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Twinning pathway in BCC molybdenum
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PACS. 62.20.Fe – Deformation and plasticity (including yield, ductility, and superplasticity).
PACS. 61.72.Nn – Stacking faults and other planar or extended defects.
PACS. 61.72.Mm – Grain and twin boundaries.

Abstract. – The (21̄1̄)〈111〉 twinning energy landscape of BCC Mo is determined using the
density functional theory for embryos containing 2 to 7 layers. The 2-layer embryo is metastable,
whereas the 3- and 4-layer ones are unstable. Layer-by-layer growth starts at 5 layers. The
twin boundary formation and migration energies are found to be 607mJ/m2 and 40mJ/m2,
respectively, indicating that twin partial dislocations have wide cores and high mobilities. The
stress to homogeneously nucleate an additional partial loop on the boundary of a sufficiently
thick twin is only 1.4GPa; this implies that once a deformation twin reaches critical thickness,
which we estimate to be 6 layers, subsequent growth in thickness is easy.

Deformation twinning [1] is a primary mode of strain-energy relaxation [2] which competes
with dislocation slip as the dominant carrier of plastic deformation. The outcome of the com-
petition depends on the stress level [3], temperature, nature of existing defects like cracks [4],
and intrinsic material properties [5]. It is generally believed that at low-to-intermediate stress
levels, the activation energy of the nucleating deformation twin is greater than that of the slip.
However, once nucleated, a deformation twin is able to produce a large amount of plastic strain
within a very short time. Therefore, deformation twinning tends to occur more frequently un-
der high strain-rate loading such as laser shock [6], at lower temperatures [7], and near stress
concentrators [2, 8]. The mesoscopic kinematics of twin growth has been proposed to involve
the pole mechanism [9] and variants [10,11], and the double-cross-slip mechanism [12,13]. On
the other hand, microscopic energetic information, even for simple metals, is lacking.

Recently, Tadmor and collaborators have established an intrinsic material property called
the “twinnability” [4], which is the ratio of γus, the unstable stacking energy, to γut, the unsta-
ble twinning energy, both in J/m2. Basically, γus and γut are the barriers for a 1-layer partial
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Fig. 1 – Schematic illustration of the twinning pathway. See the text for detail.

fault to become a 1-layer full fault (with zero energy) and a 2-layer partial fault, respectively.
The claim that γus/γut fully characterizes twinnability implicitly assumes that a 2-layer par-
tial fault behaves as a mature twin embryo in that the evolution of 3-layer, 4-layer, . . . partial
faults follows in the same manner as the 1-layer to 2-layer transition. While this may be true
for simple FCC metals, we find that this is not the case for BCC metals on the basis of density
functional theory (DFT) calculations. Along the twinning pathway of BCC molybdenum, the
fault energy does not show a steady-state oscillatory pattern until n = 6 layers.

The generalized stacking fault (GSF) energy established by Frenkel [14] and Vitek [15,16]
is an important material concept in the theory of crystalline defects. Its most general form is
an energy function E({∆xi}), where integer i ∈ −∞ . . .∞ labels sequential atomic stacking
planes, and ∆xi is the relative shear displacement between plane i and i − 1. By definition,
E({∆xi}) = 0 when all ∆xi’s are zero, and clearly, E({∆xi}) = E({∆xi + nib}), i.e., it is
periodic in any displacement with period b, the full Burgers vector (b = [111]a0/2 in BCC
and [011̄]a0/2 in FCC crystals).

