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We present a systematic approach for generating smooth and accurate fields from particle simulation data
using the notions of statistical inference. As an extension to a parametric representation based on the maximum
likelihood technique previously developed for velocity and temperature fields, a nonparametric estimator
based on the principle of maximum entropy is proposed for particle density and stress fields. Both estimators
are applied to represent molecular dynamics data on shear-driven flow in an enclosure which exhibits a high
degree of nonlinear characteristics. We show that the present density estimator is a significant improvement
over ad hoc bin averaging and is also free of systematic boundary artifacts that appear in the method of
smoothing kernel estimates. Similarly, the velocity fields generated by the maximum likelihood estimator do
not show any edge effects that can be erroneously interpreted as slip at the wall. For low Reynolds numbers,
the velocity fields and streamlines generated by the present estimator are benchmarked against Newtonian
continuum calculations. For shear velocities that are a significant fraction of the thermal speed, we observe a
form of shear localization that is induced by the confining boundary.
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I. INTRODUCTION

An accurate field description is an essential ingredient in
multiscale modeling strategies for coupling molecular simu-
lation to continuum calculations �1–7�. A spatial buffer is
typically prescribed for transferring data between the mo-
lecular and the continuum domains, with the former provid-
ing the interface or boundary conditions and the latter deter-
mining the mean field conditions for the molecular
simulation. An alternative approach is to bypass the con-
tinuum equations and work exclusively with a series of nu-
merical operations akin to the buffer transfers in coupled
continuum-particle simulations �8–12�. The idea is to use
short bursts of appropriately initialized microscopic simula-
tions to estimate the evolution of the pertinent macroscopic
field variables. This procedure relies on the continuity and
smoothness of the macroscopic variables both in space and
time, and the separation of time scales between the molecu-
lar and continuum dynamics. Regardless of the validity of a
particular hypothesis, smooth and accurate field estimation is
an intrinsic part of any multiscale methodology.

In this work we present a systematic approach to con-
struct smooth and accurate fields from particle data using
statistical inference techniques. A parametric method based
on maximum likelihood inference is previously formulated
to generate velocity and temperature fields �13� in situations
where the particles in the system may be assumed to follow
a local Maxwellian distribution. This method, however, can-
not be applied to macroscopic variables such as the density
and stress fields for which the form of the underlying distri-
butions is not known a priori. Here we propose a nonpara-
metric method in which the distribution is determined ac-
cording to the principle of maximum entropy, with
constraints in the form of moments that can be determined
from the particle data. The maximum-entropy method iden-
tifies the distribution which is “maximally noncommittal
with regard to missing information and that which agrees

with what is known, but expresses maximum uncertainty
with respect to all other matters” �14�. To investigate the
accuracy and smoothness of this estimator we carry out sev-
eral comparisons of the density fields obtained in this way
with those estimated by placing a smoothing kernel function
over the data points, a characteristic procedure employed in
smooth particle hydrodynamics �SPH� simulations �15�.

The simplest way to bring out the mean-field behavior in
particle simulations is through bin averages. Besides being
rather arbitrary, this procedure also suffers from poor resolu-
tion �16,17� and statistical noise �18,19�. When the bin sizes
are too small, the fields have a rough and jagged topology,
and if the bins are too large, significant local information can
get smeared out. The disadvantages of bin averaging are
partly alleviated by the kernel method just mentioned. The
field variable at any location is estimated by averaging the
discrete data points over an arbitrarily chosen kernel �20,21�.
Smoothness is ensured by the continuity and differentiability
of the kernel function. While the kernel method is expected
to be superior to bin averaging, it is not optimal in that the
size �support� and shape �functional form� of the kernel re-
main arbitrary to some extent.

In comparing the maximum-entropy �ME� formulation
with the kernel method, we first reconstruct a known func-
tion with nonlinear oscillations. We find the former gives a
smooth estimate which captures the sharp gradients, while
the latter, though also smooth, fails to resolve the larger gra-
dients especially near the boundaries. Both methods are then
applied to a molecular dynamics �MD� simulation of shear
driven flow in an enclosure, a more complex problem than
the commonly studied Coutte and Poiseuille flows. We find
that the ME density estimate is a significant improvement
over the bin average. Density deficiency near the boundaries,
a common drawback of the kernel estimates, is conspicu-
ously absent in the ME field.

We then examine the velocity fields given by the maxi-
mum likelihood �ML� and the kernel estimators. We again

PHYSICAL REVIEW E 72, 056712 �2005�

1539-3755/2005/72�5�/056712�16�/$23.00 ©2005 The American Physical Society056712-1

http://dx.doi.org/10.1103/PhysRevE.72.056712


find edge artifacts in the latter which left unidentified can
lead to erroneous interpretation of velocity slip at the bound-
aries. For generating closed streamlines, we solve the gener-
alized vorticity-streamfunction equation instead of directly
integrating the velocity field. We find that this approach in-
troduces additional smoothness and performs better than the
direct integration scheme. Furthermore, we carry out con-
tinuum simulations using incompressible and compressible
Navier-Stokes equations. For low Reynolds numbers, the
ML fields are remarkably similar to those from the con-
tinuum simulations, indicating the Newtonian character of
the MD flow field.

The plan of the paper is as follows. The theoretical basis
and numerical implementation of the statistical field estima-
tors are described in Sec. II with particular emphasis on the
ME method. The method of kernel-based averages is also
discussed for comparative studies. The model problem of
shear or lid-driven flow in an enclosure is discussed in Sec.
III along with the details of MD and continuum simulations.
The field estimates are presented in Sec. IV and concluding
remarks are made in Sec. V.

II. STATISTICAL FIELD ESTIMATION

A. Maximum entropy method

In statistical inference estimation, the field of interest is
regarded as a probability distribution function. For the par-
ticle density and stress fields, the distribution is not known
beforehand which necessitates the use of a nonparametric
method. In this study, we employ the maximum entropy
method with constraints in the form of moments. We adopt
the univariate variational methodology of Mohammad-
Djafari �22� and extend it to multivariate formalism. The
basic problem in ME is to obtain a distribution which satis-
fies the imposed constraints while maximizing the uncer-
tainty regarding the missing information, which in turn is
measured by the information entropy. The desired distribu-
tion is written as

�̂�x� = arg max H��� , �1�

where H��� is the information entropy functional and ��x� is
the field of interest. For quantifying the entropy we use the
definition of Shannon �23� which is given by

H��� = −� ��x�ln ��x�dx . �2�

The measure of information entropy is not unique; for ex-
ample, other definitions such as Renyi’s entropy �24� may be
equally appropriate. The choice of �2� recognizes the role of
thermodynamic entropy in statistical mechanics.

