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Abstract

We study the vibrational stability of model 2D solids with surfaces when large strains are present. For a fiber under compression,

the phonon analysis correctly predicts the behavior of the buckling instability. For half-space under tension and compression, we

find that (a) instabilities of the surface phonons, which are localized near the surface, almost always occur before bulk phonon insta-

bilities; (b) with exceptions, short-wavelength or optical surface phonons usually go unstable first, rather than long-wavelength

acoustic or elastic surface phonons; and (c) linear instability of a surface phonon triggers surface-initiated defect nucleation, such

as dislocations or microcracks. The instability pattern seems to depend more on the surface structure than the interatomic potential

model used.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

As nanoscale experimental techniques such as atomic
force microcopy [1] and instrumented indentation [2]

mature, we are beginning to be able to interrogate

the inherent strength limits of solids [3]. This is a fun-

damental development in the mechanics of materials

for the following two reasons. The first is that one is

interested to know the ultimate strength of an atomic

structure, be it crystalline, with defects, or amorphous,

when the possibilities of thermally activated processes
are excluded. In other words we are interested to know

at precisely what stress conditions the saddle energy on
1359-6454/$30.00 � 2004 Acta Materialia Inc. Published by Elsevier Ltd. A

doi:10.1016/j.actamat.2004.11.015

* Corresponding author. Tel.: +81 354 526 346; fax: +81 354 526

346.

E-mail address: sergey@iis.u-tokyo.ac.jp (S.V. Dmitriev).
some path out of the present potential energy surface

basin vanishes. The long wavelength limit of this prob-

lem is called elastic instability [4], which can be shown
to be mathematically equivalent to spinodal instability

[5], but in 6-D strain space instead of composition

space. The second important reason is that ideal

strength models like the Frenkel formula [6] and uni-

versal binding energy relation [7,8] lie at the foundation

of continuum theories of defects, such as the Peierls

model of dislocation core size [9] and cohesive zone

model of crack tip [10]. It can be shown that if only
the elastic constant is used, one cannot obtain localized

model solution for defect cores; only when the ideal

strength is also provided can one regularize the core

solution and obtain finite core width. The ideal

strengths of a perfect crystal also reflect the nature of

electronic bonding in the crystalline bulk [11,12]. For

these reasons, it is of interest to compute and compare
ll rights reserved.
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Fig. 1. Upper panel: periodic cells and their translational vectors a, b,

c for the 3D instability problems for (a) bulk, (b) film, and (c) fiber.

Lower panel: 2D instability problems addressed in the present study,

(d) fiber, (e) half-space, (f) embedded-region instability. Instability

problems presented in (d) and (e) have translational symmetry in x and

are simplified by the discrete Fourier transform. Atoms in a periodic

cell are shown by bold open circles. In (e) and (f), movable atoms (open
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the ultimate strength limits of different atomic struc-

tures. Many previous work focused on perfect crystals

[4,11–15]. In this paper, we study the ultimate strength

limits of crystals with a particular kind of defect: sur-

faces. One expects that such studies will lead eventually

to the elucidations of (a) nonlinear surface elasticity
[16] and surface-initiated defect nucleation [17], and

(b) the electronic bonding state of the surface, parallel

to such developments for crystalline bulks.

This problem of the ultimate strength limit (beyond

which lattice instability is triggered without thermal acti-

vation) has a formally exact solution at T = 0 K by nor-

mal mode analysis. For any equilibrated atomic

structure, one can evaluate and diagonalize the
(3N � 6) · (3N � 6) force constant matrix (also called

the Hessian matrix), where N is the total number of

atoms [18,19], and rigid-body translational and rota-

tional motions have been excluded. The eigenvectors

thus obtained correspond to the vibrational normal

modes, and the eigenvalues correspond to the vibra-

tional frequencies squared. By monitoring all eigen-

values as the external stress is being varied, one can
detect when a certain vibrational eigenfrequency turns

from real to imaginary, which destabilizes the system

[4]. Since the vibrational normal modes form a complete

basis for all possible atomic displacements of the system,

and since they are energetically decoupled in the T = 0 K

limit, it is easily seen that the above frequency criterion

is both necessary and sufficient to guarantee linear sta-

bility of the dynamical system. In perfect crystals, due
to translational symmetries, the problem can be further

simplified by going to the reciprocal space in all three

dimensions. For atomically smooth surfaces, transla-

tional symmetry is broken in one dimension, but one

can still Fourier transform in the remaining two dimen-

sions, which simplifies the analysis. The long wavelength

limit of this problem corresponds to the Rayleigh [20]

and Stoneley [21] wave instabilities, and were already
studied in the context of elastic–plastic continuum

mechanics [22,23]. We now extend this stability analysis

to also include short-wavelength, atomic-scale, excita-

tions at T = 0 K. For our simple 2D model systems, it

will be shown that, under stress, (a) surface phonon

instabilities almost always occur before bulk phonon

instabilities; (b) with exceptions, short-wavelength or

optical surface phonons usually go unstable first, rather
than long-wavelength surface (elastic) phonons [24]; and

