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Mechanical behavior is stress-related behavior. This can mean the material
response is driven by externally applied stress (or partially), or the underly-
ing processes are mediated by an internal stress field; very often both are true.
Due to defects and their collective behavior [1], the spatiotemporal spectrum
of stress field in a real material tends to have very large spectral width, with
non-trivial coupling between different scales, which is another way of say-
ing that the mechanical behavior of real materials tends to be multiscale. The
concept of stress field is usually valid when coarse-grained above a few nm;
in favorable circumstances like when crystalline order is preserved locally, it
may be applicable down to sub-nm lengthscale [2]. But overall, the atomic
scale is where the stress concept breaks down, and atomistic simulations [3–5]
provide very important termination or matching condition for stress-based
theories. Large-scale atomistic simulations (Chap. 2.25) are approaching µm
lengthscale and are starting to reveal the collective behavior of defects [6]. But
studying defect unit processes is still a main task of atomistic simulation.

It is infeasible to list the current developments in this area to any degree of
completeness, so only a few highlights are given. A somewhat more detailed
review can be found in Ref. [5].

• The study of deformation [7–11], grain growth [12] and fracture [13, 14]
in nanocrystalline materials.

• Atomistic simulation of adhesion and friction [15, 16], and nanoindenta-
tion [17–20].

• The study of dislocation core structure and Peierls stress in BCC metals
[21], semiconductors [22] and intermetallics [23]. A proper definition of
dislocation core energy and numerically precise ways [24, 25] to extract
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the core energy from periodic boundary condition (PBC) atomistic
calculations.

• Thin film deposition, texture evolution and mechanical properties
[26, 27].

• The study of dynamical brittle fracture [28, 29] and lattice trapping
barriers [30, 31, 2], ductile fracture [6, 32].

• The study of phase and grain boundaries [33, 34].
• Deformation and fracture of amorphous materials [35].
• The application of Hessian-free minimum energy path (MEP) search

algorithms [36] to study dislocation cross-slip in FCC metals [37], double
kink nucleation and migration in semiconductors [38] and BCC metals
[39], and heterogeneous dislocation nucleation at crack tips [2].

• Defect generation/evolution induced by irradiation, and effect on mec-
hanical properties [40–42].

• Connection of atomistics to the mesoscale [43–46].

In this contribution, we review the basic concepts of strain, stress and elas-
tic constant [47]. Then we move to a discussion about dislocation core energy
[25]. Finally we discuss a minimum energy path calculation of heterogeneous
dislocation nucleation at an atomically sharp crack tip [2].

1. Strain, Stress and Elastic Constants

Stress and strain have many definitions, which although do not change
the physics, differ in the efficiency of representing a particular problem. Here
we introduce a system that is usually the most convenient for atomistic
calculations.

Strain should be relative. To define strain, one must first declare the ref-
erence state. This is reasonable because strain describes deformation. Strain
should be frame-covariant like any true second-rank tensor [48], since how
much an object is deformed does not really depend on the angle one looks at
it. Here we denote the geometrical configuration of an object by X, Y or Z ,
which describes its shape, i.e., surface constraints. For periodic boundary con-
dition (PBC) simulations, this would be the supercell H -matrix (Chap. 2.8).

Affine transformation of an object from one shape to the other is specified
by the tensor J , expressed as Y = J X , which is homogeneous in the sense that
surface constraints of the object change uniformly according to J . But it does
not have to be a microscopically homogeneous transformation, as different
kinds of atoms may have different atomic-scale relaxations.

The Lagrangian strain is defined to be,

ηY
X ≡ 1

2(J T J − 1). (1)



Atomistic calculation of mechanical behavior 775

Subscript X in ηY
X denotes the reference state and superscript Y denotes the

final state. If the final state is apparent we may omit the superscript and simply
write as ηX .

The polar decomposition theorem [49] states that every matrix can be
uniquely expressed as the left or right product of a symmetric matrix and a
rotational matrix,{

J = RM = M L
MT = M, RT R = LT L = 1

(2)

Therefore,

ηX = 1
2(J T J − 1) = 1

2(M2 − 1). (3)

There is one-to-one correspondence between ηX and M , as,

M =
√

1 + 2ηX = 1 + ηX − 1
2η

2
X + . . . (4)

Let Y = J X, Z = KY = KJX . There is

ηZ
Y = 1

2 (K T K − 1),

ηZ
X = 1

2 (J T K T K J − 1)

= 1
2 (J T (1 + 2ηZ

Y )J − 1)

= J T ηZ
Y J + ηY

X , (5)

which is the law of η conversion between reference systems.
Contrary to strain, stress should be absolute, meaning it should not depend

on any reference state besides the current state of the object. We use two def-
initions of stress here: the first is the external stress τij , which is the usual
“force per area” definition used by engineers,

dTi = τij n j dS, (6)

where dTi is the external traction force, n j is the outward surface normal and
dS is the surface area, and the Einstein summation convention is used. τij is
what the outside environment exerts on the object. To prevent rotation, it must
satisfy τij = τ j i .

