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Abstract

Stress-corrosion of silica by water is studied by exploring the stress-dependent potential

energy surface computed quantum mechanically at the level of molecular orbital theory. An

ordered silica nanorod with clearly defined nominal tensile stress is constructed to model a

structural unit of the stressed crack tip. Three competing hydrolysis reaction pathways are

determined, each involving a distinct initiation step. Water dissociation, molecular

chemisorption, and direct siloxane bond rupture dominate at low, intermediate, and high

stress levels, respectively. A linear stress dependence in the thermodynamic driving force, not

commonly considered in the criterion of brittle fracture initiation, is shown to originate from

surface relaxation associated with bond rupture. This effect is particularly important in

determining the Griffith condition of crack extension for nano-sized systems when spatial

accommodation of foreign molecules is involved in the process of bond breaking. The physical
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origin of the stress dependence of kinetic barrier is revealed by a perturbation analysis of the

minimum energy path parametrized by the continuous mechanical stress.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Stress corrosion; Hydrolysis reaction; Minimum energy path; Silica nanorod; Thermodynamic

driving force; Activation energy
1. Introduction

Chemical reaction rates in solids are known to depend on mechanical stress levels
(e.g., see Hillig and Charles, 1964; Lawn, 1993; Gilman, 2003). This effect can be
generally described in terms of a change of activation energy barrier in the presence
of stress. A typical example is stress corrosion of silica glass by water; the strength of
the glass decreases with time when subjected to a static load in an aqueous
environment (Wiederhorn, 1967). The phenomenon, also known as delayed failure
or static fatigue, essentially refers to the slow growth of pre-existing surface flaws as
a result of corrosion by water in the environment. From a microscopic viewpoint
(Michalske and Freiman, 1982, 1983), it is believed that the intrusive water molecules
chemically attack the strained siloxane (Si–O–Si) bonds at the crack tip, causing
bond rupture and formation of terminal silanol (Si–OH) groups which repel each
other at the conclusion of the process. This molecular level mechanism, intrinsically,
governs the macroscopic kinetics of quasi-static crack motion.
One of the earliest chemical theories of brittle fracture was put forward by

Orowan (1944), who extended Griffith’s concept of the equilibrium crack to water-
assisted crack growth by considering environmental effects on surface energy
reduction. Within a more general framework of irreversible thermodynamics, Rice
(1978) derived an inequality governing the relation between crack extension rate and
associated thermodynamic driving force in a chemically reactive environment. This
relation is essentially a global restriction on the detailed molecular kinetics of crack
growth. From a kinetics perspective, Hillig and Charles (1964) considered stress-
enhanced thermal activation processes and formulated an Arrhenius-type relation to
describe the corrosion rate based on reaction rate theory. This model was applied by
Wiederhorn (1967) to correlate measured crack velocity with applied load, as well as
extended by Chuang and Fuller (1992) to study the morphological evolution of a
notch tip and its implication for stress corrosion cracking.
A full understanding of stress corrosion in silica glass must also consider

molecular mechanisms and quantitative characterization of reaction kinetics. On the
basis of molecular orbital theory, Michalske and Freiman (1982, 1983) have
proposed a molecular interpretation of stress corrosion in vitreous silica. The
chemical interaction between the intrusive water molecule and strained siloxane
bonds is envisaged to proceed in a three-step sequence, adsorption, reaction and
separation. By considering the electron and proton-donating capacity of the
intrusive chemical species and the polarity of the bridging bond, the Michalske and
Freiman (MF) model explained why water and other chemical species such as
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ammonia could be effective in promoting crack growth. The effect of stress on
chemical reactivity of solids was addressed in a follow-up calculation (Michalske and
Bunker, 1984), where it was suggested that bond angle deformations are most
effective in increasing the chemical reactivity; in particular, stress-induced pinching
of the O–Si–O bond angle can form a chemically active kink site. In contrast to
directly imposing deformation on a siloxane ring, calculated reactivities of various
membered cyclosiloxane rings have been compared by West and Hench (1994),
resulting in quantitative reaction pathways for three- and four-fold silica rings and a
five-fold ring-chain structure. Three-membered rings are found to be more
chemically reactive due to the lower energy barrier associated with larger ring
strains. The study of chemical reactivity of different ring structures is also useful in
understanding the kinetics of hydrolyzing silica surface where various types of ring
structures exist due to surface reconstruction (e.g., see Walsh et al., 2000; Du et al.,
2003). To our knowledge, no systematic studies have been carried out on the
variation of water–silica reaction barriers with mechanical stress.
In this paper, we present a detailed investigation of the stress-enhanced hydrolysis

reaction using a model system of a single water molecule interacting with a silica
nanorod. We first construct the nanorod, to be detailed in the next section, as a
representative structural unit cut from a crack tip, and then study the unit process of
hydrolyzing a stretched siloxane bond at the surface of the nanorod. We rely on this
unit-process study to quantify the problem of stress corrosion at a crack tip through
the assumption that the intrusive water molecules have a direct access to individual
siloxane bonds at the crack tip. In other words, we assume the crack-tip hydrolysis
reaction is the rate-limiting step for stress corrosion, and that all other transport
processes, such as bulk diffusional flow and water diffusion along the fractured
surfaces, are relatively fast. Our bond-saturated nanorod is constructed as a
mechanically meaningful structure, in contrast to the commonly used model clusters,
e.g., H6Si18O7 by Lindsay et al. (1994); its major characteristic is structural
uniformity, which allows meaningful definitions of stress and strain. Thus we are
able to explicitly map out families of reaction pathways, parametrized by the
continuous nominal stress. It follows that analysis of the stress-mediated reaction
pathways reveals the role of stress in both the thermodynamic driving force and
kinetic barriers for the hydrolysis reaction. Such an analysis, we believe, is a step
closer toward a unified description of the thermodynamics and the kinetics of quasi-
static crack extension in silica glass.
2. Model and method

2.1. Nanorod structure

We show in Fig. 1(a) a silica nanorod composed of 108 atoms (36 SiO2 units) (Zhu
et al., 2003, 2005; de Leeuw et al., 2003). Our construction of a nanorod first involves
the formation of planar six-membered rings, Si6O18: As shown in Fig. 1(b), each
Si6O18 ring contains six corner-linked SiO4 tetrahedra, where each tetrahedron has
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two bridging oxygen atoms that are shared with two neighboring tetrahedra. The
nanorod is then assembled by stacking such rings (layers) one over another to form a
rod-like network of SiO4 tetrahedra. For the structure to be free from dangling
bonds, the nanorod is capped at the ends by ‘terminating’ rings in which the six Si
atoms are connected alternately by a bridging oxygen or two oxygens, in the manner
shown in Fig. 1(c). The resulting structure is a stoichiometric silica nanorod with the
bulk built up of corner-sharing SiO4 tetrahedra, where all Si and O atoms are four-
and two-coordinated, respectively, but capped by three pairs of edge-sharing SiO4

tetrahedra at each end. The size and geometry of the nanorod are similar to the
channels in a-quartz and the outer wall of the rod resembles the a-quartz (0 0 0 1)
surface, where all Si and O atoms are fully coordinated without dangling bonds.
Moreover, the hexagonal planar six-membered rings of the nanorod exist in natural
cyclosilicate minerals such as beryl which contains those rings linked by Be2þ and
Al3þ ions (Kim et al., 1995).