(c) linear instability of a surface phonon triggers surface-

initiated defect nucleation, such as dislocations or

microcracks [4].
circles) interact with the homogeneously strained continuations of the

lattice (dots) which are fixed. Samples are subjected to uniaxial tension

or compression along the x-direction, and the surface, which is also

parallel to the x-direction, is free of external loads. The case of surface

parallel to the [1 1 2] crystallographic orientation (2D triangular lattice

is regarded here as a (1 1 1) plane of fcc crystal) is shown in this figure,

but we also study the [1 1 0] and [1 2 3] orientations as indicated in (d).
2. Simulation details

An important class of lattice instability is crystals

having surfaces or interfaces and no other defects
(see, e.g. [19,25]). In this situation the translational

symmetry is preserved in one (for a fiber) or two

(for a film) directions and the discrete Fourier trans-

form can be effectively applied to reduce the number

of degrees of freedom in the stability analysis. In the

upper panel of Fig. 1, for the 3D bulk, film and fiber,
we show the periodic cells and the translational vec-

tors, a, b, c. For these problems, any small-amplitude

displacements of atoms in the vicinity of their equilib-

rium positions can be presented by a superposition of

Fourier harmonics (phonons). For the bulk, film and

fiber we have respectively:

UðtÞ ¼ U0 exp½iðkxlþ kymþ kzn� xtÞ�, ð1Þ

UðtÞ ¼ U0 exp½iðkxlþ kym� xtÞ�, ð2Þ

UðtÞ ¼ U0 exp½iðkxl� xtÞ�, ð3Þ
where �i� is imaginary unit; kx, ky, kz are the components

of a wavevector in reciprocal space; l, m, n are integer

numbers specifying a periodic cell; x is the eigenfre-
quency of a particular phonon mode; U0 is the corre-

sponding eigenvector containing the components of

displacements of all atoms in the periodic cell.

When spatial periodicity is absent, such as when we

have point defects or kinks on dislocations, local

instability can be studied by assuming that the insta-

bility mode is localized near the defect. Atoms around

the defect are assumed to be movable while the far-
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away atoms are fixed at their equilibrium positions.

Small-amplitude displacement modes in this case can

be expressed as

UðtÞ ¼ U0 expð�ixtÞ, ð4Þ

where x is the eigenfrequency of a particular vibrational

mode andU0 is the corresponding eigenvector containing

the components of displacements of all movable atoms.

This approach is equivalent to that formulated in [19].

Substituting (1)–(4) solution forms into the linearized
equations of motion of the atoms gives an eigenvalue

problem with M · M symmetric matrix where M is the

number of degrees of freedom in U0. For the bulk crys-

tal the approach usually can be applied without any

complications because the number of atoms in a primi-

tive cell is usually not large. However, for a film or a fi-

ber, the number of degrees of freedom in a periodic cell

depends not only on the crystal structure but also on the
thickness of the sample and surface orientation. To re-

duce the number of degrees of freedom one can concen-

trate on local instabilities [26,27] near the surface. If a

structural instability is initiated at the surface, the corre-

sponding instability mode should be localized near the

surface, i.e. the displacements of atoms of the unstable

eigenmode should decrease rapidly with the distance

from the surface. In this situation, in Eqs. (2) and (3),
one can set the displacements of atoms far from surface

equal to zero thus reducing the number of degrees of

freedom in the secular equation. When applying this

assumption we exclude the global instabilities from con-

sideration. Special care should be taken when global

instability modes can be responsible for the instability

of the sample.

In this paper, we study the instability of defect-free
2D crystals having a surface (see the lower panel of

Fig. 1). The two-dimensional triangular lattice with lat-

tice parameter a is generated by the vectors p0 = a(1,0)

and q0 ¼ að1=2,
ffiffiffi
3

p
=2Þ. In the lattice strained homoge-

neously with strain components exx, eyy, exy, the (i,j)th

atom has the position vector rij = ip + jq where

p = p0 + p0H, q = q0 + q0H, and the matrix H has coeffi-

cients h11 = exx, h12 = h21 = exy/2, h22 = eyy.
Two different pair interatomic potentials, short-ran-

ged and long-ranged, are employed in this model study.