The second kind of stress is the thermodynamic stress tij , also called
the intrinsic stress of the material volume, whose definition is based on the
Helmholtz free energy F(N, T, X) of the object:

F(N, T, X) = E − T S ≡ −kBT ln Z(N, T, X) (7)

where Z(N, T, X) is the partition function [50, 51],

Z(N, T, X) ≡
∫
X

exp(−βH(qN , pN ))
dqN dpN

N !h3N
. (8)
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Here F is a function of the particle number N, temperature T, and geomet-
rical constraint X . Since the Hamiltonian H(qN, pN ) is usually rotationally
invariant, F is also rotationally invariant. Thus,

F(N, T, Y ) = F(N, T, J X)

= F(N, T, RM X)

= F(N, T, M X)

= F(N, T,
√

1 + 2ηX X)

= F(N, T, ηX , X), (9)

i.e., F is a function of ηX , once X is chosen.
A function can always be expanded into Taylor series:

F(ηX , X) = F(0, X) +
(

∂ F

∂ηij

∣∣∣∣∣
ηX =0

)
ηij

+ 1

2

(
∂2 F

∂ηij ∂ηkl

∣∣∣∣∣
ηX =0

)
ηij ηkl + . . . (10)

Because ηij is symmetric, the expansion should only involve six indepen-
dent variables: η11, η22, η33, η23, η13, η12. But that is often inconvenient for
index contraction, so what people do is to symmetrize the expansion coeffi-
cients over ηij and η j i whenever possible, but pretending ηij , η j i to be differ-
ent summation variables. Let us define second and fourth rank symmetrization
operators:

Ŝ2(Gij ) = 1
2 (Gij + G ji), (11)

Ŝ4(Wijkl ) = 1
4 (Wijkl + Wijlk + W jikl + W jilk). (12)

The thermodynamic stress at configuration X is defined to be,

tij (X) =
1

�(X)
Ŝ2


 ∂ F(ηX , X)

∂ηij

∣∣∣∣∣
ηX =0


, (13)

and the elastic constant:

Cijkl(X) =
1

�(X)
Ŝ4


 ∂2 F(ηX , X)

∂ηij ∂ηkl

∣∣∣∣∣
ηX =0


, (14)

where �(X) is the volume of the object at X , so tij and Cijkl are intensive
quantities. By definition,

F(ηX , X) = F0 + �(X)
{

tij (X)ηij + 1
2Cijkl (X)ηij ηkl

}
. . .

tij = t j i , Cijkl = Cijlk = C jikl = C jilk . (15)
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Notice that since tij and Cijkl are expansion coefficients of ηX in F(ηX , X)
at ηX = 0, they themselves are not functions of ηX , but only of X . That means
the definitions of thermodynamic stress and elastic constant do not require a
reference state, since to evaluate them we use the object itself at that moment
as the reference state. The use of this co-moving reference frame has some
“strange” consequences, which is generally covered in differential geometry
[48]. For instance,

tij (Y ) =/ tij (X) + Cijkl (X)(ηY
X )kl + . . . , (16)

which is not what one may expect for the Taylor expansion of the “first-order
derivative” in terms of the “second-order derivative”, which works when we
use a fixed reference frame. In fact, in light of (5),

F(Z) = F(ηZ
Y , Y )

= F(Y ) + �(Y )Tr
(

t (Y )ηZ
Y

)
+ O

(
(ηZ

Y )2
)

(17)

= F(ηZ
X , X)

= F(X) + �(X)Tr
(

t (X)ηZ
X

)
+ �(X)

2
Tr

(
ηZ

X C(X)ηZ
X

)
+O

(
(ηZ

X )3
)

(18)

The linear coefficient of ηZ
Y in (17) and (18) must be equal. Plugging in

(5) to (18), we have,

F(Z) = const + �(X)Tr
(

J t (X)J T ηZ
Y

)
+ �(X)Tr

(
JηY

X C(X)J T ηZ
Y

)
+O

(
(ηY

X )2
)

ηZ
Y + O

(
(ηZ

Y )2
)
. (19)

Therefore matching the linear coefficient of ηZ
Y to that of (17), we have,

t (Y ) =
J t (X)J T

det |J | + J (C(X)ηY
X)J T

det |J | + O
(
(ηY

X )2
)
. (20)

It can be shown that if J is constrained to be symmetric, then

tij (Y ) = tij (X) + Bijkl(X)(ηY
X)kl + O

(
(ηY

X )2
)
, (21)

where Bijkl(X) is the elastic stiffness coefficient [47]:

Bijkl(X) = Cijkl (X) + 1
2 (δik t j l(X) + δ j ktil (X) + δil t j k(X)

+ δ j l tik(X) − 2δkl tij (X)). (22)
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Bi jkl(X) is equal to Cijkl(X) only when tij (X) = 0, therefore the use of
elastic constant as the linear expansion coefficient of stress versus strain (both
defined above) is only a valid practice at zero load.