The maximization in �1� is to be carried out subject to
certain constraints, which in the present problem represent
the information from the particle data produced by molecular
simulations. We will work with constraints in the form of
expectation values or “generalized” moments of the distribu-
tion,

� �m�x���x�dx = �m, �3�

where ��m� is a set of scalar functions such as polynomials
or complex exponentials, � represent the moments, and m is
a D dimensional vector with D�3. Thus using polynomial
functions �xm� as the moment-generating functions �here
�xm� denotes a scalar function in x indexed by m: xm

�x1
m1x2

m2 . . .xD
mD� gives the familiar geometric moments

associated with the distribution which is given by

� xm��x�dx = �m. �4�

Since the distribution is the quantity for which the estimator
will provide, it may appear that the moments �3� are also
unknown. However, the particle positions Xn are known
from a molecular simulation and therefore one can formally
write the particle density field at any point as

��x� =
1

N
	
n=1

N

��x − Xn� , �5�

where N is the total number of particles in the system. In-
serting �5� into �3� we get

�m =
1

N
	
n=1

N

�m�Xn� , �6�

so the generalized moments of the density distribution can be
expressed in terms of particle data. Similarly, the momentum
distribution is

p�x� = ��x�v�x� =
1

N
	
n=1

N

V�Xn���x − Xn� , �7�

where v�x� is the velocity field, and V�X� are the particle
velocities. The corresponding moments of the velocity field
then become

�m =
1

N
	
n=1

N

V�Xn��m�Xn� . �8�

For other distributions such as temperature and stresses simi-
lar results can be evaluated �25�. We will not need these
expressions since in this work our interest lies only in the
particle density field estimation.

Returning to �1�, since the entropy functional is known to
be concave �24�, a unique maximum therefore exists for �2�.
Maximizing the entropy is equivalent to maximizing the La-
grangian

L = H��� + 	
m
� �m�m�x���x�dx , �9�

where ��m� denote the Lagrange multipliers. The above ex-
pression can be rewritten as
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L = −� 
��x�ln ��x� + 	
m

�m�m�x���x��dx . �10�

The desired density distribution is obtained by a functional
differentiation with respect to ��x� and equating to zero

�L
���x�

= 0 �11�

from which one finds

��x� = exp�− 	
m

�m�m�x� . �12�

This is an exact expression for the distribution with the
Lagrange multipliers ��m� as yet undetermined. The latter
are given by the set of nonlinear equations formed by sub-
stituting �12� in �3�

� �m�x�exp�− 	
m

�m�m�x�dx = �m. �13�

There are no closed from solutions for the Lagrange multi-
pliers and hence, they are solved numerically by the Newton-
Raphson method. We first expand the left side of �13�, de-
noted as Gm��m�, in a Taylor series about trial values of the
eigenvalue vector �m

0, and neglect higher order derivatives
to obtain a set of linear equations,

Gm��m� = Gm��m
0 � + ��m − �m

0 � � Gm��m� �14�

which are then solved iteratively for �m until the relative
change in the entropy �H� becomes less than a preassigned
tolerance value. This method is second order accurate.

The moment-generating functions �m�x� can be viewed as
the basis sets for ln ��x�. We have used two basis sets, poly-
nomials and complex exponentials, �xm� and �exp�im ·x��.
Since the latter form an orthogonal basis set, they can be
expected to have good numerical stability. For higher dimen-
sional systems �D�1�, the basis set can in general be con-
structed as a product of univariate functions; for example, in
two dimensions,

�m�x� = �m1
�x��m2

�y� . �15�

We test the density field estimator using two kinds of data,
the first is data sampled from a known distribution, while the
second is produced in an MD simulation of shear-driven flow
in a cavity, to be described in Sec. IV. In the first instance,
we generate a data set of 15 000 points from the following
distribution �27� by using the acceptance-rejection method
�26�:

��x� = C�1.5 + sin�3	x� + sin�15

2
	x� , �16�

where C is a normalization constant. Then we calculate the
moments from the data points using �6�, and reconstruct the
distribution using the method we have just formulated.

Figure 1 shows two results of the estimation obtained us-
ing polynomial and complex exponential �Fourier� moments.
One sees a good agreement between the ME estimate with
Fourier moments and the original function, with only slight

discrepancies around the turning points and near the bound-
aries. On the other hand, estimation using polynomial mo-
ments constraints is unable to resolve several of the sharp
gradients. When more polynomial moments are used, the
agreement is not improved �see Fig. 2� and even more sig-
nificantly, the algorithm fail to converge for higher moments.
We attribute this to the fact that in solving �13�, the polyno-
mial moments lead to a Hilbert matrix known for having
high condition numbers �defined as the ratio of largest to
lowest eigenvalues�. This ill posedness stems from the non-
orthogonality of the sequence �xm�. Because the different
powers of x do not differ greatly from each other at higher
moments, the lowest eigenvalues move towards the origin
while the larger eigenvalues spread elsewhere �27�. This
makes the condition number to increase exponentially with
the number of moments, thereby limiting the use of higher
moments in practice. Fourier moments do not have such dif-
ficulties; their orthogonality leads to well-posed Hermitian-
Toeplitz matrix with low condition numbers. We see in Fig. 3
that estimation using higher Fourier moments are stable

FIG. 1. �Color online� The ME density estimate with polynomial
and Fourier moments.

FIG. 2. �Color online� The effect of higher polynomial mo-
ments. ME with 12 moments in Figs. 1 and 2 are generated with
different random sequences.
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though it is susceptible to small high-frequency oscillations.
In all the cases studied we find that the Fourier moments
exhibit a high degree of numerical stability relative to the
polynomial moments. We also point out that a reasonably
accurate reconstruction is possible even with a substantially
fewer number of particles �of the order of 1000�.