The first is the interatomic potential similar to that used

in Van Vliet et al. [28] to simulate the bubble raft

indentation:

uðrÞ ¼
r�Rc

Ra�Rc

� �8

� 2 r�Rc

Ra�Rc

� �4

, r < Rc,

0, r P Rc,

8<
: ð5Þ

where r is the distance between two atoms, Ra is the

atom radius and Rc is the cut-off radius. Without the

loss in generality we set Ra = 1. We set Rc = 1.3Ra, i.e.

each atom interacts only with the nearest neighbors
and thus, lattice parameter is a = Ra = 1. The energy

unit is chosen in a way that u(Ra) = �1 . Cohesive en-

ergy of the unstrained crystal is equal to E0 = �3 per

atom.

The second is the Lennard-Jones potential,

uðrÞ ¼ 4e
r
r

� �12

� r
r

� �6
� �

, ð6Þ

where we set, without the loss in generality, e = 1/4
and r = 1. For the cut-off radius equal to 11, the equi-

librium lattice parameter is a = 1.11146206. Potential

energy per one atom in the unstrained crystal is

E0 = �0.845459.

The atomic mass is normalized to unity which can al-

ways be done by proper choice of the time unit. Most of

the numerical results presented in this paper are ob-

tained with the use of the short-range interatomic poten-
tial (5). The long-range Lennard-Jones potential (6) is

used in a few cases for comparison. We study the lattice

instabilities in 2D fiber and half-space during uniaxial

strain (tension or compression) in the direction parallel

to the surface (see Fig. 1). The fiber is subjected to peri-

odic boundary condition in axial direction. Half-space is

simulated by a rectangular block of atoms with one free

surface, one surface interacting with the rigid continua-
tion of the homogeneously strained lattice, and periodic

boundary condition along the strain direction. We also

study the local near-surface instabilities of an embedded

region of a rectangular block of atoms having one free

surface and interacting with the rigid continuation of

the homogeneously strained lattice on all three other

sides (Fig. 1(f)). There is no translational symmetry in

this case.
Three simulation substeps are carried out. (i) Pre-

critical relaxation of atoms in one periodic cell of the

sample is simulated under stepwise increase of uniaxial

strain. (ii) At each strain step, after the relaxation is

complete, we solve the eigenvalue problem to deter-

mine the eigenfrequencies x and eigenmodes U0 of

small-amplitude vibrations of atoms near their equilib-

rium positions. The eigenvalue problem is formulated
by substituting (3) or (4) into the equations of motion

of atoms linearized in the vicinity of their equilibrium

positions. The number of eigenmodes is equal to the

number of degrees of freedom in the (periodic) cell.

Vanishing of the frequency of a mode or modes is

the criterion of lattice instability. This is the soft pho-

non mode criterion which is convenient to call the

P-criterion with the mnemonic P standing for ‘‘pho-
non’’. (iii) Post-critical dynamics of atoms in a super-

cell consisting of many periodic cells. This simulation

is carried out at a fixed external strain slightly exceed-

ing the critical value. Random perturbations of the or-

der of 10�3 are introduced in the positions of atoms

to excite the fall from the unstable equilibrium.
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3. Lattice instabilities in fiber and half-space

To examine the role of surfaces in the lattice instabil-

ity problem we consider 2D fiber and half-space under

uniaxial compression and tension parallel to the surface.

Surfaces parallel to the [1 1 0], [1 1 2], and [1 2 3] crystal-
lographic directions (2D triangular lattice is considered

here as a (1 1 1) plane of fcc crystal) are studied. Chang-

ing the crystallographic orientation of the sample, we

change the orientation of the slip systems with respect

to the loading axis (Schmid factor), and the atomic

structure of the surface as well.

3.1. Vibrational spectra of compressed fiber and

half-space

The difference in lattice instabilities of fiber and half-

space can be seen by comparing their phonon dispersion

curves. In Fig. 2 we show the dispersion curves for

(a) fiber and (b) half-space compressed along the direc-

tion parallel to the surface having [1 1 2] orientation

with the nearly critical magnitude of strain, e[1 1 2] =
�0.0524. A periodic cell of fiber (half-space) contains

40 (20) atoms, i.e. 80 (40) degrees of freedom. The num-

ber of branches of the dispersion curves is equal to the

number of degrees of freedom. Lower panels show the

low-frequency parts of the spectra. The half-space prob-

lem has no translational invariance because the movable

atoms interact with fixed atoms. Consequently, all

modes in the half-space are the optical modes. Fiber
has two acoustic modes both containing transverse
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Fig. 2. Comparison of the phonon dispersion curves for (a) fiber and

(b) half-space compressed along the direction parallel to the surface

having [1 1 2] orientation with the strain e[1 1 2] = �0.0524, which is

slightly smaller than critical magnitude, e�½1 1 2� ¼ �0:05245, when the

lowest mode turns unstable at the zone boundary, kx = p. A periodic

cell of fiber (half-space) contains 40 (20) atoms and thus, 80 (40)

degrees of freedom. The number of branches of the dispersion curves is

equal to the number of degrees of freedom. Lower panels show the

low-frequency parts of the spectra. Fiber under compression is always

unstable against long-wavelength global buckling mode as seen in (a 0)

(for x2 < 0 we plot �
ffiffiffiffiffiffiffiffiffiffi
�x2

p
). The maximum wave-vector with

imaginary frequency is labeled as k�x .
and longitudinal components (mixed TA and LA

modes).