It can be proven by minimizing the Gibbs free energy [47] that equilibrium
is reached at X when tij (X)=τij . Thus the two quantities have identical values
at equilibrium; however they have different connotations physically.

Atomistic expressions for the thermodynamic stress and elastic constants
can be derived for the canonical ensemble [50–52]. The partition function for
a deformed system is,

Z(X, M) =
∫

M X

exp(−βH(q̃N , p̃N ))
dq̃N d p̃N

N !h3N
, (23)

where we assume,

H(q̃N , p̃N ) =
N∑

n=1

p̃T
n · p̃n

2mn
+ V (q̃1, q̃2, . . . , q̃N ). (24)

Under a change of variables q̃n → qn, p̃n → pn:

q̃n ≡ Mqn, p̃n ≡ M−1pn, n = 1, . . . , N, (25)

the Hamiltonian can be written as,

H(qN , pN ) =
N∑

n=1

pT
n M−2pn

2mn
+ V (Mq1, Mq2, . . . , MqN ). (26)

Using (4) and also,

M−2 =
1

1 + 2ηX
= 1 − 2ηX + 4η2

X + . . . (27)

the partition function can be written as:

Z(X, ηX ) =
∫
X

exp

[
−β

{
N∑

n=1

pT
n (1 − 2ηX + 4η2

X )pn

2mn

+ V
((

1 + ηX − 1
2η

2
X

)
qN

)}]
dqN dpN , (28)

where we threw away the N !h3N constant. Using index notation ηij for
matrix ηX :

∂ F

∂ηij
= − 1

βZ
· ∂ Z

∂ηij
=

1

Z

∫
X

Tij exp(−βH)dqN dpN (29)
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where,

H(qN , pN ) ≈
N∑

n=1

pT
n (1 − 2ηX + 4η2

X )pn

2mn
+ V

((
1 + ηX − 1

2η2
X

)
qN

)
,

(30)

and

Tij =
∂H
∂ηij

=
N∑

n=1

pn
i (−δ j k + 4η j k)pn

k

mn
+ (δik − ηik)q

n
k ∇n

j V ((1 + ηX )qN ).

(31)

Setting ηX to zero, we get the atomistic formula for the thermodynamic
stress:

tij (X) =

〈
1

�(X)
Ŝ2

(
N∑

n=1

−pn
i pn

j

mn
+ qn

i ∇n
j V (qN )

)〉
. (32)

The 〈 〉 means canonical ensemble average in the original configuration X .
One may wonder why the sum (32) does not always give 0 at T = 0, since

∇n
j V (qN ) ≡ 0 for bulk atoms at equilibrium. The answer is that if we were to

compute the stress using (32) as it stands now, we must count those atoms on
the surface, whose equilibrium conditions Fn

j =∇n
j V (qN ) in general require the

presence of external force Fn
j , which is the force the wall exerts on the atom

to keep it within X . Since in (32) those Fn’s are weighted by qn’s, this surface
contribution does not vanish in the thermodynamic limit (N,� → ∞), as the
surface energy does, on a per volume basis.

On the other hand, it appeals to one’s intuition that stress originates from
the bulk, not from the surface, and is an intensive quantity. This can be seen
in the following way: because V (qN ) in general is the sum of local interac-
tions, for instance V (qN ) =

∑
{lmn} W (ql , qm, qn), where W ’s are three-body

local interactions. Due to translational symmetry: W (ql + δ, qm + δ, qn + δ) =
W (ql , qm, qn), one must have ∇l W +∇mW +∇nW ≡ 0, so the contribution of
this specific interaction to the total (32) sum can be rewritten as (ql

i −qn
i )∇ l

j W+
(qm

i − qn
i )∇m

j W , conceptualized as �F · �q, i.e., force contribution weighted
by the relative distance between action and reaction. Through this localiza-
tion transform, all qn weighting factors in the sum can be converted to �q’s
which are no larger than the interatomic distance. In this transformed summa-
tion, which should be converted from (32) as soon as the interatomic potential
model is known, the surface contribution would vanish in the thermodynamic
limit on a per volume basis, like the surface energy. So for local interactions,
we can prove that the stress is intensive and indeed may be thought of as
originating from the bulk.
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To get the atomistic formula for elastic constants, we need to further
differentiate (29):