Since the kernel method is an alternative approach for
density estimation, we show a direct comparison with the
ME estimate in Fig. 4. The kernel method which is explained
in greater detail in Appendix A uses an optimal window
width. We can see that the kernel results which are obtained
with 15 000 particles do not perform well near the bound-
aries. In particular, the boundary values are underestimated,
which we attribute to the integral being truncated in the vi-
cinity of the boundary. This density deficiency is a well-
known problem associated with the kernel estimates �15�.

The conclusions drawn in the one dimensional case stud-
ies are generally applicable to higher dimensions as well.
With polynomial moments, the ME algorithm is much harder

to converge in two dimensions while Fourier moments do
not present this difficulty. We will now illustrate a ME re-
construction in two dimensions. Figure 5 shows the true dis-
tribution which is given by

��x,y� =
�sin2 x + sin2 3x��sin2 y + sin2 3y�

	2 . �17�

The normalization constant 	−2 ensures that the integral of
the density function is unity. In comparison to the one-
dimensional PDF given by �16�, the two-dimensional PDF
has smaller gradients. Figure 6 shows the ME estimate with
500 particles and four moments in each direction. We see a
good agreement with the true distribution and also note that
edge effects are minimal in the ME estimate. More realistic
fields are estimated from MD simulations and are discussed
in the results section. If the gradients are small, then a rea-
sonably accurate reconstruction can be made with relatively
few particles �of the order of 1000� and moments ranging
from four to six.

B. Maximum likelihood (ML) velocity and temperature field
estimator

We will briefly recall this formulation �13� in preparation
for the discussion of results and comparisons. The basic as-

FIG. 3. �Color online� The effect of higher Fourier moments.

FIG. 4. �Color online� A comparison of the ME and kernel den-
sity estimates.

FIG. 5. �Color online� The true PDF in two-dimensions.

FIG. 6. �Color online� A ME reconstruction in two-dimensions
with four Fourier moments.
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sumption in this parametric approach is that the particles in
the simulation follow a local Maxwellian distribution,

dP =
1

�2	T�x��D/2 exp�−
�v − v̄�x��2

2T�x�
dxdv , �18�

where v̄ is the streaming velocity and D is the dimensionality
of the system. We choose spatial basis for the field variables
v and T,

v�x� = 	
m

am�m�x� , �19�

T�x� = 	
n

bn
n�x� , �20�

where � and 
 are typically low-order basis functions. The
likelihood, P, for the particles to have certain positions and
velocities is given by:

P��am,bn�� = �
i=1

N

dP�Xi,Vi� . �21�

The most probable field distribution for velocity and tem-
perature in the parameter space �am ,bn� is computed by
maximizing the logarithm of this likelihood function �13�.

III. THE MODEL PROBLEM

We investigate the effectiveness of the statistical field es-
timators by considering the behavior of a two-dimensional
shear or lid-driven flow in an enclosure as determined by
molecular dynamics simulation and by the continuum
Navier-Stokes equations. The idea is to benchmark the dis-
tributions obtained from the field estimators against the con-
tinuum results.

In the present problem shown schematically in Fig. 7, the
top boundary moves at a constant horizontal velocity Vlid.
For the continuum description, the velocity components at all
other wall boundaries are set to zero �no-slip condition�. For
the MD simulation, the boundaries consist of a few layers of
solid atoms; the top array, acting as a lid, is allowed to slide
at a constant velocity.

Driven flow in an enclosure exhibits a variety of complex
hydrodynamic behavior such as eddies, secondary flows, in-

stabilities, and bifurcations �28�. The incompressible con-
tinuum description does not have a closed form solution
though for creeping flows, a series solution to a biharmonic
stream-function equation is possible. An infinite sequence of
secondary vortices of diminishing size exists at the lower
corners even for arbitrarily small Reynolds �Re� numbers
�28�. At higher Re the secondary vortices grow in size and
strength; detailed prediction of flow patterns is possible only
through numerical simulations.

Because of its rich features, driven flow in a cavity is a
standard benchmark problem for testing continuum numeri-
cal schemes. It is also a problem where the boundaries are
well-defined without ambiguity �28�. Unlike in Coutte and
Poiseuille flows where relatively intricate inflow and outflow
boundary conditions are required for MD, flow in a driven
enclosure poses no such difficulties. This type of flow there-
fore, is well suited for comparing MD and continuum results.

A. MD simulation

MD simulations are performed with a two-body short-
smooth potential �29�. The thermodynamic states generated
with this model are discussed in Appendix B. The shear vis-
cosity is calculated using the Green-Kubo linear response
theory as the time integral of the stress autocorrelation func-
tion which is obtained from MD simulations performed on a
square domain with periodic boundary conditions. The ex-
pression for shear �dynamic� viscosity is �30�

� =
V

kBT
�

0

�

dt��xy�t��xy�0�� , �22�

where �xy represents the shear stress tensor, T is the tempera-
ture, and V is the volume �area� of the simulation cell. The
angular brackets denote a time average over a sufficiently
large number of independent samples. For a two-body poten-
tial, the shear stress tensor, just like in continuum Newtonian
flow, is symmetric.

Equilibrium simulations for determining the viscosity are
conducted with approximately 3000 atoms in a square do-
main measuring 70 by 70 �reduced� units, with runs typically
of 9 million time steps with a step size of 0.001. The integral
in �22� is evaluated using fast Fourier transform as explained
in �31�. For the same density and temperature, the calculated
viscosity is seen to be insensitive to the system size.

To perform the nonequilibrium simulations with shear
flow, fluid atoms are confined in a square enclosure bounded
by a few layers of solid atoms on each side which constitutes
the physical boundary of the simulation cell. A liquid or gas-
eous state is created by randomly removing a fraction of the
fluid atoms from the computational domain and allowing the
system to equilibrate. The MD simulation cell viewed with
AtomEye �32� is shown in Fig. 8.

Shearing of the system is simulated by dragging the top
layer at a constant velocity. Due to the external work done on
the system the internal energy of the fluid atoms increases
with time. A first order thermostat is used to keep the system
at constant bulk temperature. All our simulations are per-
formed under the conditions where the local flow velocities
are smaller than the thermal velocities, so the system tem-

FIG. 7. A schematic of the shear driven flow in an enclosure.
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perature is dominated by the latter. The use of a thermostat is
appropriate because the hydrodynamic behavior, which is of
primary interest in this study, is not sensitive to the method
of heat removal even for reasonably large shear rates �18,33�.
Additionally, we find that the long wavelength modes are
largely independent of the details of the interatomic potential
used in the simulation, as also noted previously �34�.