Spectra of fiber and half-space retain some features of

the spectrum of the infinite 2D triangular lattice. Peri-

odic cells in fiber and in half-space with surfaces having

[1 1 2] orientation contain two monatomic layers in x-
direction and many layers in y-direction (see Fig. 1 (d)

and (e)) that is why, in Fig. 2, one can distinguish dou-

ble-folded and multiple-folded dispersion curves. For fi-

ber, the dispersion curves are winded by two (compare

Fig. 2(a 0) and (b 0)). This is because a fiber has two sur-

faces and every eigenmode has nearly axisymmetric

counterpart with nearly the same frequency.

Both for fiber and half-space, the lowest phonon
branch softens appreciably at the zone boundary,

kx = p, at e�½1 1 2� ¼ �0:05245. However, in the fiber, as

is seen in (a 0), the imaginary frequencies near the origin

of the first Brillouin zone, kx = 0, are observed at

e½1 1 2� < e�½1 1 2� (for x
2 < 0 we plot �

ffiffiffiffiffiffiffiffiffi
�x2

p
). This instabil-

ity with respect to long-wave modes is simply the global

buckling mode of the fiber under compressional load.

To confirm the last statement we denote the maxi-
mum wave-vector with imaginary frequency as k�x (see

Fig. 2(a 0)) and check how the critical length of fiber,

L� � 1=k�x , depends on the fiber thickness, h. According

to the classical Euler�s formula for column buckling,

critical axial stress is r* � EI/(SL2), where E is the elas-

tic modulus, L is the length of the column, S = bh and

I = bh3/12 are the area and the moment of inertia of

the column cross-section having width b and thickness
h. One can fix the axial stress r* near the bulk ideal

strength and consider the critical length L* as the func-

tion of thickness h and obtain L* � h. Our numerical re-

sults are in excellent agreement with the Euler�s formula

prediction for a wide range of fiber thickness hmeasured

in units of lattice parameter a. We found that

L� � 1=k�x ¼ 0:53ðh=aÞ � 1:7. The relation L* � h means

that the region with imaginary frequencies near kx = 0
never disappears from the spectrum of fiber under com-

pression. If the periodic cell used in MD simulation is

shorter than L*, fiber is stable because there is not en-

ough length to establish the unstable mode in the peri-

odic cell. Note that the Euler�s formula gives the

correct qualitative result but it may not give a correct

magnitude of the coefficient. It is insufficient just to

use this formula with the current elastic modulus E in
the case when the critical stress is comparable to E

(see, e.g. [29]).

3.2. Instabilities in fiber

Here, we do not aim to analyze the instability of very

thin fibers consisting of just a few monolayers but we are

interested in critical strains and instability modes of
rather thick fibers for which the thickness is already

not important. In Fig. 3 we show the low-frequency part
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Fig. 3. Instabilities in fiber. Low-frequency part of the spectra of fibers

is shown at respective critical values of strain. The results are for

compression (upper panels) and tension (lower panels) for fibers

having surface orientations (a,b) [1 1 0]; (c,d) [1 1 2]; and (e,f) [1 2 3].

Corresponding critical values of strain are presented in Fig. 5 as the

functions of fiber thickness.
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Fig. 5. Critical strain, e*, as the function of fiber thickness, h,

measured in units of lattice parameter a. The results are for

compression (upper panels) and tension (lower panels) for fibers

having surface orientations (a,b) [1 1 0]; (c,d) [1 1 2]; and (e,f) [1 2 3].
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of the spectra of fibers under compression (upper pan-

els) and tension (lower panels) at the critical strain

parameter, when a particular branch of the spectrum

vanishes. Three different surface orientations, [1 1 0],

[1 1 2], and [1 2 3], are studied. The corresponding

unstable eigenmode displacements are illustrated in

Fig. 4. Critical values of strain are given in Fig. 5 as
the functions of fiber thickness.