2.2. Force field

The study of the stress-enhanced hydrolysis reaction entails a proper description
of interatomic interactions. Empirical potentials have been proven to have deficiency
in treating correctly the effects of charge transfer when bonds are broken and
formed. On the other hand, it is very computationally expensive to apply the first-
principles quantum mechanical calculation to explore various reaction pathways
under different stress states. As a reasonable compromise between accuracy and
efficiency, we choose to use the semi-empirical molecular orbital theory method in
our study. The energies for different nanorod configurations given below are
calculated using MOPAC 2000 (Stewart, 2002) with the PM3 method (Stewart,
1989). A comparison study for the hydrolysis reaction of various silica clusters
between calculations of the density functional theory (DFT) and the semi-empirical



ARTICLE IN PRESS

T. Zhu et al. / J. Mech. Phys. Solids 53 (2005) 1597–1623 1601
molecular orbital theory (AM1 and PM3) has been given by Laurence and Hillier
(2003). They found that both the optimized structures and transition states (for
interaction with a single water molecule) from molecular orbital methods are
qualitatively similar to those obtained via DFT calculations, though there exist some
quantitative differences. Considering that the molecular orbital theory calculation is
significantly faster than the high-level first-principles calculation, we apply the semi-
empirical method as our first step to explore stress-mediated reaction pathways.
2.3. Mechanical deformation

Mechanical deformation of the nanorod is imposed via the displacement control
method. We use 15 atoms in each end-ring as grips, with each atom given a
prescribed displacement in the axial direction of the rod, and all other atoms are
allowed to relax using the conjugate gradient method. To characterize the stress state
of the nanorod we take the sum of all forces acting on the cross-section divided by
the nominal cross-section area A0 ¼ 4pdOO2 ¼ 88:9 (A2 where dOO denotes the side
length of a SiO4 tetrahedron and it is also the edge length of the hexagon composed
of six bridging O’s within the planar six-membered ring. The nominal cross-section
of the nanorod is taken as the circle enveloping a hexagon with a radius R ¼ 2dOO:
To measure the tensile strain applied to the nanorod, we take the elongation of the
rod divided by the initial gage length (distance between two grips) L0 ¼ 4dOO ¼

10:6 (A:
2.4. Finding reaction pathway and transition state

The study of kinetics of the stress-mediated hydrolysis reaction is carried out
within the framework of transition state theory (TST) (Vineyard, 1957). The
problem then becomes that of identifying the reaction mechanism and finding the
free energy barrier. Within the harmonic approximation to TST, the problem is
further reduced to finding a minimum energy path (MEP) on the (electronically)
adiabatic potential energy surface (PES). The MEP is defined as a continuous path in
a 3N dimensional configuration space (where N is the number of free atoms) with the
property that at any point along the path, the atomic forces are zero in the 3N � 1
dimensional hyperplane perpendicular to the path (see Sorensen et al., 2000, for
example). The energy maximum along the MEP is the saddle-point energy which
gives the activation energy barrier. Since the PES will evolve with stress, the stress-
mediated kinetics manifests itself as a stress-dependent activation energy barrier.
The MEPs of hydrolysis reactions are calculated using the nudged elastic band

(NEB) method (Jónsson et al., 1998; Henkelman and Jónsson, 2000). Prior to NEB
calculations, we first identify a physisorbed state which corresponds to a local energy
minimum along the reaction pathway. Here, physisorption refers to the process of
hydrogen bond formation between the Hwat of the water molecule and the bridging
Obr of the nanorod. During physisorption, there is no real chemical bond rupture
and/or formation. In contrast, the hydrolysis reaction is a chemisorbed process since
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it involves the dissociation of the water molecule as well as the formation of new
chemical bonds, i.e., silanol surface groups.
Each NEB calculation proceeds in the following two steps: We first calculate the

physisorption pathway by choosing an initial state where the water molecule is
separated from the stressed nanorod by about 15 (A: The final state is one of the
physisorbed states, all the while keeping the extension of grip ends the same as that
of the initial state. Then the chemisorption pathway is located by choosing as two
endpoints the initial physisorbed state and the final chemisorbed state, respectively.
The elastic band consists of seven equally spaced replicas of the system forming a
discretized path between two fixed endpoints. The calculation is considered
converged when the force on each replica is less than 0.05 eV/Å. A continuous
MEP is then obtained by cubic polynomial interpolation of the calculated energies
with the aid of the potential force projected in the direction of the path on each
replica (Henkelman and Jónsson, 2000). Since the spacing between adjacent replicas
is fixed during NEB relaxation, the transition state may not be coincident with any of
the relaxed replicas. Hence we show the transition state in Section 3 using the relaxed
replica closest to the saddle point. Additionally, for the same set of initial and final
states, there may exist several competing reaction pathways corresponding to
different reaction mechanisms. As the potential energy landscape evolves with stress,
the same type of the initially guessed path, e.g., a linear interpolation of intermediate
replicas between two endpoints, may relax to distinct pathways at different stress
levels. Therefore, in order to follow the evolution of the same transition mechanism
with increasing stress, we first identify one pathway of interest at zero stress. Then, in
all subsequent NEB calculations at other stress levels, the final relaxed pathway from
a previous search will be taken as an initial input for relaxation at a new stress level,
but note that the system will be uniformly scaled according to the current extension
of the nanorod. Since the external loading is applied via the displacement-control
method, during each NEB relaxation, we keep the positions of atoms at grip ends for
all the intermediate replicas fixed at those of the initial state. The tensile stress within
the nanorod in the initial state is then taken as the nominal stress to label the
calculated activation energy barrier.
3. Results