To integrate the equations of motion we use Gear’s fifth
order predictor-corrector scheme. O�N� efficiency is
achieved by using a cell list method, the details of which are
given in �13�. The interactions at the boundary are treated
through direct fluid wall interactions. Simulations are carried
out for two cells, measuring 200200 and 100100 �re-
duced� units respectively. At �� ,T�= �0.48,1�, the larger sys-
tem consists of 19 257 fluid atoms and four layers of solid
atoms with a total of 23 105 atoms. For the same thermody-
namic state, the smaller system comprises of 4814 fluid at-
oms and 1952 wall atoms. Due to the slow convergence of
the long wavelength fluctuations, simulation runs are typi-
cally executed for 20 to 30 million time steps. Further details
are given when the results are discussed in Sec. IV. We also
note that Koplik and Banavar �18� have reported a similar
MD study focused on the slip behavior near the moving solid
boundary.

B. Continuum simulation

The fields generated by the estimators are expected to
reflect the slow and long wavelength modes of the atomic
motion in the MD simulation �35�. A direct way to check the
fidelity of the estimation is to compare the fields obtained
with the results given by the Navier-Stokes �NS� equations
�36�

��

�t
+ � · ��v� = 0 �23�

�

�t
��v� + � · ��vv� = � · � + �f �24�

�

�t
��e� + � · ��ev� = � · �� · v - q� + �f · v , �25�

where � is the stress tensor, f is the external force, and q is
the heat flux vector. The above equations are closed by in-
voking Newtonian relations concerning stress and strain rate,
Fourier law of heat conduction, Stokes hypothesis connect-
ing the viscosity coefficients, and the appropriate equations
of state.

Since the NS equations for the driven cavity do not have
a closed form solution we resort to numerical simulations. A
number of solvers have been developed in the past to simu-
late the flow features of the driven cavity, almost all based on
the assumption of incompressible flow. We employ a numeri-
cal algorithm involving vorticity and stream function as de-
scribed by Pozrikidis �37� to simulate the incompressible
flow fields. Further details are given in Appendix C.

MD simulations, in general, correspond to neither incom-
pressible flow nor Newtonian behavior, especially at shear
speeds comparable to the thermal velocity. To evaluate the
effects of compressibility on the flow field, we have simu-
lated the flow of a compressible fluid using Fluent® �38�
which discretizes Eqs. �23�–�25� into finite volumes and
solves the resultant equations with an algebraic multigrid
solver. To our knowledge, there are no published results on
compressible flow in a driven confined cavity.

To link the MD and continuum simulations one considers
two measures, the Reynolds number �Re�, the ratio of inertial
to viscous force,

Re =
�VlidL

�
, �26�

where � is the mass density, � is the dynamic viscosity, and
L is the linear dimension of the square cavity, and the Mach
number based on lid velocity,

M =
Vlid

c
, �27�

where c is the sound speed sound measured with the proper-
ties along the lid. For incompressible continuum simulations,
only the Reynolds number appears in the problem. For the
MD simulations, incompressibility is verified by evaluating
the spatial variations of the density and Mach number fields.

The continuum field equations also tacitly assume that the
ratio of mean free path of the molecules to the characteristic
length �Knudsen number� is small ��1� and the shear veloci-
ties are much smaller than the thermal velocities of the atoms
so that local thermal equilibrium is always maintained at all
times. In our MD simulations, the fluid density and system
size are such that the Knudsen number is less than 0.05,
which constitutes a reasonable condition for the continuum
approximation. The shear rates however, are of the order of

FIG. 8. �Color online� The MD simulation cell. Atoms and bond
connectivities are shown.
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0.1, much higher than what is realizable in the macroscopic
conditions. So in addition to Reynolds and Mach numbers,
we also consider the ratio of lid velocity to the mean thermal
velocity �Vlid /Vth� in interpreting the comparisons.

IV. RESULTS

A. Density field estimation

We compare the density fields obtained from the particle
data of two MD simulations at the same thermodynamic
state. For the larger simulation cell with a lid velocity of 0.1
�reduced units�, the Reynolds number is 30, the Mach num-
ber is 0.077 and the ratio of lid velocity to thermal speed
�Vlid /Vth� is 0.07. For the smaller system with a higher lid
speed of 0.68, the corresponding numbers are 100, 0.523,
and 0.48 respectively. We expect that in the first case the
evolution of the mean field will be largely independent of the
molecular motions, whereas in the second case there can be
appreciable dynamical coupling.

Figure 9 shows the scatter plot of the atoms for the larger
system �19 257 fluid atoms�. The particles are more or less
evenly spread across the domain although upon closer scru-
tiny one can discern a slight under-population in the upper
right region and a slight over-population in the center and
lower region. We anticipate a near uniform density because
the thermal speed �1.4� is more than an order higher than the
lid velocity �0.1� and the Mach number is small.

Figure 10 depicts the density field distribution estimated
using the maximum entropy method with four Fourier mo-
ments while the average based on 169 bins is shown in Fig.
11. The field representation with ME captures the essential
characteristics of the underlying distribution. While the bulk
of the domain is clearly close to uniform �within 15%�, the
nonuniform regions are also quite evident. The essential
characteristics are consistent with the scatter plot in revealing
a lower density at the upper right corner and a higher density
near the central and lower regions. The number of moments
controls the smoothing effect in the present method; using

more moments tends to resolve the sharper gradients better.
There is no formal way to determine the optimal number

of moments a priori. Since all nonparametric estimations
involve at least one or two parameters, the best estimate is
often a matter of intuition based on what one knows about
the distribution being estimated �21�. In our study, the scatter
plots, being a reflection of the molecular data with no analy-
sis, serve as a guide in assessing the fidelity of the estimator.
The bin average, as expected, shows a very jagged topology
with large and uneven gradients that can lead to numerical
artifacts in multiscale simulations. Similar lack of smooth-
ness can also be noted in �34�. Note that we have used a
single snapshot to compare the fields. It is fair to say that a
reasonable bin average needs an average over several hun-
dred such snapshots to smooth out the sharper gradients. We
have not observed a dramatic improvement in the smooth-
ness for such a time averaged bin field. This aspect is
brought in more detail in the discussion for the next density
field where the gradients are more discernible.