∂2 F

∂ηij ∂ηkl
=

1

Z

∫
X

(
∂Tij

∂ηkl
− βTij Tkl

)
exp(−βH)dqN dpN

+ β

Z


∫

X

Tkl exp(−βH)dqN dpN


〈

Tij
〉

= β
{〈

Tij
〉 〈Tkl〉 − 〈

Tij Tkl
〉} +

〈
∂Tij

∂ηkl

〉
. (33)

From (31) we can get:

∂Tij

∂ηkl

∣∣∣∣
ηX =0

=
N∑

n=1

4pn
i pn

k

mn
δ j l +

N∑
m,n=1

{
qm

k qn
i ∇m

l ∇n
j V (qN ) − δil q

n
k ∇n

j V (qN )
}
.

(34)

So we get the unsymmetrized form of elastic constants:

Dijkl = β�(X)
(〈

tij
〉 〈tkl〉 − 〈

tij tkl
〉) + 1

�(X)

〈
N∑

n=1

4pn
i pn

k

mn
δ j l

〉

+ 1

�(X)

〈
N∑

m,n=1

qm
k qn

i ∇m
l ∇n

j V (qN ) −
N∑

n=1

qn
k ∇n

j V (qN )δil

〉
. (35)

The first term is defined to be the fluctuation term. The last term is defined
to be the Born term, usually written as C B

ijkl . The elastic constant is therefore

Cijkl = Ŝ4(Dijkl ), (36)

which is valid at finite temperature and for arbitrary stress. The summation
(35) also needs to undergo the localization procedure as (32) to be computable
in atomistic calculations.

Equations (32) and (35) are only applicable to canonical ensemble. For
micro-canonical ensemble, a different set of formulas can be derived [53].
For more details, see Chap. 2.16.

2. Dislocation Core Energy

The dislocation core is a remarkable bond-cutting machine (the “sharpest
knife”) that nature comes up with to relieve the stored elastic energy. While
the internal mechanisms of this machine can be highly complicated, the overall
effect is that atomic bonds come into the machine, get cut in shear, and new
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bonds with dislocated neighbors are left in the wake, much like a combine
in a crop field. With its operation, diffuse elastic strain in the environment
are collected and condensed into local inelastic (transformation) strain in a
one-atomic-layer thin platelet, the glide plane [5].

There are actually two definitions of the dislocation core size [24, 25], a
physical core width and a mathematical/elasticity core width. The physical core
was described in the first paragraph, and is defined by atoms whose local atomic
order like the coordination number or inversion symmetry (Chap. 2.31) is dras-
tically different from that of the crystalline bulk, from which we may define a
core size rphys

0 . In other words, the physical core is the set of atoms which are
participating actively in the bond-cutting business. Obviously, rphys

0 is signifi-
cant and useful, but needs not be a precise real number (like 1.8234a0) due to
lattice discreteness. In contrast, the mathematical core radius r0 and core energy
Ecore can be defined precisely as real numbers from an asymptotic expansion
of the total energy of a dislocation dipole in an infinite, and otherwise perfect,
atomic lattice,

E(d) = 2Ecore + 2A(θ) + Ks |b|2
2π

log
|d|
r0

+ O
(
|d|−1

)
, (37)

at large |d|. Here, E(d) is defined to be the total energy increase in a thought
experiment of an infinite lattice whose atoms displace according to the leading-
order Stroh solution [55] uG(x) at |x − d/2|, |x + d/2| 	 rphys

0 , but which are
allowed to relax atomistically near the physical cores. As the Stroh solution
is self-equilibrating (stress equilibrium is satisfied), the above thought experi-
ment is well-posed and E(d) is the final increase in the atomistic total energy.
At large |d|, the leading d-dependent term in E(d) must be Ks |b|2 log |d|/2π ,
with Ks proven invariant with respect to the displacement cut direction d̂ ≡
d/|d| [56]. Let us define θ to be the angle between d̂ and an arbitrarily chosen
reference direction â, with d̂ ⊥ ξ and â ⊥ ξ , |d̂|=|â|=1, and ξ is the line direc-
tion of the straight dislocation. An asymptotic expansion of E(d) at large |d|
would yield O(log |d|),O(1),O(|d|−1), . . . terms. The O(1) term may contain
a θ-dependent component 2A(θ), and a θ-independent component. For the
sake of definiteness, we require A(θ = 0) = 0, and â will be called the
zero-angle reference axis. A(θ) is given entirely by anisotropic elasticity,

2A(θ) =
3∑

α=1

bT Kαb
4π

log
(d̂x + pr

α d̂y)
2 + (pi

α d̂y)
2

(âx + pr
α ây)2 + (pi

α ây)2
, (38)

where pα ≡ pr
α + i pi

α , α = 1..3, are the three Stroh eigenvalues with nonnega-
tive imaginary parts, and Kα ≡−2(Re(Lα)Im(Lα)

T + Im(Lα)Re(Lα)
T ) is the

mode-specific modulus [56], with
∑3

α=1 bT Kαb = Ks|b|2. Physically, 2A(θ)
is the rotational energy landscape of a dislocation dipole with fixed |d| in an
infinite anisotropic medium [24], when |d| is asymptotically large. It is seen
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from (38) that A(θ) = A(θ + π). To illustrate, A(θ)’s for Si a0/2[11̄0] and Mo
a0/2[111] screw dislocations are evaluated and shown in Fig. 1.