3.1. Uniaxial tension of dry and hydrolyzed nanorods

The stress–strain response for uniaxial tension of a nanorod without water is first
calculated as shown in Fig. 2 by the solid line. It is seen that the nanorod deforms
linearly in the early stages. The corresponding Young’s modulus is about 189GPa.
Then the stress–strain variation shows a slight nonlinearity up to the point of failure
where the stress drops precipitously. The breaking stress at the onset of failure,
denoted by scr; is about 55.2GPa and the corresponding critical strain, �cr; is 0.36.
The value of scr represents the athermal mechanical strength of the nanorod, i.e., the
maximum resistance to fracture without the aid of thermal fluctuations. scr will be
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Fig. 2. Stress vs. strain curves for uniaxial tension of the dry nanorod (solid line) and the hydrolyzed

nanorod (dashed line). Circles and squares are calculated data points.
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used later as a strength-normalizing parameter for the calculated activation energy
barriers at different stress levels.
We show next that our definitions of the nominal cross-section and stress on the

nanorod are mechanically meaningful. Note that the nanorod was constructed with
siloxane bonds uniformly aligned along the axial direction, leading to bond
directionality as well as structural periodicity in this direction. Thus, we expect that
the mechanical property of the rod should be closer to that of crystalline quartz along
an orientation with a similar atomic arrangement, though an exact structural
mapping does not exist between the two systems. We have compared the nominal
values of Young’s modulus, scr; and �cr of the rod with those of the bulk quartz. A
slight complication is that bulk quartz undergoes an a ! b transition when uniaxially
pulled at about 5GPa stress. Since the b-phase spans most of the uniaxial strain range
till failure, and is significantly stiffer than the a-phase, we take the b-quartz as
reference, whose Young’s modulus is around 180GPa for both (0 0 0 1) and ð1 1 2̄ 0Þ
stretching (Liao, 2001). In (0 0 0 1) uniaxial stretching, b-quartz fails at scr � 58GPa
and �cr � 0:34: In ð1 1 2̄ 0Þ uniaxial stretching, b-quartz fails at scr � 42GPa and
�cr � 0:25: Both sets of values are close to those of the nanorod. In addition, we note
that comparing to silica fibers (Proctor et al., 1967; Kurkjian et al., 2003) that consist
of a continuous random network of SiO4 tetrahedra, the nanorod with uniformly
aligned siloxane bonds has larger values of Young’s modulus and breaking stress.
As the inter-ring siloxane bonds are the primary load carriers, we report on the

geometric changes of a representative inter-ring siloxane bond located in the middle
section of the nanorod. The calculated Si–O bond length prior to bond rupture is
1.827 Å compared to a value of 1.686 Å at the fully relaxed state. Correspondingly,
the Si–O–Si bond angle changes from the initial value of 114:3� to 146:0�:
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We also show in Fig. 2 (dashed line) the uniaxial stress–strain response of a
hydrolyzed nanorod. The atomic structure of the hydrolyzed nanorod with silanol
surface groups is shown in Fig. 4(d). Similarly, the stress increases almost linearly
with the applied strain, but with a lower Young’s modulus of 154GPa. We note that
there exists a compressive stress of about 1.44GPa within the hydrolyzed nanorod at
zero strain. This residual stress at zero strain arises from a repulsive interaction
between two fully relaxed silanol groups. As will be demonstrated later, the existence
of residual stress in the hydrolyzed nanorod will lead to a term linearly dependent on
the applied load in the thermodynamic driving force of the hydrolysis reaction. In
particular, this term has important implications for understanding the critical
condition of brittle fracture initiation.

3.2. Thermodynamics of physisorption and chemisorption

Physisorption involves the formation of two hydrogen bonds with two bridging
oxygen atoms ðObrÞ of the nanorod. We identify two physisorbed states. One
corresponds to an asymmetric binding configuration with different hydrogen bond
lengths as shown in Fig. 4(b). At zero stress, the calculated bond lengths are 1.75 and
2.50 Å, respectively. Another physisorbed state takes a symmetric binding form as
shown in Fig. 6(b). The two hydrogen bond lengths at zero stress are both 1.79 Å.
The energy change associated with physisorption is defined as the hydration energy
Ehydr of the nanorod (de Leeuw et al., 2003). That is,

Ehydr ¼ E
p
rodþwat � ðErod þ EwatÞ, (1)

where E
p
rodþwat is the total energy of the rod with a physisorbed water molecule, Erod

the energy of the nanorod without water, but under the same stress as the hydrated
nanorod, and Ewat the self-energy of a single water molecule. At zero stress, the
values of Ehydr for the asymmetric and symmetric binding forms are �0:57 and
�0:63 eV; respectively. Comparing the two physisorbed states, it is evident that the
lower hydration energy leads to stronger hydrogen binding as indicated by a shorter
hydrogen bond length. We also calculate the hydration energy as a function of stress
and find that stress only affects hydration energies weakly for both of the
physisorbed states. Take the asymmetrically adsorbed state as an example. As the
stress increases to about 35GPa, the hydration energy only reduces by about 0.03 eV
down to �0:60 eV: In addition, we also calculate MEPs of physisorption and find
that no saddle point exists irrespective of stresses. Therefore, physisorption of a
single water molecule to the silica nanorod is a thermodynamically favorable process
without kinetic barrier.
In contrast, chemisorption involves the formation of two silanol surface groups.

At a given stress level, the relaxed structure of the hydrolyzed nanorod may take
various configurations with different arrangements of relative positions of the two
silanol groups. These geometrically similar states correspond to local minima with
very close energies on the same PES. To examine the effect of stress, we focus on a
representative type of the relaxed structure as shown in Figs. 4(d), 6(f) and 8(d). This
chemisorbed structure will later be taken as the final state in NEB calculations to
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identify various pathways of hydrolysis. Define the chemisorption energy Echem as
the difference in the total energy between the chemisorbed state Ec

rodþwat and the
water-nanorod non-interacting state at the same stress level. That is,

Echem ¼ Ec
rodþwat � ðErod þ EwatÞ. (2)

We show in Fig. 3 with circles the computed Echem at different stresses. It is seen that
Echem will change from the positive values at low stresses to the negative ones at high
stresses, indicating that chemisorption evolves from a thermodynamically unfavor-
able process to a favorable one with increasing stress. This trend is consistent with
the concept of the stress-enhanced hydrolysis reaction from the thermodynamic
perspective. Moreover, we fit the calculated chemisorption energy Echem as a
function of stress s to quadratic order. The solid line in Fig. 3 is plotted according to
the fitting formula given by

Echem ¼ 0:7004� 0:0472s� 0:0024s2, (3)

where Echem and s are in unit of eV and GPa, respectively. Note that in Eq. (3), we
use s as the labeling variable, even though all our results are from fixed-displacement

calculations. While the potential energy E is the appropriate thermodynamic
potential for these calculations, and the nanorod strain � should really be the
independent variable, we think s is more accessible and appealing to people since
one sees the absolute magnitude of (nominal) stress to break bonds. The physical
meaning of the coefficients in Eq. (3) as well as implications for understanding the
effect of stress on the hydrolysis reaction will be discussed in Section 4.
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3.3. Stress-dependent reaction pathways of hydrolysis