Next we show the kernel estimate in Fig. 12. We observe
a markedly lower density region along the borders and near

FIG. 9. �Color online� The scatter plot of fluid atoms, 200
200 domain, lid velocity=0.1.

FIG. 10. �Color online� The ME density field, single snapshot, 4
moments with a 200200 domain, lid velocity=0.1.

FIG. 11. �Color online� The bin average, single snapshot with a
200200 domain, lid velocity=0.1.
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the leading edge �top right corner� which is not seen in the
scatter plot. This deficiency occurs because the kernel for the
particles gets truncated at the system boundary which results
in a one-sided contribution to the total density estimate. On
the other hand, the ME distribution does not suffer from this
edge artifact. The edge deficiency is known to affect the
accuracy of SPH simulations which has led to the introduc-
tion of virtual particles at the boundaries for remediation
�15�.

We now consider the smaller system with a higher lid
speed of 0.68 corresponding to a Reynolds number of 100
and a Mach number of 0.53. The ratio of lid velocity to the
thermal velocity is 0.48. The density fields estimated by ME
�with 5 moments� and kernel averaging are shown in Figs. 13
and 14, respectively. The corresponding scatter plot is given
in Fig. 15.

The lid velocity, now a significant fraction of the thermal
velocity, produces a region of high stress near the leading
edge �upper right corner�. The flow in the cavity is charac-
terized predominantly by a single large vortex moving in the
clockwise direction �discussed later�. Due to the asymmetry

of the stress field in the vicinity of the leading corner, the
particles migrate towards the regions of lower stress, thereby
causing a higher density at the lower left region. This aggre-
gation represents shear localization that is induced by the
confining walls.

From a series of simulations at different densities and
temperatures, we find that this effect of density pileup is
roughly proportional to Vlid /Vth and not correlated with the
Reynolds number. This also indicates a breakdown of dy-
namic similarity �where the nondimensional solutions are
identical� when the ratio, Vlid /Vth is O�1�. Even with this
discernible density gradient, as we will discuss later, the ve-
locity distributions appear to be remarkably similar to those
from the continuum simulations. Additional results including
structural and dynamical correlation functions under differ-
ent shear rates will be reported in a future publication.

Both ME and kernel methods give the highest density in
the lower left region and lowest density in the upper right
corner. As also seen in the larger system, the kernel estimated
field falls off near the boundaries, while the ME field does

FIG. 12. �Color online� The Gaussian kernel density field, single
snapshot, 200200 domain, lid velocity=0.1.

FIG. 13. �Color online� The ME density field, single snapshot, 5
moments, 100100 domain, lid velocity=0.68.

FIG. 14. �Color online� The Gaussian kernel density field, single
snapshot, 100100 domain, lid velocity=0.68.

FIG. 15. �Color online� The scatter plot of fluid atoms, 100
100 domain, lid velocity=0.68.

EAPEN, LI, AND YIP PHYSICAL REVIEW E 72, 056712 �2005�

056712-8



not have this difficulty. In the interior, the two estimated
fields appear to be quite similar.

Figure 16 shows a bin average of the same simulation
data with 289 bins based on a single snapshot. In Fig. 17, we
depict the bin density field averaged over 1000 snapshots
over a period of 20 000 time steps. The density field over this
period does not change appreciably and the time averaged
ME and kernel fields are similar to those depicted in Figs. 13
and 14.

While we see a noticeable improvement in the time aver-
aged bin field, the jaggedness in the topology still persists
and the sharp gradients do not altogether disappear simply by
extending the duration of time averaging. Theoretically, a
smooth bin average is only possible when there are a large
number of particles in addition to a sufficiently large number
of time-averages. From a multiscale simulation point of
view, this gives a significant advantage to the ME method
because for a similar degree of smoothness, bin averaging
requires a larger number of particles in addition to a larger
number of time averages. Alternatively, interpolation can be
used to smooth out the jaggedness in the bin field but will

require additional and nontrivial effort. The ME method is
naturally extendable to higher dimensions and as shown in
our studies, it generates smooth and reasonably accurate
fields with a limited number of particles and time averages.
The time averages for the ME method are dictated only by
the period that is necessary to arrive at the correct physics.
Generally, this period amounts to a few thousand iterations in
a molecular dynamics simulations where the higher moments
of the distribution “heals” and becomes functionals of the
lower moments that correspond to the macroscopic field
variables �8�. No additional averages are required for
smoothing purposes in the ME method. We show the effect
of time averages on the density profile at x=0.5 with the
three methods in Fig. 18. The bin and kernel fields are aver-
aged over 1000 sets over a period of 20 000 times. The ME
estimate which is averaged over just 100 sets in the same
time period is smooth and shows the same trend as that is
seen in the kernel and the bin averages.

It is worthwhile to note that local features are not always
well-defined by the ME estimator. The generated distribution
displays a somewhat exaggerated undulation, though of
small magnitude, which is not evident in the scatter plot.
These oscillations are due to the dominance of the lower
moments of the distribution. Theoretically, if the first two
polynomial moments are employed, then the resulting ME
distribution is an exponential function �24�. If three moments
are prescribed, then the ME distribution will be a Gaussian.
To first-order, this is true for Fourier moments too. When a
small set of moments are employed, such as four or five �as
in our simulations�, the resulting distribution retains some of
the Gaussian characteristics. As the number of moments in-
creases, the Gaussian smoothing becomes less prominent. It
is also important to note that these undulations are small in
magnitude and smooth, as evident in Fig. 18. Since ME is
able to capture the key features of the distribution quite well,
the minor waviness will not be a hindrance in multiscale
simulations where both accuracy and smoothness are prereq-
uisites.

The present formulation of ME method uses a set of in-
tegrated moment constraints and does not employ any local

FIG. 16. �Color online� The bin average, single snapshot, 100
100 domain, lid velocity=0.68.

FIG. 17. �Color online� The bin field averaged over 1000 snap-
shots, 100100 domain, lid velocity=0.68.