With O(log |d|) and θ-dependent O(1) parts known, the |d|- and θ-inde-
pendent O(1) part of E(d) can be used to determine the mathematical core
r0, Ecore pair. Imagine for a fixed θ , we plot E(d) data with |d| on a chart
(d can only take discrete lattice spacing), and we would like to fit the data
to a smooth function Ẽ(d). We need to shift the function Ks|b|2 log |d|/2π
up or down to get a good fit at large |d|. That shift operation is well defined
asymptotically and is mathematically unique. If we ignore |d|−1, etc. terms
in the fitting template Ẽ(d) ≡ 2Ecore + 2A(θ) + Ks |b|2

2π
log |d|

r0
, 2Ecore + 2A(θ)

would be the abscissa of Ẽ(d) at |d| = r0. It does not mean, however, that
E(r0) = 2Ecore + 2A(θ), as Ẽ(d) only fits E(d) well at large |d| (satisfying at
minimum |d| 	 2rphys

0 ). It is thus clear that r0, Ecore are mathematical instru-
ments to fit E(d) to an asymptotic form and do not carry physical meaning in
either quantity alone. If one likes, one may choose r0 =1000|b| and select Ecore

accordingly so Ẽ(d) remains the same function and nothing is changed. There
are several popular choices, however, such as (a) take r0 = |b|, (b) choose r0 so
Ecore =0, (c) r0 =rphys

0 to minimize confusion, (d) r0 =1Å to simplify numerical
calculation, etc. It is seen that except for (c), none of the r0’s has anything to
do with a physical core size. It is also clear that although Ẽ(d) by definition
must fit E(d) well at large |d|, there should be a big error as |d| → 2rphys

0 and
the physical cores begin to overlap. Finally, r0 and Ecore (and â too) combined
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Figure 1. (a) The angular function A(θ) of a0/2[11̄0] shuffle-set screw dislocation in
Stillinger–Weber potential Si [24], with 〈112̄〉 as the zero-angle reference axis â. The corre-
sponding core energy is computed to be 0.502 eV/Å for r0 = |b|. In a separate calculation [54],
with 〈111〉 as the zero-angle reference axis, the core energy was computed to be 0.526 eV/Å.
The 0.024 eV/Å difference is verified to be exactly A(θ = π/2), as shown above in circle.
(b) The angular function A(θ) for Mo a0/2 [111] screw dislocation using the Finnis–Sinclair
potential (dash line) and the tight-binding potential (solid line), both with â chosen to be 〈112̄〉.
There is A(θ) = A(θ + π/3) due to crystal symmetry.
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do carry physical meaning – as much as any other defect formation energies –
for example in evaluating the absolute total energy of formation of a disloca-
tion loop. The atomistically computed Ecore is critical for constructing the total
energy landscape of coarse-grained models like nodal dislocation dynamics.

From the above, it is apparent that the choice of the zero-angle reference
axis â influences the numerical value of Ecore, in addition to the choice of r0.
This point is not widely appreciated. Indeed, even the existence of the dipole
rotational energy 2A(θ) has usually been ignored in the analyses of atomistic
simulation results in the literature. Note from Eq. (38) that A(θ) originates ent-
irely from elasticity. A(θ =/ nπ) is generally non-zero for any dislocation dipole
except screw dislocation dipole in isotropic medium. For example, A(θ) is non-
zero for edge dislocation dipole in isotropic medium. Ecore thoroughly charac-
terizes the net energy consequence of core atomic relaxations, but one must
be informed about what elasticity function parameters r0 and â are chosen as
matching partners. For instance, it was reported [54] that Ecore of a0/2[11̄0]
shuffle-set screw dislocation in diamond cubic Si was 0.502 eV/Å, with r0 = |b|
and using the Stillinger–Weber potential. Later, a separate, independent calcu-
lation gives Ecore = 0.526 eV/Å for the same setup. It is then traced back and
determined that while the latter calculation uses definition â = 〈112̄〉, the for-
mer calculation in effect used â = 〈111〉. The offset is exactly given by A(θ =
π/2)= 0.024 eV/Å as shown in Fig. 1(a). So both calculations are correct, with
the only difference in the choice of the zero-angle reference axis â and a trivial
conversion of Ecore’s between them.