In transition from the initial to final state of chemical dissociation, three distinct
reaction mechanisms are identified, each involving a different initiation process: (I)
water dissociation, (II) water molecular chemisorption, and (III) direct siloxane
bond breaking.
The first mechanism is characterized with the following sequence of reaction steps:

(1) physisorption; (2) subsequent water dissociation including proton transfer and
bond formation between Si–Owat; and (3) final bond breaking between Si and
bridging Obr of the siloxane bond. We show in Fig. 4 a series of snapshots along the
reaction pathway at a stress of 16:7GPa ð0:3scrÞ: The corresponding location on the
MEP for each frame is marked in Fig. 5. Atoms in Fig. 4 are color-coded according
to the differences in atomic charge (Coulson charge calculated from MOPAC 2000)
between the present value and the one at the initial state. Thus charge redistribution
during the processes of bond breaking and formation can be revealed clearly. It is
seen that as the water molecule approaches the nanorod, physisorption first occurs
with the formation of two asymmetric hydrogen bonds as shown in Fig. 4(b). A
small color variation indicates that there is only minuscule charge transfer associated
with hydrogen bond formation. Then a concerted reaction occurs in which proton
transfer to the bridging Obr is followed immediately with electron transfer from Owat

to Si atom. During this process, significant charge variation is observed as shown in
the saddle-point configuration of Fig. 4(c). Specifically, as the bridging Obr forms a
new bond with the incoming proton, it loses an electron and becomes positively
charged. On the other hand, as Si atom forms a new bond with Owat; it gains
Fig. 4. Atomic configurations along the transition pathway of hydrolysis under a stress of 0:3scr:
Mechanism I: (a) initial state, (b) physisorbed state, (c) saddle-point configuration, and (d) final

chemisorbed state. Atoms are color-coded by charge variation relative to the initial configuration (a).
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electrons and thereby becomes negatively charged. The reaction is finally
accomplished by forming two new silanol groups as shown in Fig. 4(d).
Fig. 5 shows the stress-dependent MEPs for the first reaction mechanism. While

the nanorod is loaded with an incremental stretch of 0.5 Å, we parametrize MEPs
according to the corresponding nominal stress, normalized by scr: To facilitate
comparison at different stress levels, we take the energy of the initial state as zero
and plot the energy variation relative to the initial state as a function of the
normalized reaction coordinate s. Here s is defined such that for any given extension
of the nanorod, s ¼ 0 represents the initial state at which the nanorod and water are
non-interacting and s ¼ 1 the final chemisorbed state. Within a 3N configurational
space, where N is the total number of free atoms within the system, the hyperspace
arc length along the MEP between the initial state x3N

i and an intermediate state x3N

is given by

l 	

Z x3N

x3N
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx3N 
 dx3N

p
. (4)

Then, the normalized reaction coordinate s is defined as

s 	
l

lf
, (5)

where lf denotes the hyperspace arc length between the initial and final states. It is
seen from Fig. 5 that in reference to the initial state, the energy at the saddle point as
well as that at the final equilibrium state will decrease as the stress increases,
indicating that the tensile stress assists the forward reaction both thermodynamically
and kinetically. Then we extract the activation barrier from the saddle-point energy
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on each MEP and plot it as a function of stress in Fig. 10 to compare with other
mechanisms at the end of this subsection.
The second reaction mechanism is different from the first one in that a metastable,

molecularly adsorbed state exists along the reaction pathway in going from the
physisorbed to the final hydrolyzed state. We show in Fig. 6 snapshots along the
reaction pathway at a stress of 16.7GPa ð0:3scrÞ and plot in Fig. 7 MEPs at different
stress levels. Similarly, the corresponding location on the MEP for each frame in
Fig. 6 is also marked in Fig. 7. The atomic configuration of the molecularly adsorbed
state which corresponds to a local minimum on the MEP is shown in Fig. 6(d). Note
that this metastable state is absent on the MEP at zero stress and it starts to appear
as the applied stress increases to about 5GPa ð0:1scrÞ: At this molecularly adsorbed
state, Si atom adopts five-fold coordination and forms a new bond with Owat: For
example, the bond distance between Si and Owat is 1.916 Å at a stress of 16.7GPa
(0:3scr). This value falls into the range of an empirical chemical bond length. Due to
the existence of such a metastable state on the MEP, there are two energy barriers
that need to be overcome in going from the initial state to the final state of chemical
dissociation. Two saddle-point configurations along the reaction pathway are shown
in Fig. 6(c) and (e), respectively. The barrier height corresponding to each saddle
Fig. 6. Atomic configurations along the transition pathway of hydrolysis under a stress of 0:3scr:
Mechanism II: (a) initial state, (b) physisorbed state, (c) the first saddle-point configuration, (d) metastable

molecularly adsorbed state, (e) the second saddle-point configuration, and (f) final chemisorbed state.

Atoms are color-coded by charge variation relative to the initial configuration (a).
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point is also plotted in Fig. 10 as a function of stress. It is of interest to note that the
two curves cross at a stress of about 27GPa ð0:5scrÞ: This crossing indicates that the
rate-limiting step for the second reaction mechanism will switch from the process of
water molecule dissociation followed by Si–Owat bond breaking at low stresses to the
process of molecular binding of water with penta-coordinated Si at high stresses. We
will compare the stress-dependent barrier heights with other mechanisms at the end
of this subsection.
Lastly, the third reaction mechanism of hydrolyzing a strained nanorod is

identified. This mechanism distinguishes itself from the other two in that the reaction
first involves breaking the siloxane bond within the nanorod, and then terminating
the dangling bond via the dissociated water molecule. Likewise, we show in Fig. 8
snapshots along the reaction pathway at a stress of 31.8GPa ð0:58scrÞ and plot in
Fig. 9 the calculated MEPs at different stress levels. The configuration close to the
saddle point is shown in Fig. 8(c). It can be seen that the dangling Obr is being
terminated by a proton transferring from a dissociated water molecule. For the third
mechanism, the energy variation has a stronger dependence on the deformation state
of the nanorod. Hence, we plot different MEPs in Fig. 9 at smaller stress intervals.
Fig. 10 compares the barrier height as a function of stress for the three different