FIG. 18. �Color online� The time-averaged density profile at x
=0.5.
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particle information per se. In Sec. VII, we discuss a possible
improvement to the present formulation to capture the local
information. The numerical cost of the current ME method is
O�N2� but with a fast Fourier transform �FFT� implementa-
tion, the cost can be brought down to O�N log N�. The con-
vergence of Newton-Raphson scheme is fairly rapid, typi-
cally takes less than 50 iterations for the relative error in
entropy to decrease by six orders.

B. Velocity and streamline fields

We demonstrate the effectiveness of ML field estimators
by comparing the streamlines and the velocity fields with the
continuum results. The conventional approach for calculating
the streamlines from the velocity and density fields involves
a direct integration of the mass flux �30�

��x,y� =� ��x,y��vydlx + vxdly� . �28�

The integral is typically performed by assigning an arbitrary
value to the stream function at a grid point and then perform-
ing the line integral to evaluate the value at a different grid
point. We have used an alternate approach to increase the
smoothness by first transforming the mass flux into a gener-
alized vorticity field and then solving the vorticity-
streamfunction Poisson equation. This method gives very
smooth streamlines and is a definite improvement over �28�.
The details of the formulation are given in Appendix D. The
continuum results are obtained directly from the incompress-
ible streamfunction as described in Appendix C.

We compare the generalized streamlines obtained from
the MD results with those from the continuum calculations,
in Figs. 19 and 20, respectively.The difference between two
adjacent streamfunctions, by definition, is a measure of the
mass flow rate between them. No fluid can cross the stream-
lines because the velocity vector is tangent to the surface. In
a confined enclosure, all streamlines therefore should close
onto themselves to maintain mass conservation. We see that
the MD streamlines show this behavior very clearly, which

may be taken as a test of the efficacy of our vorticity-
streamfunction formulation. Direct integration which is cum-
bersome may lead to artifacts as observed in �18,19,39�.
Overall, the streamlines generated by the MD data, in spite
of having a discernible density gradient, match well with
those obtained from the continuum description. This is rea-
sonable when the local flow velocities are smaller than the
thermal velocities and the simulation conditions clearly indi-
cate that of the hydrodynamic limit. In both results, the eye
of the vortex is shifted towards the right, in the direction of
the lid velocity, at about the same horizontal position. From
the extent of the streamlines we see the flow region covers
most of the computational domain in the MD simulation,
while in the continuum calculation, very weak anticlockwise
eddies appear near the lower corners. In the MD simulation
the strength �numerical value of the streamfunction� of the
secondary vortices is much larger because of explicit fluid-
wall interactions.

Figure 21 depicts the horizontal velocity field given by
the ML estimator. The fields generated with the continuum
simulation and the kernel estimator are given in Figs. 22 and

FIG. 19. �Color online� The generalized streamlines with MD
simulation, lid velocity=0.68, Re=100.

FIG. 20. �Color online� The streamlines from the incompressible
Navier-Stokes equation, Re=100.

FIG. 21. �Color online� The horizontal velocity field with ML
estimator, lid velocity =0.68, Re=100.
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23, respectively. The ML field is remarkably similar to that
of the continuum. Adjacent to the lid, the former shows a
flow velocity nearly the same as that of the lid, except near
the corners where it tapers off to zero. This indicates that the
commonly invoked no-slip boundary condition is valid for
the central regions but not near the corners, an observation
which also has been noted by Koplik �18�. At higher lid
speeds, substantial slip is seen between the moving boundary
and the nearby fluid �results not presented�. With the kernel
average, we note that while the general flow features are
reasonable, the velocity gradients near the lid are more dif-
fuse. In addition we see a velocity slip behavior near the
upper corners which is not observed in the ML estimate. We
believe this to be an artifact.

In Fig. 24 we compare the horizontal component of the
velocity along the vertical midplane obtained from the MD
data and continuum calculations. In Fig. 25 we give the ver-
tical velocity at the horizontal midplane. Note that the ML
velocity profiles are derived through the estimator without
any additional smoothening. The ML estimations are in over-
all agreement with the continuum description. The kernel

estimates compare favorably with the ML estimate in the
interiors. As before, the kernel estimation suffers from nu-
merical artifacts at the boundaries, the effect which is clearly
seen in Fig. 25 in the nonzero values at the right and left
boundaries. Velocity slip at the boundaries in this case is
clearly numerical in origin; it should not be taken as an in-
dication of slip phenomena at the molecular scales. ML es-
timate does not suffer from such edge artifacts which we
believe is a key strength of the statistical field estimators.

Figure 26 shows the vertical velocity profile at the hori-
zontal midsection for ML and bin estimate after 150 000 MD
time steps. Evidently, ML takes a fewer number of iterations
to produce a reasonably accurate solution that is also smooth.
We also add that in multiscale simulations such as the
“equation-free” method, the MD simulators are envisioned to
run far fewer time steps than 150 000. The idea is to arrive at
the steady state solution using the gradient information in the
fields at regular intervals.

A lid speed of 0.68 is a significant fraction of the acoustic
speed, taken as ��T by assuming that the fluid behaves like

FIG. 22. �Color online� The horizontal velocity field with the
NS simulation, lid velocity =0.68, Re=100.

FIG. 23. �Color online� The horizontal velocity field with the
kernel estimator, lid velocity velocity=0.68, Re=100.

FIG. 24. �Color online� A comparison of the horizontal velocity
at the vertical midplane, Re=100.

FIG. 25. �Color online� A comparison of the vertical velocity at
the horizontal midplane, Re=100.
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a monatomic ideal gas. At a temperature of 1.0, the acoustic
speed is approximately 1.3. Therefore, the highest Mach
number in the system is roughly 0.53. Generally, if the Mach
number is greater than 0.2, the flow is considered to be com-
pressible. To evaluate whether the compressibility has any
appreciable effect on the continuum field variables, we study
the flow of a compressible fluid in an enclosure using the
CFD software Fluent® �38�. Simulations are performed with
a fine 150 by 150 grid with all the boundary walls kept at a
constant temperature of 300 K. The reference pressure is set
at the moving lid and the properties of air are assumed for
the medium. Using an implicit coupled algorithm, the mass,
momentum, and energy equations �Eqs. �23�–�25�� are
solved simultaneously and accelerated with algebraic multi-
grids.