To reiterate, the numerical value of Ecore carries no physical meaning
unless â and r0 are specified. The conversion of Ecore to other â, r0 “basis”
can be performed easily using the fact that E(d) of Eq. (37), being a physical
measurable in a well-posed thought experiment, is invariant, while â, r0, Ecore

are merely parameters in the mathematical representation of its asymptotic
form. In the example next, we show how the core energy of BCC Mo screw
dislocation can be calculated in a small supercells using the Finnis–Sinclair
potential [57]. All our Ecore values below will be based on r0=|b| and â=〈112̄〉.
The setup is as follows. Define e1 = a0[112̄], e2 = a0[1̄10], e3 = a0/2[111].
An orthogonal supercell 7e1 × 11e2 × e3 is almost square and contains 462
atoms, in which we can put in four equally spaced screw dislocations to form
a quadrupole. Because of symmetry redundancy, this quadrupole cell can be
mapped to an entirely equivalent dipole cell half its size with three edges
h1 = 7e1, h2 = 3.5e1 + 5.5e2 + 0.5e3, h3 = e3. The 0.5e3 in h2 is critical to
this mapping, in view of the fact that εtotal = εelastic + εplastic, where εtotal is
total strain corresponding to the tilt of the supercell, εplastic is the plastic strain
generated by the displacement cut in the dipole cell (in the quadrupole cell,
εplastic is zero as there are two opposing cuts), and εelastic is the volume-averaged
elastic strain in the supercell, which relates directly to the cell-averaged Virial
stress τvirial. So, by “preemptively” making εtotal = εplastic, we make sure that
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the εelastic = 0 and τvirial ≈ 0. It can be shown that (a) τvirial = 0 minimizes
the supercell total energy Eatomistic with respect to cell shape (h1, h2, h3) [24,
54], and (b) at dipole separation d = h1/2, the local stresses at the first and
second dislocations vanish simultaneously: τ1 = τ2 = 0. This stabilizes the two
dislocations so they would not annihilate, which happens frequently in small
supercell calculations. And even when they do not annihilate, a finite driving
force would push the dislocation core against the lattice barrier and distort its
shape from equilibrium, which introduces error to the computed core energy
Ecore.

We can now briefly discuss the image sum procedure for extracting the
core energy from periodic supercell calculations. A detailed account is given
in Chap. 2.21. An instructive approach to this problem is to think about how
to explicitly construct a displacement field u(x) in the supercell, that (a) satis-
fies the displacement cut required by the dipole, (b) is self-equilibrating, and
(c) is compatible with the PBC: u(x + h0

i ) = u(x) and all orders of derivatives
including the first, with {h0

i } being the supercell edges before the dipole cut.
The following Green’s function sum

ũλ(x) ≡ λ

(
uG(x) + ∑

R =/ 0

uG(x − R)

)
(39)

could conceivably lead to u(x), where uG(x) is the displacement field of an
isolated dislocation dipole in an infinite medium (the one used in the thought
experiment). The dislocation lines are all parallel to h0

3, and R = n1h0
1 + n2h0

2,
n1 = −N ..N, n2 = −αN ..αN . λ is from 0 to 1 to label the magnitude of the
cut displacement from 0 to b. Presence of the uG(x) term in ũλ(x) will satisfy
condition (a). Condition (b) is trivially satisfied as all Green’s function dis-
placements are self-equilibrating away from the cores. Condition (c) is a bit
more subtle. But it can be rigorously shown that,

ũλ(x + h0
i ) − ũλ(x) = λD(α)h0

i + O
(

1

N

)
(40)

as N → ∞, where D(α) is a 3 × 3 affine transformation matrix that depends
on the image summation aspect ratio α only. D(α) is the cause of the apparent
conditional convergence. To get rid of it, we write:

uλ(x) = ũλ(x) − λD(α)x. (41)

It is seen now that uλ(x) satisfies (a),(b),(c) simultaneously, so one can use
uλ=1(x) to transform atoms in the PBC cell without creating gaps or stress
non-equilibrium. In practice, D(α) is evaluated numerically by analyzing the
behavior of ũλ(x) from image summations at a constant α and progressively
large N ’s.