mechanisms of hydrolysis reaction. Evidently, the effect of tensile stress will reduce
activation energy barrier for any specific reaction mechanism. More importantly, as
the relative barrier height of different mechanisms changes with an increase in stress,
the switching of rate-limiting steps will occur either within one type of reaction
pathway, as discussed earlier for the second reaction mechanism, or among different
reaction mechanisms. Thus, combining the results on the stress-mediated barrier
height with those of the stress-dependent chemisorption energy, we obtain a
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Fig. 8. Atomic configurations along the transition pathway of hydrolysis under a stress of 0:58scr:
Mechanism III: (a) initial state, (b) physisorbed state, (c) saddle-point configuration, and (d) final

chemisorbed state. Atoms are color-coded by charge variation relative to the initial configuration (a).
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Fig. 9. Minimum energy paths of hydrolysis at different stresses: mechanism III.
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complete picture of the stress-dependent hydrolysis reaction. Specifically, at the
stress level below about 20% of the athermal strength scr; the negative value of
chemisorption energy indicates that the hydrolysis reaction is thermodynamically
unfavorable. For the applied stress within 20–75% of scr; the second reaction
mechanism will be the rate-limiting process. Note that there will be a switching of the
rate-limiting step within the pathway at about 50% of scr: Finally, as the applied
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stress increases to above 75% of scr; the third reaction mechanism will have the
lowest activation energy barrier. However, the negative values of barrier height
indicate that the reaction has become kinetically barrier-less.

3.4. Transition pathways of siloxane bond breaking in a dry nanorod

While the present study focuses on stress-dependent hydrolysis reaction, it is also
of interest to compare the differences in breaking a siloxane bond with and without
water. We show in Fig. 11 MEPs of breaking a siloxane bond in a dry nanorod at
two representative stress levels, 31.8GPa ð0:58scrÞ and 35.5GPa ð0:64scrÞ: It can be
seen that when the stress is applied up to 31.8GPa, the siloxane bond breaking
without water is still thermodynamically unfavorable, while hydrolysis reactions
under the same stress level are all thermodynamically favorable irrespective of the
detailed transition mechanisms. Evidently, the presence of the water molecule
facilitates the siloxane bond breaking. As the applied stress continues to increase, the
MEP of breaking a siloxane bond without water evolves dramatically. When the
stress is increased to 35.5GPa, the corresponding MEP, as shown in Fig. 11,
indicates that siloxane bond breaking becomes thermodynamically favorable with an
activation energy barrier of about 0.6 eV. Fig. 12 shows the atomic configurations
along the MEP at a stress of 31.8GPa. It is seen that at the final state, there is a
significant charge variation in association with the breaking of the siloxane bond. In
contrast, the charge variation of the final hydrolyzed state shown in Figs. 4(d), 6(f)
and 8(d) is relatively small because the dangling bonds are terminated by the
dissociated water molecule.
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Fig. 12. Snapshots along the transition pathway of siloxane bond breaking in a dry nanorod under the

nominal stress of 35.5GPa ð0:64scrÞ: (a) initial state, (b) saddle-point configuration, and (c) final

chemisorbed state. Atoms are color-coded by charge variation relative to the initial configuration (a).
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Fig. 11. Minimum energy paths for breaking a siloxane bond in a dry nanorod.
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4. Analysis

In this section, we give an elementary analysis of the stress dependences of the
thermodynamic driving force and kinetic barrier of chemical reactions, using the
nanorod as a concrete test case. This is made possible by introducing a mechanically
meaningful, continuous stress variable, which modulates chemical reactions near the
nanorod surface. To our knowledge, it is the first time that such a quantitative
analysis is carried out at the molecular level, although a similar approach has been
taken to study the continuum inelastic deformation (see e.g. Rice, 1975; Argon,
1999). Our goals are to:
(1)
 Carefully analyze the crack extension driving force of brittle fracture when the
effect of surface relaxation is significant, such as when foreign species are inserted
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in the fracture process. Specifically, we find a term in the crack extension driving
force that depends linearly on the external loading, which is absent in the
conventional Griffith–Irwin analysis (Griffith, 1920; Irwin, 1957). Our numerical
results indicate that this linear stress-dependent term in the crack extension
driving force may play an important role in determining the Griffith condition of
thermodynamic energy balance of brittle fracture for nano-sized systems.
(2)
 Provide a perturbation analysis of how the MEPs of chemical reactions are
influenced by stress. Specifically, we will derive how the stationary points (initial,
final and saddle-point states) of a MEP drift compared to s ¼ 0 counterparts.
This would lead to perturbational expressions of how the thermodynamic driving
force and kinetic barrier depend on stress, which in turn can be used to predict
(a) at what stress level a certain reaction becomes favorable/unfavorable
thermodynamically, (b) at what stress level there is a switch in the rate-
controlling step (due to the competition between two saddles on the two distinct
MEPs or between two saddles on the same MEP), (c) at what stress level the
reaction can happen spontaneously without the aid of thermal fluctuations (see
Li et al., 2002, for example).
We will first focus on the displacement-control loading condition. A brief discussion
on the force-control condition will be given in Section 4.4 to contrast the differences.

4.1. Strain-dependent MEPs

Fig. 13 shows two schematic MEPs of hydrolysis for the nanorod at the extensions
of zero and DL; respectively. When the nanorod is deformed, the energy of the
system increases due to elastic energy injection. The local minima i on MEPs
correspond to the initial states where the nanorod and single water molecule are non-
interacting; the local minima f correspond to the final hydrolyzed states. Denote s as
a reaction coordinate. Generally speaking, the locations of the initial/saddle-point/
final states may all drift physically in the x3N space at different load levels. But we
choose our s-labeling scheme (like Eqs. (4) and (5)) such that s ¼ 0 and 1 always
E

X3N

i

i
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Fig. 13. Schematic of minimum energy paths at different load levels.
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label the initial and final local equilibrium states. However, even then there is no
guarantee that the saddle point in between would not drift in s. That is to say, in
general s�as�0:
For any state s, the energy of the system at strain � ¼ DL=L0 can be related to that

at � ¼ 0 by

Eð�; sÞ 	 Eð0; sÞ þ s0ðsÞ�V0 þ
1
2
k0ðsÞ�

2V 0 þ Oð�3Þ, (6)

where V 0 ¼ A0L0 is the nominal volume of the nanorod at ð� ¼ 0; s ¼ 0Þ; s0ðsÞ is the
residual stress within the nanorod at ð� ¼ 0; sÞ; and k0ðsÞ is the nanorod stiffness at
ð� ¼ 0; sÞ: Eq. (6) can be considered as the definition of s0ðsÞ and k0ðsÞ: Since we have
chosen the initial state at � ¼ 0 to be stress free, s0ð0Þ ¼ 0 holds.
The values of k0ð0Þ; s0ð1Þ and k0ð1Þ can be directly read off from Fig. 2. For s ¼ 0

and 1, k0ðsÞ can be understood operationally as the stiffness of pulling the two end
grips of the nanorod, but allowing everything inside (with water fragments at s ¼ 1;
without at s ¼ 0) to relax locally. When 0oso1; the physical interpretation of k0ðsÞ

is not so straightforward and depends numerically on the definition of s.
Denote DEð�; sÞ as the change of the energy in going from the initial state i to an

intermediate state s when holding the nanorod extension fixed. From Eq. (6), one
obtains