As discussed above and shown in the upper panels of

Fig. 3, fiber under compression always contains imagi-

nary frequencies near kx = 0 corresponding to the global

buckling mode. The domain of kx with imaginary fre-

quencies decreases with increase in fiber thickness. But

now we will show the short-wavelength instabilities

not related to buckling, which are important for rather
(a)

kx=π
(b)

kx=0

(c)

kx=π
(d)

kx=0

(e)

kx=π
(f)

kx=π

Fig. 4. (a)–(f) Eigenmode displacements corresponding to the insta-

bilities of fiber shown in Fig. 3(a)–(f), respectively. Unstable mode in

(b) is not localized at the surface while all the other modes are surface

local modes and the displacement amplitudes of atoms reduce

exponentially with the distance from the surface. Vertical dashed lines

in upper figures show a periodic cell.
thick and short fibers. In Fig. 3(a), the stress is chosen

such that instability takes place simultaneously for all

short-waves, while in (c) and (e) only for the kx = p
modes. Unstable modes presented in Fig. 4(c) and (e)

are the surface instability modes where the amplitudes

of atomic displacement decrease exponentially with

depth. The unstable mode shown in Fig. 4(a) is even
more extreme in that it is sharply localized in just one

atomic monolayer. We note that the modes presented

in Fig. 4(a) and (c) are localized at one surface of fiber

but they have symmetric counterparts having practically

the same near-zero frequency and localized at the other

surface.

[1 1 0] fiber under tension is the only case when, de-

spite the presence of surface, which can be regarded as
a crystal defect, the instability mode is the elastic mode

corresponding to vanishing of sound velocity, see Figs.

3(b) and 4(b). Tensions along [1 1 2] and [1 2 3] result

in near-surface local instabilities. However, tension

along [1 1 2] is unstable with respect to an optical mode

at kx = 0 and this mode is sharply localized in two mon-

atomic layers (see (d) in Figs. 3 and 4). Tension along

[1 2 3] is unstable with respect to an exponentially local-
ized mode (see Fig. 4(f)). It should be noted that vanish-

ing of the dispersion curve in Fig. 3(f) occurs not at

kx = p but inside the first Brillouin zone, closer to

kx = 0. However, this result was obtained for rather thin

fiber in order to keep approximately the same number of

degrees of freedom as in other cases, but for sufficiently

thick fiber the mode softens at kx = p.
Tension along [1 1 2] is the only case where not

acoustic but optical mode softens. This case is also

exceptional with respect to the post-critical behavior.

In all other cases the instabilities are rather cataclysmic

and they result in dislocation nucleation and gliding

and, for rather long fiber under tension, in fiber fracture.

But in the case of tension along [1 1 2], the instability
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with respect to the mode depicted in Fig. 4(d) results in

surface reconstruction in two monatomic layers closest

to the surface. This is more like second-order phase

transition when, at the critical strain, two monolayers

deviate from the symmetric position by a small amount

equivalently to the right or to the left. As the result of
this reconstruction, the unstable mode hardens until a

global instability is achieved. For rather long fiber,

due to the probabilistic character of surface reconstruc-

tion, formation of domains with surface atoms deviated

to the right or to the left can take place. In this case, the

domain walls (kinks) separating domains of different

sign would appear and they may influence the forthcom-

ing global instability. However, we do not pursue this
interesting problem here.

3.3. Influence of interatomic potential

In Fig. 6 we present the same results as in Fig. 3 but

for the Lennard-Jones interatomic potential (6) instead

of potential (5). One can see that the change from the

short-range to the long-range potential results only in
quantitative but not in qualitative changes in spectra

and in the instability mechanisms. Magnitudes of critical

strains for (a) and (b) are e* = �0.09754 and e* =

0.11970; for (c) and (d) are e* = �0.07579 and

e* = 0.13037; for (e) and (f) are e* = � 0.06612 and

e* = 0.10633, respectively. The absolute values of these

magnitudes are larger than in the case of the short-range

potential (see in Fig. 5). This is consistent with the fact
that for the crystalline bulk instabilities the critical

strains are also larger for the long-range instabilities

[30]. The instability modes obtained for fiber with the

Lennard-Jones potential are also similar to that pre-

sented in Fig. 4 for the short-range potential.

Thus we did not find any essential difference between

results obtained with the use of short- and long-range

interatomic potentials (compare Figs. 3 and 6). How-
ever, fibers having different orientations exhibit very dif-
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Fig. 6. Same as in Fig. 3 but here, for the sake of comparison, we used

the long-range Lennard-Jones potential (6) instead of short-range

potential (5).
ferent instability behavior in terms of dispersion curve

vanishing points and instability displacements. We come

to the conclusion that in our numerical setup the atomic

structure of the surface and the crystallographic orienta-

tion of the fiber play more important role in controlling

the instability mechanism than the actual law of inter-
atomic interactions.