Suppose we start out with a PBC supercell {h0
i } containing a stress-free

crystal. We adiabatically change λ by effecting a cut increment dλb along the
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dipole cut in the cell. At each instant, the displacement field in the cell is uλ(x),
so the stress field σλ(x) is available by plugging in ∇uλ(x). The incremental
work is simply:

dW = dλ

∫
b · σλ(x) · n dS, (42)

which is converted to potential energy. Equations (39), (41), and (42) com-
bined give a total energy expression that consists of:

• dipole self-energy in the form of (37)
• image dipole/displacement-cut coupling energy
• D(α) stress/displacement-cut coupling energy

Summation over individual Stroh modes like Eq. (38) is needed to account
for the dipole-dipole interaction energy Edipole−dipole. The expression

Edipole−dipole =
Ks |b|2

2π
log

|R + d||R − d|
|R|2 (43)

is simply incorrect in anisotropic medium as it ignores the 2A(θ) angular-
coupling terms. Note also that one needs to put in an extra factor of 1/2:

�Wimage dipole = 1
2 Edipole−dipole (44)

for the R=/ 0 dipole–dipole interaction energy, since one dipole “owns” only
one half of the total coupling energy. All these follow automatically from
Eq. (42).

The Eq. (41) setup is easier to explain, but gives a large supercell virial
stress, as εtotal = 0, and since

εplastic ≡ Dplastic + DT
plastic

2
, Dplastic ≡ b(d × h0

3)
T

V
,

εelastic = −εplastic. (45)

Therefore in practice we use

uλ(x) = ũλ(x) + λ(Dplastic − D(α))x (46)

solution more often, with a new supercell hi = h0
i + λDplastich0

i that has been
introduced for BCC Mo. The energy of this setup can be related to the previ-
ous one by accounting for the boundary work, which leads to a very simple
result [24, 53].

To validate the above, we relax the Mo screw dislocation dipole in four
supercell geometries using the Finnis–Sinclair potential:

i. h1 = 7e1, h2 = 3.5e1 + 5.5e2 + 0.5e3, h3 = e3 cell, containing 231 atoms,
ii. h1 = 8e1, h2 = 16e2 + 0.5e3, h3 = e3 cell, containing 768 atoms,
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iii. h1 = 16e1, h2 = 64e2 + 0.5e3, h3 = e3 cell, containing 6, 144 atoms,
iv. h1 = 32e1, h2 = 32e2 + 0.5e3, h3 = e3 cell, containing 6, 144 atoms.

The differential displacement maps [58] of (i) and (ii) are shown in Fig. 2,
in which the spontaneous polarities are manifest. If we use Å as the length
unit, then we can write:

Eatom = Eelastic + 2

(
Ecore − Ks |b|2

4π
log r0

)
|h0

3|, (47)

where Eatom is the increase in total energy in the PBC supercell, Eelastic is the
result of the elastic energy summation without the r0, Ecore constants, and also
by choosing â = 〈112̄〉 so the 2A(θ) term in Eq. (37) gives no contribution
(but its equivalent anisotropic effects are present in the image dipole coupling
energies). Ks |b|2/4π , the single dislocation energy prefactor, is 0.499 eV/Å
for the Finnis–Sinclair potential. Numerical results for (i)–(iv) are shown in
Table 1, respectively. We see that by varying the supercell size and shape,
the elastic energy contribution Eelastic dominates the total energy landscape.
However, the differences between Eatom and Eelastic remain remarkably con-
stant. If we take r0 = |b| and â = 〈112̄〉, then Ecore = 0.300 ± 0.001 eV/Å,

(i)

(ii)

Figure 2. Differential displacement map [58] of Mo screw dislocation relaxed using the
Finnis–Sinclair potential. (i) h1 = 7e1, h2 = 3.5e1 + 5.5e2 + 0.5e3, h3 = e3 cell. (ii) h1 = 8e1,
h2 = 16e2 + 0.5e3, h3 = e3 cell.

Table 1. Mo screw dislocation core energy with r0 = |b| and â = 〈112̄〉
using the Finnis–Sinclair potential

Esupercell [eV] Eelastic [eV] Ecore [eV/Å]

(i) 6.0410 7.1361 0.2995
(ii) 7.0069 8.0955 0.3006

(iii) 8.8935 9.9838 0.3003
(iv) 11.0432 12.1318 0.3007
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a definitive result. Further, we note that cell (i), which contains only 231 atoms,
is capable of representing the core energy very accurately.

3. Crack-tip Dislocation Emission

A stressed crack tip has two basic options to relieve its stored strain
energy: surface creation by breaking bonds, or plastic deformation (localized
shearing). Whichever route has the lower activation energy in the long run
should be the dominant mechanism. Therefore activation energy calculations
are essential for understanding brittle-to-ductile transitions (BDT). Disloca-
tion nucleation [59, 60] and migration [61] are both possible rate-limiting step
in BDT. The former has become one of the standard problems in nanome-
chanics [62, 63], because proper treatment of the crack and dislocation cores
are necessary. Previous atomistic calculations focused on Kemit, the athermal
dislocation emission threshold, and the so-called 2D activation pathway in
which the dislocation is constrained to be always straight. Zhu et al. [2] have
applied the nudged elastic band (NEB) method [36] to calculate the 3D
bow-out nucleation pathway atomistically.