DEð�; sÞ 	 Eð�; sÞ � Eð�; 0Þ

¼ DEð0; sÞ þ s0ðsÞ�V0 þ
1
2
Dk0ðsÞ�

2V 0 þ Oð�3Þ, ð7Þ

where Dk0ðsÞ denotes the stiffness change from state i to s, i.e., Dk0ðsÞ 	 k0ðsÞ �

k0ð0Þ: It is seen from Eq. (7) that the energy variation in going from state i to s at a
fixed � can be partitioned into strain-independent and strain-dependent contribu-
tions. The former represented by the term DEð0; sÞ is the energy difference between
state s and i at zero strain. For the strain-dependent part, the linear term in � arises
from the residual stress s0ðsÞ in association with a partially hydrolyzed nanorod at
zero strain, while the term quadratic in � results from the change of the nanorod
stiffness when a siloxane bond is partially broken.

4.2. Thermodynamic driving force for hydrolysis reaction

With the general expression Eq. (7), we first consider the energy difference between
two local equilibrium states i and f. As DEð�; 1Þ represents the energy increase in
going from the initial to final state, its negative value can be interpreted as the
thermodynamic driving force Dð�Þ for a forward transition. That is,

Dð�Þ 	 � DEð�; 1Þ

¼ � DEð0; 1Þ � s0ð1Þ�V 0 �
1
2
Dk0ð1Þ�

2V 0 þ Oð�3Þ. ð8Þ

The physical meaning of each term in the second step of Eq. (8) can be understood as
follows: DEð0; 1Þ is the energy change associated with reaction at zero strain. Our
calculation indicates that this strain-independent energy term is greater than zero for
the hydrolysis reaction. Hence it can be regarded as the internal resistance to the
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reaction. As the two newly formed silanol surface groups repel each other, the
residual stress s0ð1Þ is compressive when we hold fixed the two ends of the nanorod,
i.e., s0ð1Þo0: In addition, the nanorod stiffness will decrease when a strong siloxane
bond is replaced by a pair of weakly interacting silanol groups, i.e., Dk0ð1Þo0:Hence
in Eq. (8), both the linear and the quadratic terms in � will contribute to an increase
in the driving force Dð�Þ:
To write the driving force D in terms of the nominal stress, we note that

� ¼
s

k0ð0Þ
þ

s2

2Sð0Þ
þ Oðs3Þ, (9)

where Sð0Þ is the softening coefficient when we stretch the s ¼ 0 nanorod. Plugging
Eq. (9) into Eq. (8), we have

DðsÞ ¼ �DEð0; 1Þ �
s0ð1Þ
k0ð0Þ

sV 0 �
1

2

Dk0ð1Þ

½k0ð0Þ�
2
þ

s0ð1Þ
Sð0Þ

� �
s2V0 þ Oðs3Þ. (10)

Comparing with Eq. (3), we can estimate the values of both the residual stress s0ð1Þ
and the change in the nanorod stiffness Dk0ð1Þ once the initial stiffness k0ð0Þ and
softening coefficient Sð0Þ are known. For the present nanorod system, the values of
k0ð0Þ ¼ 189GPa and S0ð0Þ ¼ 8:9� 104 GPa2 lead to the estimated s0ð1Þ ¼
�1:51GPa and Dk0ð1Þ ¼ �28GPa; close to the result from a direct calculation,
s0ð1Þ ¼ �1:5GPa and Dk0ð1Þ ¼ �35GPa:
To prepare for the discussion on the stress-dependence of crack extension driving

force in the next subsection, we also calculate the critical condition when the
thermodynamic driving force of hydrolysis reaction vanishes. In other words, we
want to determine the critical load above which the forward transition of bond
breaking becomes thermodynamically favorable. From Eq. (3), the critical load s is
determined to be 9.88GPa. To demonstrate the importance of the linear stress-
dependence, we intentionally drop the linear term in Eq. (3) and then recalculate the
critical load. This corresponds to a situation where the effect of the linear stress-
dependent term is not taken into account. The critical value of s then becomes
17:1GPa: Evidently, there is a significant difference in the estimated critical load
(about 73%) if the linear stress-dependent term is ignored.

4.3. Implications for brittle fracture analysis

The analysis of energy change associated with nanorod bond breaking can help
elucidate the thermodynamic driving force of brittle fracture. The existing
understanding of brittle fracture at the atomic scale was obtained by introducing
the concept of ‘‘lattice trapping’’ (the fracture analogue of the Peierls resistance to
dislocation motion) (see Thomson et al., 1971). Here, we briefly review this concept
and more detailed discussions on this topic can be found in, e.g., Lawn (1993),
Marder (1996) and Zhu et al. (2004). Consider a simplified model system with an
atomically sharp crack embedded in an otherwise perfect 2D lattice. The quasi-static
crack growth corresponds to a sequence of localized bond-breaking processes at the
instantaneous crack tip. Under a given external load, the total energy of the system
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can be written as a function of crack length. Because of lattice discreteness, the
energy landscape corrugates at the atomic scale along the crack extension direction.
As a result, crack extension may cease temporarily when the system is trapped in a
well of the energy surface; an activation energy is required to overcome the local
energy barrier (Zhu et al., 2004). Each time the crack extends by one lattice spacing,
the system will move from one state of local energy minimum to an adjacent one.
The energy difference between the two local energy-minimum states determines the
instantaneous thermodynamic driving force of crack extension by one lattice
spacing, and the local maximum in between gives the activation energy barrier which
determines the instantaneous kinetic rate of crack growth.
A connection between lattice trapping at a crack tip and bond breaking in a

nanorod can be established if we regard the breaking of a siloxane bond in a perfect
nanorod as effectively creating a small notch crack. The targeted siloxane bond can
also be thought as being lattice-trapped. Although the detailed atomic structure and
stress state are different for the two situations, we believe that the general trend
revealed by the study of the nanorod bond breaking will be instructive for
understanding the hydrolysis reaction at the crack tip.
Now suppose a single siloxane bond occupies an effective area DA; we may write

the crack extension driving force as

Dð�Þ ¼ ½Gð�Þ � 2gus �DA, (11)

where the strain-dependent terms in Eq. (8) are lumped together to give the energy
release rate