3.4. Surface local instabilities in half-space

Analyses of instabilities in fibers have shown that, ex-

cept for the tension of [1 1 0] fiber having atomically flat

surface, the instability modes in all other cases are local-

ized near surface. For such modes one can considerably
reduce the number of degrees of freedom noting that the

amplitude of vibration of atoms situated far from the

surface is negligibly small. Thus we come to the half-

space instability problem schematically depicted in Fig.

1(e).

In Fig. 7 we show the low-frequency part of spectra

of the half-spaces under compression (upper panels)

and tension (lower panels) at the critical strain parame-
ter, for the three different orientations. Corresponding

unstable eigenmode displacements are depicted in Fig.

8 and the corresponding MD results showing the initial

stages of the post-critical transformations are presented

in Fig. 9. The results for half-space, Figs. 7 and 8, should

be compared to the results for fiber, Figs. 3 and 4,

respectively.

Recall that, in contrast to the fiber instability prob-
lem, in the half-space problem the vibrational spectra

do not have acoustic branches. Global buckling instabil-

ity is not possible for half-space and for this reason, in

the upper panels of Fig. 7 we do not have imaginary fre-

quencies near kx = 0, as it was observed in correspond-

ing panels of Fig. 3 for fiber. Otherwise the spectra of

fiber and half-space resemble each other. Similar to what

was observed for fiber, only tension along [1 1 2], panel
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Fig. 7. Low-frequency part of the spectra of half-spaces at critical

values of strain. The results are for compression (upper panels) and

tension (lower panels) in the direction parallel to the surface for the

surface orientations (a,b) [1 1 0], (c,d) [1 1 2], and (e,f) [1 2 3].
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Fig. 8. (a)–(f) Soft eigenmodes corresponding to the instabilities

shown in Fig. 7(a)–(f), respectively. Unstable mode in (b) is not

localized at the surface (decrease of the displacement amplitude away

from the surface is linear but not exponential) while the other modes

are the surface modes and the displacements of atoms reduce very

rapidly with the distance from the surface. Only movable atoms are

shown. Vertical dashed lines in upper figures show a periodic cell.

0 10 20 30
0

10

20
(e)

0 10 20 30
0

10

20
(c)

0 10 20 30
0

10

20
y

(b)

x
0 10 20 30

0

10

20
(d)

x
0 10 20 30

0

10

20
(f)

x

0 10 20 30
0

10

20
y

(a)

Fig. 9. Initial stage of the post-critical structural transformations

simulated by MD. Panels (a)–(f) correspond to the results presented in

Figs. 7(a)–(f) and 8(a)–(f), respectively. In (a), the transformation

starts in the single surface monolayer, in (d) it starts from surface

reconstruction which affects only two monolayers (cannot be seen

here) followed by spinodal decohesion (micro-cracking), and in all

other cases the transformation starts from the generation of disloca-

tions at the surface and their gliding in the main slip system.
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Fig. 10. Comparison of the results of instability in the bulk with the

instabilities in fiber and half-space having surface orientations [1 1 0]

and [1 1 2] (shown in the inset). Thin dash-dotted lines 1 and 2 are the

trajectories of uniaxial stress of bulk crystal with zero stress in

perpendicular direction. Thick solid line and thick dashed line show

the borders of stability regions of the bulk crystal with respect to a soft

phonon mode (P-criterion) and with respect to a homogeneous strain

mode (B-criterion), respectively. Trajectories ab and cd present the

stable deformation of fiber and half-space with crystallographic

orientations [1 1 0] and [1 1 2], respectively. Critical points a, b, c, d

are shown for fiber by open circles and for half-space by crosses.
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(d), results in the mode softening at the origin of the

Brillouin zone, kx = 0, while in all other cases mode soft-

ening occurs either at the zone boundary, kx = p, or in-
side the first Brillouin zone, as in (a).

Unstable displacement modes of fiber (Fig. 4) and

half-space (Fig. 8) are also alike except for the case of

tension along [1 1 0] presented in (b). The difference in

this case is due to the fact that the half-space problem
does not permit the global instability mode (vanishing

of sound velocity) which is responsible for the instability

in fiber.

Critical values of strain for half-space with increase in

thickness of movable atom region approach correspond-
ing values for rather thick fiber (see Fig. 5) except for the

case in (b). Here, we have e* = 0.0583 for half-space and

e* = 0.0573 for fiber.

MD simulations of the post-critical behavior con-

firmed the dislocation mechanism of the structural

transformations in all cases studied here. However, the
dislocations do not appear at the very initial stage of

the structural transformations in the cases presented in

Fig. 3(a) and (d). In Fig. 3(a), in accordance with the

highly-localized structure of the soft eigenmode pre-

sented in Fig. 4(a), the transformation starts in the single

surface monolayer. In Fig. 3(d), transformation starts

from micro-cracking near the surface. In all other cases

one can observe the generation of dislocations at the
surface and their gliding in the main slip system.