Figures 3a–3c show the calculation setup for Cu (111) crack using the
empirical potential of Mishin [64]. The 3D minimum energy path (MEP)
obtained at KI = 0.44 MPa

√
m is compared with 2D MEP in Fig. 3d. It is

seen to be the lower pathway for the same initial and final states. The
external load is applied via a fixed-displacement boundary condition for all
the NEB nodes (i–ix) during path relaxation. We find that for this model
of Cu with the unstable stacking energy γus = 158 mJ/m2, the Rice–Peierls
model [62] underestimates both KI,emit and the activation energy Q(KI) of
partial dislocation emission. KI,emit turns out to be 0.508 MPa

√
m, which is

45% greater than the 0.35 MPa
√

m from the analytic formula [62]. Further-
more, at (KI/KI,emit)

2 = GI/GI,emit = 0.75, we find Q(KI) to be 1.1 eV, which
is significantly larger than the first continuum estimate of 0.18 eV based on
a perturbative approach [62], and a second, improved estimate of 0.41 eV
using a more flexible representation of the embryonic dislocation loop [63].
Preliminary analyses indicate that two factors may be causing the discrepancy,
which if corrected, may lead to much better semi-continuum models. The first
is the negligence of surface deformation energetics near the crack tip [59, 60].
The second is that we believe the continuum models may induce a systematic
error in the dislocation core energy Ecore (see last topic), which drives down
the energy cost of nucleating a half loop. We suggest that whenever one uses
semi-continuum models calculating activation energies, the core energies of
straight dislocations should first be calibrated against atomistic results. The
semi-continuum model may then be systematically improved to give better
core energies, or if not, very often the error can be conveniently adsorbed in
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Figure 3. (a) Geometry of the mode-I crack [2], containing 24 unit cells (61 Å) in
thickness (periodic boundary condition) and 103,920 Cu atoms in a R = 80 Å cylinder. Atoms
within 5 Å of the cylinder border are fixed according to anisotropic linear elastic [65] solution.
(b) Continuum Stroh solution and (c) the actual atomistic local stress distribution [20] of σyy
at GI/GI,emit = 0.75. (d) 3D activation minimum energy path (solid line) of partial disloca-
tion emission by bow-out, and its competing 2D pathway (dash line). i–ix show the sequential
nine NEB nodes or images on the minimum energy path, with iv being the saddle point; atoms
whose coordination number [66] differs from 12 are not shown. Note that a stacking fault is
actually dragged behind the dislocation.

heuristic gradient functionals like κ|∇u‖(x)|2. Otherwise the semi-continuum
model calculating activation energies will have a systematic “core energy
error” compared to atomistic results. This recommendation is quite general
since heterogeneous nucleation of dislocation half loops by 3D bow-out is
ubiquitous in cross-slip, slip transmission across grain and phase boundaries,
initiation at surface asperities, etc. That the program has not been carried out
before has more to do with the fact that the proper definition of dislocation
core energy and numerically precise way to calculate it atomistically were
only worked out recently [24, 25].

Figure 4 shows the saddle-point configuration obtained at GI/GI,emit =
0.75. It shows the birth of a shear-dominant singularity (embryonic dislocation
loop) near a tensile-dominant singularity, the crack. To make connections with
continuum models, we calculate the relative displacement between atoms on
two sides of the slip plane. This completely discrete data set are then interpo-
lated to form a continuum field estimate u(x), which is further decomposed
into shear shock component u‖(x) parallel to the slip plane (localized inelas-
tic, or transformation, strain), and tensile opening component u⊥(x) normal to
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Figure 4. Analysis of the inelastic shock [5] displacement field u(x) on the inclined slip plane
at the saddle point iv, obtained by 2D spline interpolation of the discrete atomic displacements.
(a) Atomic view. (b) Shear component u‖(x) normalized by bp = a0[112]/6, and (c) |∇u‖(x)|2.

(d) Tensile opening component u⊥(x) normalized by the interplanar spacing h0 = 3−1/2a0.

the slip plane (large, but still elastic). The dislocation core is best visualized
by looking at |∇u‖(x)|2 (Fig. 4c), showing that the core is simply the domain
wall between inelastically sheared and unsheared regions [5]. Yet, in the heart
of this shear-dominant secondary singularity, there is also a little tensile com-
ponent. Figure 4d shows that u⊥(x) is maximized near where |∇u‖(x)|2 is
maximized. Such are the intricacies of shear-tension coupling, and one kind
of singularity giving birth to the opposite kind. For instance, we know that
when a lot of dislocations are piled up on a hard interface, a microcrack may
also be nucleated heterogeneously.
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