Two aspects of E({∆xi}) in FCC metals have been probed using electronic-structure
calculations [5, 17]. One is to consider a family of functions γi(x) ≡ E({∆xi})/NS0, with
∆x1 = ∆x2 = . . . = ∆xN = x, all other ∆xi’s zero, and S0 the cross-sectional area,
and study the asymptotic approach of γN (x) to γ∞(x), the affine strain-energy landscape.
This turns out to be a good measure of directional bonding [17]. The other aspect is to
examine E({∆xi}) on the so-called twinning pathway, γt(λ > 0) ≡ E({∆xi})/S0, with
∆xi≥1 = ((λ − i + 1)H(λ − i + 1) − (λ − i)H(λ − i))bp, ∆xi≤0 = 0, bp is the partial Burgers
vector of the twinning system (bp = [111]a0/6 in BCC and [112̄]a0/6 in FCC), and H(x) is the
Heaviside step function (see fig. 1). In FCC metals, the competition between full dislocation
nucleation and twin nucleation has been shown to be governed by the values of saddle energies
on γ1(λbp) and γt(λ), respectively [4]. γt(λ) of FCC metals is relatively simple, possessing a
metastable minimum at every λ = n for n = 1, 2, 3, . . . and converging to a steady oscillatory
pattern for λ ≥ n = 2 [18]. In this work, we show that BCC Mo possesses a much more
complicated twinning energy pathway, one which indicates long-ranged mechanical coupling,
with n = 1, 3 and 4 metastable minima missing, and does not converge to a steady oscillatory
pattern until λ ≥ n = 6. This further enriches the scenario of dislocation-twinning competition
in BCC metals, which occurs more frequently than in FCC metals.

We use the Vienna ab initio Simulation Package (VASP) [19] with Perdew-Wang general-
ized gradient approximation (GGA) [20] exchange-correlation density functional and ultrasoft
(US) pseudopotential [21]. The supercell is e1 × e2 ×me3, with e1 ≡ [111]a0/2, e2 ≡ [01̄1]a0,
and e3 ≡ [21̄1̄]a0, and 6 atoms per e1 × e2 × e3. Brillouin zone (BZ) k-point sampling is per-
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Table I – Equilibrium lattice constants (a0), relaxed (Gr) and unrelaxed (Gu) shear moduli along
(21̄1̄)〈111〉, and bulk modulus (B) of BCC Mo.

a0 (Å) Gr (GPa) Gu (GPa) B (GPa)

Calc. 3.15 126.8 134.1 244
Expt. 3.14 [23] 138.7 142.8 264 [23]

formed using the Monkhorst-Pack algorithm. BZ integration follows the Methfessel-Paxton
scheme [22] with the smearing width chosen so the “−TS” term is less than 0.5 meV/atom.
We use 233 eV plane-wave energy cutoff throughout the calculations.

As benchmark, the perfect-crystal properties are computed first. In table I, the equilibrium
lattice constant (a0) and bulk modulus (B) are compared with experimental results. We then
perform direct affine shear in (21̄1̄)〈111〉 with the 5 subsidiary stress components all relaxed
and unrelaxed, respectively, to determine the relaxed (Gr) and unrelaxed (Gu) shear moduli.
Experimental values of Gr and Gu are tabulated using analytical formulas and experimentally
measured C11, C12 and C44. The agreement, to within 10%, is considered satisfactory.

We then perform large affine shear, both relaxed and unrelaxed, in (21̄1̄)〈111〉. In table II,
the ideal shear strains and stresses obtained, defined by the point of maximum stress in
the stress-strain response [17], are shown. These results agree well with the first-principles
calculations reported by Krenn et al. [24].

Having probed the γ∞(x) of (21̄1̄)〈111〉, we now study in detail the γt(λ) pathway on
(21̄1̄)〈111〉. First, we determine the asymptotic behavior of γt(λ) when λ → ∞, i.e., when the
twin is very thick and the two twin boundaries are well separated. We expect a steady-state
oscillatory behavior:

γt(λ) −→ 2γtbf + γtb∞(λ), as λ −→ ∞, (1)

in which γtbf is interpreted as the twin boundary formation energy (unrelaxed), and γtb∞(λ)
the steady-state twin boundary migration energy profile, which is a periodic function in λ
with period 1 and with γtb∞(λ = 0) = 0. We then define γtbm ≡ maxλ γtb∞(λ) as the twin
boundary migration energy. It is the energy barrier per area for a very thick twin to have
one of its boundaries extend further by one layer: λ → λ + 1. In reality, this is accomplished
by an additional twin partial dislocation with Burgers vector bp = [111]a0/6 sweeping a face
of the twin. According to the Peierls-Nabarro model [25–27], the γtb∞(λ) profile controls the
width and mobility of the twin partial dislocation. Therefore, it is important to obtain the
asymptotic characteristics of γt(λ).

