, then an interesting pattern emerges. The first two
models give lowertp values, but one has a polarized core
and the other has a nonpolarized core. Same for the last two
models that give highertp values. Therefore, whethertp is
predicted higher or lower seems to have more to do with

other factors in the model than whether the model gives a
polarized equilibrium core or not.

On the other hand, all model calculations indicate that in
order for bcc screw dislocation to move, it must transform its
core structure from having a nonplanar Burgers vector den-
sity distribution36 to a planar distribution. During this pro-
cess, the polarity order parameter necessarily will change,
but perhaps only as a slaved variable to the planarity order
parameter.

V. SUMMARY

We have formulated a calculation of the dislocation core
energyEcore that is mathematically and physically consistent
in the framework of anisotropic elasticity. Since a dislocation
monopole cannot be created out of an infinite perfect crystal,
the core energy is defined through a well-posed thought ex-
periment of creating a dipole. As the total energy of this ideal
dipole contains asymptotic elastic-energy terms describing
dipole dilatation and rotation, an actual calculation ofEcore
naturally involves the specification ofr0 and â. The issue
here is similar to choosing a gauge in electrodynamics37 and
choosing solute activity reference states in solution
thermodynamics.38 To our knowledge, this is the first explicit
recognition of the nominal angular-dependence in a quanti-
tative determination ofEcore. After all a dislocation, though
analogous to charge in electrodynamics, is not a scalar sin-
gularity.

We have shown that withâ, r0 specified,Ecore can be
unambiguously extracted from PBC supercell calculations.
Using the Finnis-Sinclair potential, we find that a minimal
supercell containing 231 atoms and a single dislocation di-
pole, properly set up, gives a core energy within 1% relative
error from the converged result.Ecore, along with â and r0,
completely characterizes the net energy consequence of core
atomic relaxations; this information is critical for developing
the total energy landscape of coarse-grained models such as
nodal dislocation dynamics.

Using an environment-dependent tight-binding model, we
studied the core structure ofa0/2f111g screw dislocation in
bcc molybdenum. The core energy of Mo screw dislocation

is found to be 0.371 eV/Å atâ=k112̄l andr0=b, which can
be compared to 0.300 eV/Å from the Finnis-Sinclair poten-
tial calculation. The equilibrium core structure is found to
have zero polarity. The Peierls stress is calculated to be
3.8 GPa, compared to 2.4 GPa for the Finnis-Sinclair poten-

tial, when simple shear is applied ins1̄10dk111l. Our results
suggest that the large Peierls stress of screw dislocation in
bcc Mo is due to the nonplanar to planar transition of the
core rather than a direct effect of the equilibrium core polar-
ity.
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