The Mach number shown in Fig. 27, indicates that that the
bulk of the flow remains incompressible, with the compress-
ible regime limited to a thin region along the lid. We also
note that the velocity fields are only marginally affected by
the effect of compressibility �results not shown�. The local
Mach number profiles with MD as seen in Fig. 28 are some-
what similar to those from the continuum with the high
Mach number regions confined near the lid. The relative
closeness of the MD Mach number and the velocity contours
with the continuum results indicates that dynamic similarity
is partially satisfied at the molecular scales for the shear rates
considered in our study.

V. SUMMARY AND DISCUSSION

Bin averaging is the work horse for most MD simulations
where the continuum fields are to be constructed from the

FIG. 26. �Color online� A comparison of time averaged ME and
bin field estimates. Lid velocity=0.68, Re=100, NT=150 000.

FIG. 27. �Color online� The
local Mach numbers with the
compressible NS simulation �Flu-
ent Inc.�®, Re=100.

FIG. 28. �Color online� The local mach numbers with the MD
simulation. Lid velocity=0.68, Re=100.
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discrete particle data. Poor resolution and statistical noise
make the bin method an unsatisfactory choice for performing
complex multiscale simulations where smoothness, in addi-
tion to accuracy, is a necessity over a relatively short period
of time. To avoid the limitations of bin averaging, we have
presented a set of statistical field estimators which generate
smooth and accurate fields. For spatial density distributions,
we have proposed a nonparametric estimator based on the
maximum-entropy �ME� principle. The ME estimator identi-
fies the least biased distribution that is consistent with the
prescribed set of constraints which are in form of moments
of the distribution. We show that we can calculate the mo-
ments from the particle data without further assumptions.
The results from an MD simulation of a shear driven flow in
an enclosure, show that the ME estimation is superior to the
bin average. In comparing the ME estimator with the kernel
average, we observe that the kernel method systematically
underestimates the density near the boundaries while ME
method does not exhibit this artifact.

We have generated the streamline and velocity fields from
maximum likelihood technique �ML� which again are appre-
ciably smoother than the bin average. We have also com-
pared the ML velocity field with the kernel average. While
the interior flow field is satisfactorily resolved, the edge ar-
tifacts near the boundaries pose a difficulty for the kernel
average. The velocity slip at the boundaries in the kernel
method is clearly numerical in origin and it should not be
construed as an indication of slip phenomena at the molecu-
lar scales. We have also discussed a method for calculating
the streamlines by solving the generalized vorticity-
streamfunction Poisson equation. This approach not only
gives closed streamlines but also adds an extra derivative
which imparts additional smoothness.

We have uncovered an interesting form of shear localiza-
tion which is induced by the confining boundaries of the
system. From a series of simulations at different densities
and temperatures, we find that this localization is roughly
proportional to Vlid /Vth and not correlated with the Reynolds
number. Even with a discernible density gradient in the flow
field, the velocity distributions appear to be remarkably simi-
lar to those from the continuum simulations. Dynamic simi-
larity, however, breaks down completely when the ratio of
Vlid to Vth is O�1�.

The proposed ME density estimator employs a set of in-
tegrated moment constraints. This may be classified as a
“global” approach in contrast to the kernel method which
makes direct use of local information. For field representa-
tion where there are few data points, it is advantageous to
include local particle information directly in the ME estima-
tor. One way to do this is to break down the domain into
regions such that each region contains one particle. Then the
ME principle can be applied to each region and a piecewise-
continuous estimate can be made �24�. Additional smooth-
ness can be imparted by employing higher order moments in
the local spacing. This approach is feasible for one dimen-
sion but in two and three dimensions proper spacing is not
easily derivable because of lack of order statistics in higher
dimensions. Voronoi and Delaunay tessellations �40� provide
a reasonable procedure for characterizing the local spacing
around a particle. Then the density distribution can be con-

structed by applying the principle of maximum entropy to
each tessellation. This way ME method can access the local
information while at the same time provide adequate
smoothness.
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APPENDIX A: KERNEL FIELD ESTIMATORS

Kernel averaging is a widely used technique in nonpara-
metric density estimation �20,21�. In this method, the distri-
bution ��x� is the average of kernel or smoothing functions
centered on the given particle positions X. The particle den-
sity distribution ��x� of N particles as given by �5� is

��x� =
1

N
	
n=1

N

��x − Xn� . �A.1�

In the kernel method we substitute a smooth function for the
delta function to obtain

��x� =
1

N
	
n=1

N

K�x − Xn,hn� , �A.2�

where K�·� is the smoothing kernel function and h is the
smoothing scale �window width� which determines the sup-
port of K�·�. Note that the smoothing scale can be different
for each particle. K�·� is usually taken to be a symmetric
function even though this is not a strict requirement.

To represent a bona fide density distribution, the kernel
should have the following properties �15�:

�
�

K�x − X,h�dx = 1, �A.3�

K�x − X,h� � 0, �A.4�

lim
h→0

K�x − X,h� = ��x − X� . �A.5�

Smoothness is a desired characteristic of the kernel function.
In this study, we utilize a Gaussian kernel with zero covari-
ance which is given by,

K�x� =
1

�2	�D/2 exp�−
1

2
xTx . �A.6�

The density distribution with a single smoothing length is
evaluated as
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��x� =
1

NhD 	
n=1

N

K�x − Xn

h
 . �A.7�

Other kernel functions such as Epanetchnikov and Biweight
�21� are available but offer no significant computational ad-
vantage. Further, very small support localizes the field which
is undesirable in the regions of low density. The optimal
smoothing scale is calculated by minimizing the asymptotic
integrated square bias and integrated variance �41�. For most
cases studied in this paper, this window width has been
found to be optimal in the sense that it resolved the sharp
gradients without causing large undulations.