Gð�Þ ¼ �
s0ð1Þ�V 0 þ

1
2
Dk0ð1Þ�2V 0

DA
(12)

and the strain-independent term, corresponding to the energy variation in
association with fracture at zero strain, is the unrelaxed surface energy gus : That is,

gus ¼
DEð0; 1Þ

2DA
. (13)

It is commonly held that for a brittle crack in a linear elastic continuum, the energy
release rate Gð�Þ is only a function of �2 (see Lawn, 1993, for example). But the
energy release rate Gð�Þ given in Eq. (12) contains a linear term in �; related to the
residual stress after fracture due to surface creation and insertion of foreign species.
We have numerically demonstrated, in Section 4.2, this linear term is important in
determining the Griffith condition of energy balance before and after bond breaking
in the case of the nanorod fracture. Then a question arises: under what conditions
should the linear driving force term be taken into account in studying brittle crack
propagation?
To address the above question, we perform a thought experiment by considering

an infinitely long strip with clamped boundaries having fixed vertical displacement
dext (see Fig. 14). Suppose the slab is under a plane-stress condition, and a crack
exists along the x1 direction. Since the crack propagation is translationally invariant
along x1; the driving force for creating a new surface area DA at the crack tip can be
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Fig. 14. Schematic of an infinitely long cracked strip with a height of H0; a displacement dext is imposed
on the boundary.
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simply calculated by the energy difference between slabs of cross-sectional area DA

upstream and downstream; the two slabs are schematically represented by shaded
blocks in Fig. 14. We write the driving force D as

Dð�Þ 	 DEþ1 � DE�1. (14)

In Eq. (14), strain � ¼ dext=H0; where H0 denotes the length of the relaxed slab;
DEþ1 is the elastic energy stored in the slab upstream,

DEþ1 ¼ 1
2
Kd2ext, (15)

where the stiffness of the slab K is related to Young’s modulus Y by

K ¼
YDA

H0
, (16)

DE�1 is the energy stored in the slab downstream. This slab has fractured into two
pieces with a newly created cross-sectional area DA: Suppose there is a surface
displacement (expansion), denoted by ds; in association with fracture, which arises
either due to surface reconstruction or surface reaction with foreign molecules.
When dext ¼ ds; the interaction between the two fractured surfaces vanishes. The

excess energy of the fractured slab is twice the relaxed surface energy grsDA: Here, we
have taken the energy of the relaxed slab (no fracture) as a reference. The value of grs
approaches the macroscopic relaxed surface energy when H0 is sufficiently large.
When dextods; a compressive force of F s ¼ ~Kðds � dextÞ exists in the slab, where ~K

denotes the effective stiffness of the fractured slab. Since the two newly created
surfaces still interact with each other through the terminated silanol groups, ~K differs
from K. This difference becomes negligible when H0 is sufficiently large. The energy
in the fractured slab DE�1 can be written as

DE�1 ¼ 1
2
~Kðdext � dsÞ

2
þ 2grsDA. (17)

In the limit of dext ¼ 0; DE�1 is twice the unrelaxed surface energy according to the
definition of Eq. (13). Then, we have

gus ¼
1

4DA
~Kd2s þ grs. (18)
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Substitution of Eqs. (15), (17) and (18) into Eq. (14), one obtains

DðdextÞ ¼ ~Kdsdext þ 1
2
ðK � ~KÞd2ext � 2gusDA. (19)

In Eq. (19), the crack extension driving force consists of both the linear and
quadratic terms in the applied load, given in terms of the boundary displacement
dext: It is readily to identify the corresponding terms between Eq. (19) and Eqs.
(11)–(13). Note that Eq. (19) is only valid when the condition of dextpds is satisfied,
where the surface displacement ds is normally of the order of lattice constant a0:
When dext4ds; the two fractured surfaces cease to interact with each other. That

is, ds represents a cut-off distance beyond which the interaction is considered
negligible. Then, the excess energy in the fractured slab is a constant corresponding
to twice the relaxed surface energy grsDA; Thus, the driving force only contains the
term quadratic in dext: That is,

DðdextÞ ¼ 1
2
Kd2ext � 2grsDA. (20)

In addition, within the regime of dextods; a further requirement on the system size
can be derived from the Griffith condition of fracture propagation. That is, the
system under a displacement load of dext should provide a sufficient driving force to
overcome the fracture resistance. Consider the following scaling relation: the driving
force term ~Kdsdext�Ya20DA=H0; where � means ‘‘of the order of’’. Here, we have
taken the limit of dext�ds�a0: The surface creation resistance grsDA�Ya0=10DA:
To balance the above two terms of ~Kdsdext and grsDA; we obtain H0�10a0: Since a0
is of the order of angstrom, this condition essentially requires that the system size
needs to be on the nanoscale in order to fracture the system under a displace-
ment load of the order of a0: Considering the two constraints derived above, i.e.,
dextods and H0�10a0; we conclude that this linear driving force term is only
important in determining the critical condition of brittle fracture initiation for nano-
sized systems.

4.4. Stationary-point drift

In this subsection, we first provide a perturbation analysis of the stationary-point
drift on the MEP for a generically defined reaction coordinate s. Then we apply this
general result to analyze the external-load dependence of the activation barrier for
the specific scheme of defining the reaction coordinate employed in this work, i.e.,
both the reaction coordinates of the initial and final states are fixed by definition.
Denote s�0 as the reaction coordinate of one stationary point (local minimum or

saddle point) on the MEP at zero strain. For a point s near s�0 on the same MEP, the
energy at zero strain is given by

Eð0; sÞ ¼ Eð0; s�0Þ þ
1
2
k0ðs�0Þðs � s�0Þ

2V0 þ Oððs � s�0Þ
3
Þ, (21)

where k0ðsÞ denotes the local curvature at s and it is given by

k0ðsÞ 	
q2Eð0; sÞ

qs2
. (22)
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Consider state s on the MEP at strain �: Substitution of Eq. (21) into Eq. (6) gives a
relation between the energy at the point ð�; sÞ to that at ð0; s�0Þ;

Eð�; sÞ ¼ Eð0; s�0Þ þ
1
2
k0ðs�0Þðs � s�0Þ

2V0 þ s0ðsÞ�V 0 þ
1
2
k0ðsÞ�

2V 0

þ Oððs � s�0Þ
3
Þ þ Oð�3Þ. ð23Þ

Denote s� as the saddle point on the MEP at strain �;

qEð�; sÞ

qs

����
s¼s�

¼ 0. (24)