3.5. Comparison to the bulk instability

In Fig. 10 we compare the results of instability in the

bulk with the instabilities in fiber and half-space having

[1 1 0] and [1 1 2] crystallographic orientations (shown

in the inset). Compression/tension along these directions
does not cause the appearance of shear strain and the

strain state of fiber or half-space can be presented in

the plane (e[1 1 0], e[1 1 2]). Surface of fiber and half-space

is free of external load, i.e. stress perpendicular to the

direction of strain is equal to zero. Thin dash-dotted

lines 1 and 2 are the trajectories of uniaxial stress of bulk

crystal with zero stress in perpendicular direction. One

can see that in a wide range of strain along [1 1 0], Pois-
son�s ratio is practically constant and equals to the

small-strain value 1/3. To the contrast, in straining along

[1 1 2], Poisson�s ratio deviates significantly from 1/3
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Fig. 11. Instability modes in the embedded-region instability analysis

for [1 1 0] surface. Samples in (a) and (b) are under compression and

tension parallel to surface, respectively. Only movable atoms are

shown. Number of monolayers along x and y directions is equal to

Nx = 20, Ny = 16.
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approaching zero in compression and a large positive

value in tension.

Thick solid line and dashed line in Fig. 10 show the

borders of stability regions of the bulk crystal with re-

spect to a soft phonon mode (P-criterion) and with re-

spect to a homogeneous strain mode (B-criterion),
respectively. The results for bulk instability have been

discussed in [30].

Trajectories ab and cd show the stable deformation of

fiber and half-space with crystallographic orientations

[1 1 0] and [1 1 2], respectively. One can see that the

[1 1 2] surface noticeably affects the critical strain values,

while in the case of [1 1 0] orientation the effect of sur-

face on the critical strain values is marginal. The results
for the [1 2 3] half-space cannot be presented in the

plane (e[1 1 0], e[1 1 2]) but the reduction of the critical

strain compared to the bulk critical value is even more

remarkable than for the [1 1 2] surface. This can be eas-

ily understood because the [1 1 0] surface is the atomi-

cally flat close-packed one while the [1 1 2] and

especially the [1 2 3] surface are rough. These results

suggest the importance of taking into account the steps
on the surfaces.
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Fig. 12. Critical strain for the embedded-region instability analysis for

different size of the region with movable atoms, measured in number of

monolayers along x and y directions, Nx, Ny. Dashed horizontal line in

(a) shows the critical value obtained for rather thick fiber and half-

space. Dashed horizontal lines 1 and 2 in (b) show the critical values

obtained for rather thick fiber and half-space, respectively.
4. Embedded-region instability

Now we turn to the lattice instability problem in the

absence of translational symmetry. This approach can

be applied to predict the near-defect local instabilities,
e.g. near a kinked step on a surface, near a dislocation

in the bulk, near a crack tip, etc. However, here we ap-

ply this approach to the analysis of the periodic surface

to have a possibility to compare the results with that ob-

tained above. The main idea of using the local instability

analysis is to decrease the number of degrees of freedom.

Only atoms near the defect are assumed to be movable

and they interact with rigid continuation of the strained
equilibrium lattice, as it is schematically shown in

Fig. 1(f). Surface plays the role of defect in our case.

Let us consider the [1 1 0] surface under tension/com-

pression, because in this case we can compare the situa-

tion when the instability mode is localized near the

surface, as it is in compression (see Figs. 4(a) and

8(a)), with the situation when the instability mode is

not localized, as it is in tension (see Figs. 4(b) and 8(b)).
In Fig. 11 we show the instability modes for (a)

compression and (b) tension parallel to surface. Only

movable atoms are shown. In this example, the region

with movable atoms consists of Nx = 20, Ny = 16

monolayers.

The mode in Fig. 11(a) should be compared to that

depicted in Fig. 4(a) and Fig. 8(a). One can see that this

is actually the same mode subjected to clamping bound-
ary conditions, analogous to forming a Gaussian wave

pack or wavelet out of plane waves. The similarity of
the instability modes ensures good estimation of the crit-

ical strain even for the size of the movable region consid-

erably smaller that that presented in Fig. 11(a).