To study the behavior of a single twin boundary, we introduce a slab model with 24 layers
of Mo (6e3 supercell, 2e3 of which is vacuum), and with 33 × 21 × 1 k-point sampling. No
vertical or in-plane relaxation of the atoms in excess of the designated shear displacements is
allowed. The energy of the slab without any twin is evaluated first as a reference. Then we
introduce a configuration whereby layers 1–12 are twinned with respect to layers 13–24. The
energy change with respect to the reference is 607 mJ/m2, which we designate as γtbf .

We then slide layers 13–24 as a rigid block along bp, such that the final configuration has
layers 1–13 twinned. The energy profile along this path is plotted in fig. 2(a), with the energy

Table II – Ideal shear strains and stresses of BCC Mo along (21̄1̄)〈111〉.

Relaxed Unrelaxed
γr
m σr

m (GPa) σr
m/Gr γu

m σu
m (GPa) σu

m/Gu

0.175 14.84 0.117 0.177 15.99 0.119
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Fig. 2 – (a) Energy landscape of twin migration in Mo. Initially a twin boundary is introduced at
the center of a 24-layer slab model, and then the twin boundary is shifted by 1 layer by sliding the
upper half. The twin boundary migration energy is estimated as 40mJ/m2. The twin boundary
formation energy, which can be estimated from the energy difference between perfect and twinned
slabs, is estimated to be 607mJ/m2. (b) Layer displacements (normalized by bp) near the ideal and
relaxed twin boundaries.

at the origin set to be zero. No vertical or in-plane relaxation has been allowed. γtbm can
be estimated from this plot to be 40 mJ/m2. If vertical relaxation is allowed, γtbm can be
expected to be reduced, although not significantly.

A feature of fig. 2(a) is that the slope at 0 is not exactly zero. This suggests there is
a minute in-plane force on layer 13 adjacent to the sharp (ideal) twin boundary, indicating
a slight tendency of the boundary to broaden. This was suggested by Mrovec et al. [28].
To explore the extent of this effect, we then allow all 24 layers to freely relax in the in-plane
directions, until the energy change between two consecutive ionic steps is less than 1 meV. The
unrelaxed and relaxed displacements of layers 8–17 are shown in fig. 2(b), respectively. We see
there is a small relaxation effect, but overall the twin boundary remains very sharp and is a
locally stable energy minimum. This partially relaxed twin boundary has energy 580 mJ/m2.

With the large-λ asymptotic behavior of γt(λ) estimated, we then compute γt(λ) at smaller
λ. A different setup is used. Previously, the 24 layers form a twinned-untwinned bicrystal
in the supercell. Now, the 24 layers form an untwinned-twinned-untwinned sandwich, with
the twinned regions at the center and as far from the surface as possible. Unrelaxed, rigid-
block sliding is carried out for each episode of n < λ < n + 1, that enables the deformation
twin to grow by one layer. And then sliding is initiated again in the next layer. The same
33 × 21 × 1 k-point sampling is used, which is found to give convergent results. The energy
profile is plotted in fig. 3(a), with n up to 7, representing a 7-layer twin sandwiched between
two untwinned crystal slabs.

We see from fig. 3(a) that unlike FCC metals, λ = 1 in BCC Mo is not a metastable state
but is unstable. This means there is no metastable 1-layer stacking fault in BCC Mo, so a
full dislocation cannot split into partial dislocations with an extended 1-layer stacking fault
between them. However, fig. 3(a) shows that the λ = 2 state is metastable. A magnified view is
given in fig. 3(b). This suggests that the smallest possible twin embryo in BCC Mo consists of 2
atomic layers. This assertion contradicts the result obtained using a pair potential [16], which
states that at least 3 atomic layers are necessary to form a metastable twin. On the other hand,
it agrees with calculations [29,30] using the many-body Finnis-Sinclair empirical potential [31,
32]. To verify that λ = 2 is indeed metastable, we again allow arbitrary in-plane relaxations for
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Fig. 3 – The (21̄1̄)〈111〉 twinning energy pathway of BCC Mo up to 7-layer sliding using the 24-layer
model. (b) is a magnified view of (a). The orange line and plots of the right edge of the graph are
the energy landscape of twin boundary migration which is shifted twice the twin boundary formation
energy of 607mJ/m2.

all 24 layers in VASP, until the energy change between two consecutive ionic steps is less than
1 meV. The unrelaxed vs. relaxed shear displacements of layers 8–17 are shown in fig. 4(a).
We see that aside from a slight broadening, the λ = 2 configuration is indeed locally stable.