Kernel velocity and temperature field estimator

The kernel estimation method can be extended to evaluate
the momentum and temperature fields. Substituting a smooth
function for the delta function in �7� we get

p�x� =
1

N
	
n=1

N

V�Xn�K�x − Xn,hn� . �A.8�

Since the velocity field is given by

v�x� = p�x�/��x� , �A.9�

the kernel estimate for the velocity takes the form

v�x� =
	n=1

N
V�Xn�K�x − Xn,hn�

	n=1

N
K�x − Xn,hn�

. �A.10�

The local temperature field can now be calculated as

T�x� =

1

2	n=1

N
�V�Xn� − v�x��2K�x − Xn,hn�

D

2 	n=1

N
K�x − Xn,hn�

. �A.11�

APPENDIX B: SHORT-SMOOTH (SS) POTENTIAL

The atoms interact through a short-smooth �SS� potential
�29� which is given by

V�r� � 
��1 − r�4 − ��1 − r�2, r � 1,

0, r � 1,
� �B.1�

where � and � are two constants. It is compared with the
standard Lennard-Jones 12-6 potential in Fig. 29. The pri-
mary units of length and energy are the cut-off distance rc at
which the potential is valued zero and potential well depth �
respectively, and are both scaled to unity. Consequently, a
single parameter r0, the equilibrium interparticle distance,
controls the shape of the potential. The distance r0 is normal-
ized with respect to rc such that it is always less than unity.
In this study, r0 is arbitrarily fixed at 0.85. The two param-
eters � and � that modulate the potential are given by:

� = �1 − r0�−1, � = 2�1 − r0�−2. �B.2�

Evidently, the range of short-smooth potential is much
smaller than the Lennard-Jones �LJ� 12-6 potential and this

translates into significant savings in computational time.
Note that the potential energy well ��� is the same as that of
the LJ potential. However the reference length ��� for the
short-smooth potential is nominally longer than that of the LJ
potential.

The phase diagram with the short-smooth potential is un-
available and is expected to be different from that of a LJ
system. The liquid gas equilibrium phase shrinks when the
attractive part of the potential becomes short ranged �42�. In
some sense, short-smooth potential �SS� is a caricature of a
conformal, or a truncated and shifted LJ 12-6 potential. Pair
potentials are conformal when their plots can be constructed
by adjusting the values of � and �. For two-dimensional
�2D� LJ 12-6, the critical temperature and density in reduced
units are 0.52 and 0.36, respectively �43�. The critical tem-
perature reduces to 0.46 when the LJ 12-6 potential is trun-
cated at 2.5� and shifted. The critical density, however,
changes only by a small fraction to 0.35. Similar results are
obtained for LJ potentials such as 32-6 that have significantly
shorter attractive range �42�. It is clear that the phase dia-

FIG. 29. �Color online� The short-smooth interatomic
potential.

FIG. 30. �Color online� The radial distribution function at
T=1.
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gram with SS potential will be different from that of a 2D LJ
12-6 potential. Based on the similarity with the truncated and
shifted potentials, it can be argued that the critical tempera-
ture of SS potential will be lower than that with LJ 12-6
potential which is 0.52 in two dimensions.

Radial distribution function �rdf� gives a reasonable con-
firmation of the thermodynamic state. Figure 30 shows the
rdf with short-smooth potential for different densities at a
temperature of 1.0. We can note that at �� ,T�= �0.48,1�, the
state of the system is close to that of a gas while it is more
solidlike at a density �� ,T�= �1.44,1�. The effect of tempera-
ture on rdf is depicted in Fig. 31. All of the simulations
performed in this study are with �0.48,1�.

APPENDIX C: NUMERICAL SOLUTION
OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

WITH VORTICITY-STREAM FUNCTION
APPROACH

The incompressible equations for Newtonian fluid flow in
the absence of body forces are given by �36�

� · v = 0, �C.1�

�� �v

�t
+ v · �v = − �p + ��2v . �C.2�

Computational difficulties often associated with the above
set of nonlinear equations are alleviated by employing the
following mathematical transformation �37�:

� = �  v , �C.3�

u =
��

�y
, v = −

��

�x
, �C.4�

�=�k, where k is the unit vector along the axis perpendicu-
lar to the computational domain. � is the stream function,
and u and v denote the two components of the velocity vec-

tor. Note that this transformation automatically satisfies the
mass continuity equation. The transport of vorticity can be
written in terms of a single scalar equation �37�. It is given
by

��

�t
+ u

��

�x
+ v

��

�y
= � 1

ReL
�2� . �C.5�

As can be noted, vorticity is convected by the velocity com-
ponents �gradients of the stream function� and also gets dis-
sipated. The vorticity is connected to the streamfunction
through the following equation:

�2� = − � . �C.6�

A significant advantage of the vorticity-streamfucntion ap-
proach is in the elimination of the pressure term. This facili-
tates a solver on regular nonstaggered grids. In addition,
there is only one transport equation as against two in the
primitive variables approach. The streamfunction equation
also falls in the Poisson class which has very efficient nu-
merical solution techniques such as Krylov and multigrid
methods.

The streamfunction and vorticity transport equations are
solved with a finite-difference algorithm on a nonstaggered
grid �37�. At the solid walls, the velocity components are
zero by no-slip assumption. Hence, the streamfunction is ar-
bitrarily set to zero at the stationary walls. Since the bound-
ary conditions for vorticity do not exist in a natural way, the
streamfunction is expanded with the Taylor’s series and a
second order finite difference approximation for the vorticity
is applied on the walls �44�.

We have adopted the direct numerical algorithm given by
Pozrikidis �37�. We start with a guessed vorticity field. New
streamfunction values are evaluated by solving the Poisson
equation for streamfunction, Eq. �C.6�. The velocity compo-
nents are calculated on all the interior nodes and the bound-
ary vorticity values are evaluated. Next the vorticity field is
predicted using the steady-state version of Eq. �C.5�. The L2
norm of the vorticity is compared between successive itera-
tions. Convergence is established when the relative error be-
comes less than an arbitrarily assigned value of 10−6.

APPENDIX D: GENERALIZED VORTICITY AND
STREAMFUNCTION

For steady flow, the mass conservation is:

� · ��v� =
���u�

�x
+

���v�
�y

= 0. �D.1�

Define a generalized streamfunction � such that

��

�y
= �u and

��

�x
= − �v . �D.2�

The function � is similar to the streamfunction � for incom-
pressible flow. Now, define a generalized vorticity � as

� � �  ��v� . �D.3�

FIG. 31. �Color online� The radial distribution function at �
=0.96.
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The scalar component �for 2D� is given by

� =
���v�

�x
−

���u�
�y

. �D.4�

Combining Eqs. �D.2� and �D.4� we get:

�2� = − � . �D.5�

Equation �D.5� is similar to the incompressible equation
�2�=−�, where � signifies the standard vorticity. � has the
same physical interpretation as that of �. The difference �in
the values� of two streamlines is proportional to the mass
flow rate between them.
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