Influence of the size of movable region on the critical

strain is presented in Fig. 12(a). With increase in Nx,

Ny, the result converges very rapidly to the critical strain

value obtained for rather thick fiber and half-space

(shown by horizontal dashed line).
For the non-local instability mode observed in ten-

sion the situation is not as good as for localized mode

observed in compression. Indeed, the soft mode ob-

tained in local instability analysis and presented in

Fig. 11(b) differs from the homogeneous acoustic mode

observed in fiber and depicted in Fig. 4(b) but it resem-

bles the staggered instability mode in Fig. 8(b), observed

for half-space. Recall that we got somewhat smaller crit-
ical strain for fiber compared to that for half-space be-

cause in the latter case the acoustic phonon branch,

which is responsible for the instability of fiber, is absent.

The critical strains for fiber and half-space are shown in

Fig. 12(b) by dashed horizontal lines 1 and 2, respec-

tively. With increase in Nx, Ny, the result of local lattice
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instability analysis converges to the critical strain value

obtained for half-space but not to that for fiber.

Thus, the results of local lattice instability analysis

are in agreement with our expectation. This method al-

lows one to obtain a very good approximation for a

localized instability modes but it does not show conver-
gence when the instability mode is a homogeneous strain

mode.
5. Conclusions and discussions

The role of surface in the lattice instability problem

has been studied numerically for 2D crystal model. To
clarify the local vs. global instability issue, first we stud-

ied the instability of 2D fiber and then compared the re-

sults with the calculations for 2D half-space taking into

account only the near-surface instability modes. Substi-

tution of rather thick fiber with a half-space may result

in considerable reduction of the number of degrees of

freedom without the loss in the accuracy for the instabil-

ity modes localized near surface. Instability analysis for
defect-free fiber or half-space can be conveniently done

in terms of Fourier-harmonics using the spatial period-

icity of the problem. As an alternative approach, we also

applied the method developed in [19]. Their method has

been developed for the local instability analysis in the

absence of spatial periodicity but we have found that,

with increase in the number of degrees of freedom, it

shows rather fast convergence for the defect-free fiber
and half-space too.

The influence of surfaces orientation has been stud-

ied. We always applied homogeneous tension/compres-

sion parallel to surface and thus, changing the

crystallographic orientation of the sample, we changed

not only the structure of the surface but also the orien-

tation of the slip systems with respect to the loading axis

(Schmidt factor). Particularly we have studied surfaces
having [1 1 0], [1 1 2], and [1 2 3] crystallographic orien-

tations (2D triangular lattice is considered here as a

(1 1 1) plane of fcc crystal) with [1 1 0] surface being

atomically flat, [1 1 2] surface being rough, and [1 2 3]

surface being quasi-vicinal. Only in the case of tension

of [1 1 0] fiber the instability with respect to homoge-

neous strain mode was responsible for the collapse of

the system while in all other cases a local near-surface
instability preceded global one. Among these cases, only

in tension of [1 1 2] fiber, local instability was not the

catastrophic one and it resulted in a local near-surface

atomic reconstruction followed soon by a catastrophic

global instability. In all other cases the collapse of the

system was observed due to a near-surface local instabil-

ity mode. Thus, surfaces under compression were always

unstable with respect to a local mode and surfaces under
tension demonstrated global instabilities for low-index

orientations and local instabilities for high-index orien-
tations. This trend also suggests that, in a realistic situ-

ation with steps on surface, local instabilities can control

the strength of the surface under homogeneous strain.

We have found that the critical strains for near-sur-

face lattice instabilities can be noticeably lower than that

in bulk instabilities. Analysis of the post-critical atomic
reconstruction by molecular dynamics revealed that it

begins as prescribed by the instability mode. We did

not find any essential difference between results obtained

with the use of short- and long-range interatomic poten-

tials. However, fibers having different orientations exhi-

bit very different instability behavior. We come to the

conclusion that in our numerical setup the atomic struc-

ture of the surface and the crystallographic orientation
of the fiber play more important role in controlling the

instability mechanism than the actual law of interatomic

interactions.

Here, we used the phonon mode criterion of instabil-

ity which is a microscopic one. An attempt to construct

a phenomenological approach and to derive a phenom-

enological criterion of lattice instability will be discussed

elsewhere. One difficulty we have in constructing a phe-
nomenological theory for the surface or the interface

instability is the short-wave character of the unstable

mode in combination with the homogeneous strain con-

dition. Thus, the continuum theory should be capable of

taking into account the coupling of short and long

waves. Such a theory can be constructed with the use

of the Vasiliev�s multi-field approach [31–33]. Another

difficulty is that in some cases the unstable mode is shar-
ply localized at a few near-surface monolayers and a

continuum description becomes questionable. On the

other hand, there are many examples where the localiza-

tion is exponential and a continuum approach can be

applied. The results for interfacial instabilities of bilay-

ers under coherency and externally applied homoge-

neous strain will be reported in a forthcoming paper.
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