Interestingly, the twin embryo, one layer thicker than the λ = 2 metastable embryo, is
again unstable. This is seen in fig. 3(b). To confirm this behavior, we allow in-plane relax-
ations with the ideal λ = 3 initial configuration, to find that it spontaneously relaxes back to
the λ = 2 configuration.

The 4-layer embryo, λ = 4, is a borderline case. From fig. 3(b), we see there is a small
potential energy well at λ = 4. But it is too weak to be trustworthy. Indeed, when we allow
in-plane relaxations for all 24 layers in VASP, the λ = 4 twin spontaneously relaxes back to
the λ = 2 configuration.

Finally, based on fig. 3(b) we believe that starting from λ ≥ 5, every integer-λ state is
locally stable. The potential energy wells for λ ≥ 5 appear to be too strong to be destabilized
by relaxations, small applied stresses, and numerical error such as surface effects in the cal-
culation. To verify this expectation, the unrelaxed vs. relaxed ∆xi’s of layers 8–17 for λ = 5
are shown in fig. 4(b).
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Fig. 4 – {∆xi} (normalized by bp) near the ideal and relaxed twin embryos. (a) λ = 2, (b) λ = 5.
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The consequence of the above results is that unlike in FCC metals [4], a twin embryo in
BCC Mo can be nucleated only by the simultaneous emission of two tightly bound partial
dislocations. Furthermore, this 2-layer twin embryo is far from mature. The next step in its
evolution is to have an additional group of three tightly bound partial dislocations simultane-
ously nucleated. The Peierls-Rice-Tadmor framework [4,33] with crack-tip shielding may still
be applicable. However, one now needs to group the first two partial dislocations as A, and
the next three partial dislocations as B, and take into account the A-B interactions and the
detailed γt(λ) response. The mathematics will certainly be different from the FCC case. If
one has to make an analogy with the FCC theory [4], then the effective “γut” should be taken
to be ≈ 1350 − 1150 = 200 mJ/m2, which is the energy barrier between the λ = 2 and the
λ = 5 energy minima (see fig. 3(b)).

From fig. 3, we see that starting from λ = 5, the twin should be able to grow in a layer-
by-layer fashion. An interesting question is what is the core width of an isolated twin partial
dislocation on a very thick deformation twin, when eq. (1) asymptote is applicable. Using
the Peierls model [25], we estimate the FWHM of the Burgers vector density distribution
(core width) of such partial dislocation (screw) to be 2ξ = 14.6 Å, which is very large. Then,
using the discrete lattice sum scheme of Nabarro [26], we estimate the Peierls stress τP is
only ∼ 2 kPa for the edge partial and ∼ 0.9 MPa for the screw partial. Although the above
calculation is non-variational [27], i.e. it assumes rigid core profile translation, we believe that
in reality τP’s are very small.

The small γtbm also means that it is relatively easy to nucleate a twin partial on the
boundary of a thick twin. The stress for athermal (spontaneous) nucleation of a twin boundary
dislocation loop on a thick enough (λ ≥ 6) twin is only

τmax =
maxλ |γ′

tb∞(λ)|
|bp| ≈ πγtbm

|bp| ≈ 1.4 GPa, (2)

which is rather small, considering the low-temperature macroscopic critical resolved shear
stress (CRSS) of BCC Mo is 750 MPa [34]. In real materials, there are many local stress
concentrators such as voids and interstitial clusters. Thus, once a thick enough deformation
twin is formed, it should be quite easy for it to grow in thickness [35, 36] as it comes into
contact with other inhomogeneities.
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