Substituting Eq. (23) into Eq. (24), one obtains

k0ðs�0Þðs
� � s�0Þ þ s00ðs

�Þ�þ 1
2
k0
0ðs

�Þ�2 ¼ Oððs � s�0Þ
2
Þ þ Oð�3Þ, (25)

where the prime denotes derivative with respect to s. Solving Eq. (25) to the leading
order in � and s� � s�0; s� deviates from s�0 by

s� ¼ s�0 �
s00ðs

�
0Þ

k0ðs�0Þ
�þ Oð�2Þ. (26)

Eq. (26) gives the leading-order estimate about stationary-point drift based on the
information at s�0 on the MEP of zero strain.
For a particular scheme of defining the reaction coordinate s that consistently

labels the initial equilibrium state as s ¼ 0 and the final equilibrium state as s ¼ 1
(such as the Eqs. (4) and (5) scheme), there are by definition zero stationary-point
drifts for these two special points. Thus, one must have

s00ðs
�
0 ¼ 0Þ ¼ 0; s00ðs

�
0 ¼ 1Þ ¼ 0, (27)

as constraints on the labeling scheme.
Substitution of Eq. (26) into Eq. (23) gives the connection between stationary-

point energies at strain � and strain zero. That is,

Eð�; s�Þ ¼ Eð0; s�0Þ þ s0ðs�0Þ�V0 þ
1

2
k0ðs

�
0Þ �

s020ðs
�
0Þ

k0ðs�0Þ

" #
�2V 0 þ Oð�3Þ: ð28Þ

Denote ssad0 as the reaction coordinate of a saddle-point state on the MEP of zero
strain. From Eq. (28), the activation energy DEð�Þ at strain � is related to the
activation energy DE0 at zero strain by

DEð�Þ ¼ DE0 þ Ds0ðssad0 Þ�V0 þ
1

2
k0ðs

sad
0 Þ � k0ð0Þ �

s020ðs
sad
0 Þ

k0ðssad0 Þ

" #
�2V 0 þ Oð�3Þ.

(29)

Note that by definition we have chosen the initial state at � ¼ 0 to be stress free, i.e.,
s0ð0Þ ¼ 0: We have also made use of Eq. (27). From Eq. (29), the activation energy
DEð�Þ at strain � can be estimated using the information obtained from the MEP of
zero strain. In practice, we have to make a few more calculations beyond the MEP of
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zero strain in order to estimate the higher order quantities such as the stiffness of the
system. Nevertheless, this perturbation analysis reveals the physical origin of the
external-load dependence in modulating the kinetic barriers of reaction. By
evaluating Eq. (29) for two distinct saddles with the same initial state (the two
saddles may or may not be on the same MEP), we can predict at what stress a cross-
over in DEð�Þ will occur like those shown in Fig. 10, at which point the rate-
controlling microscopic reaction step or mechanism switches.

4.5. Stress-dependent MEP

While the above analysis is given using the tensile strain of the nanorod as a
control variable, the derivation procedure and results on the strain-dependent
thermodynamic driving force and activation energy barriers can be easily adapted to
the stress-controlled situation. When the nanorod is stretched under stress control,
the total energy of the system Gðs; sÞ includes contributions from both the atomic
configuration energy and the potential energy of the load, i.e., G ¼ E � s�V 0:
Following the same scheme of labeling various states on the MEPs as that discussed
in Section 4.1, in parallel to Eq. (7), the energy at stress s is related to that at zero
stress by

DGðs; sÞ ¼ DGð0; sÞ þ �0ðsÞsV0 �
1
2
Dc0ðsÞs2V0, (30)

where �0ðsÞ is the strain in the nanorod due to the hydrolysis reaction at zero stress,
Dc0ðsÞ is the compliance change from state i to s. That is, Dc0ðsÞ 	 c0ðsÞ � c0ð0Þ;
where c0ðsÞ is the compliance of nanorod at an intermediate state s, and it is the
inverse of the stiffness k0ðsÞ:
The connection between the two loading conditions on energy change can be seen

when Eq. (7) is rewritten in terms of the nominal stress s; where s is related to the
nominal strain by s ¼ k0ð0Þ�: That is,

DEð�; sÞ ¼ DEð0; sÞ þ
s0ðsÞ
k0ðsÞ

k0ðsÞ

k0ð0Þ
sV0 �

1

2

k0ðsÞ

k0ð0Þ
Dc0ðsÞs2V 0. (31)

Comparing Eq. (31) with Eq. (30), it is seen that if the stiffness change at state s is
small relative to the initial stiffness k0ð0Þ; i.e., k0ðsÞ=k0ð0Þ�1; Eqs. (31) and (30) will
be equivalent because the relations �0ðsÞ ¼ s0ðsÞ=k0ðsÞ and DEð0; sÞ ¼ DGð0; sÞ always
hold. Therefore, as a first approximation, the energy variation associated with
bonding breaking is independent of the type of boundary conditions imposed. This is
reminiscent of a well-known result in fracture mechanics. That is, the energy release
rate for crack extension is independent of loading methods. However, for a finite size
system such as a nanorod, there are only six siloxane bonds intersecting each cross-
sectional plane of the nanorod. Breaking a single bond will approximately reduce the
effective tension stiffness of the nanorod by one sixth. Because of this significant
stiffness change, the effect of different loading methods is expected to be appreciable.
In the future, it would be of interest to quantitatively evaluate the size effect on the
present molecular study regarding the stress dependence of thermodynamics and
kinetics of chemical reaction.
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5. Summary

In this paper, the stress dependence of a water–silica reaction is calculated for a
model system. Both the thermodynamic driving force and activation barrier reveal
interesting features. For the former, we found a linear stress-dependent contribution
that is absent in the classic analysis of energy release rate, which was decomposed
into surface creation (zeroth order in stress) and change in effective compliance
(second-order in stress) contributions, as the crack advances by a unit spacing. This
linear driving force term is formalistically and numerically shown to be related to the
relaxation displacement associated with surface creation, which is especially
significant for nano-sized systems when foreign species are inserted in the fracture
process. For the activation barrier of reaction, we applied the nudged elastic band
method to map out the MEPs, and found stress-dependent saddle-point energies. We
then developed perturbation theories to describe how the saddle points drift in both
reaction coordinate and energy as stress is varied. This formulation reveals the
physical origin of the stress dependence of kinetic barrier; and it allows one to
extrapolate, from near zero stress calculations, how different saddle points compete
(at what stress level a crossing in saddle energy will likely occur), when a saddle will
vanish, etc. Even though with a special labeling scheme, the initial and final states do
not drift in reaction coordinate, they do drift in energies. Our perturbation theory on
stationary-point drifts also predicts at what stress the reaction becomes favorable
thermodynamically, and at what stress the reaction can proceed without requiring
thermal activation to overcome a barrier.
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