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Abstract

Potentials generally used in molecular dynamics (MD) simulation of SiO2 properties customarily are calibrated to a combination of
computed molecular electronic structure data and experimental crystalline data. The present study tests parametrization to data from
high-level, first-principles electronic structure calculations alone. The issue is crucial to the success of multi-scale simulations. They
require a consistent embedding of the so-called quantum mechanical region (the region in which the forces come from gradients of quan-
tum mechanical total energies) in a classical inter-ionic potential region. The evident challenge is generation of a quantum mechanically

consistent parametrization. A simple probe of the issue is to see how parametrization solely from first-principles data influences the
simulation outcomes. We parametrized a widely used form of effective inter-ionic potential for SiO2 and did MD simulations of tensile
failure in a 72 formula unit SiO2 nanorod. Separate parametrizations were done to high quality calculated data for H4SiO4 and H6Si2O7

clusters and for a-quartz. The differing parametrizations yield quantitative differences in the prediction of the yield strength and even
semi-qualitative differences in the system behavior in that region. Some superficially similar parametrizations do not even provide a stable
T = 0 K configuration. These differences highlight the crucial distinction between potential parametrization aimed at replacing realistic
quantum mechanical forces entirely in an MD calculation versus a parametrization aimed at embedding an explicitly QM region.
� 2006 Elsevier B.V. All rights reserved.
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1. Purpose

The broad success of molecular dynamics (MD) simula-
tion of condensed phase properties rests upon inter-ionic
potentials as effective substitutes for the explicit quantum
mechanics (QM) of bonding by electrons [1,2]. SiO2 is a
technologically and scientifically important example [3].
There are many parametrized interactions for SiO2 [4,5].
But the issues of interest in multi-scale simulations, our
focus, are easily illustrated with the so-called TTAM [6]
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and BKS [7,8] pair potentials. (The acronyms refer to the
respective sets of authors.) These potentials are heavily
cited in the materials literature, a fact that suggests they
are viewed as successful by the materials simulation com-
munity [9]. The relationship of such potentials to QM is
the general topic of this work.

As published, the TTAM and BKS potentials were
parametrized to a combination of first-principles QM elec-
tronic structure results for a small cluster and experimental
data for a-quartz [6–8]. The ‘‘TTAM/BKS’’ form is

Uij ¼
jQiQj

rij
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where the ions i, j have relative displacement rij. Energies
are in eV, lengths in Å, the Qi are in units of electron charge
magnitude, and j is the conversion from electrons2 per Å
to eV (�14.402). From their functional forms, the three
terms are called Coulomb, Buckingham, and van der
Waals terms, respectively. (Our notation differs from the
originals to facilitate comparative presentation.)

While three-body interactions are known to be impor-
tant for ceramics [5,10,11], the ultimate realism of the
potential is not the issue for this study. Rather, we have
a single, fundamental concern. Given a successful, popular
form of potential, what are the effects of using different
first-principles QM inputs for its parametrization? The
context is multi-scale simulations. In them, the forces in a
relatively small region, the so-called QM region, are gener-
ated by some choice of approximate QM method. The QM
region is embedded in a much larger collection of particles
for which the dynamics are determined by inter-ionic
potentials, the ‘‘CM region’’. Brenner [12] has given a com-
prehensive discussion of the issues of potential parametri-
zation for ordinary MD simulations. Obviously those
simulations do not involve embedding a QM region, the
procedure of concern to us. The question is how to take
QM into account in the parameterization of a classical
potential.

Both BKS and TTAM used the same broad approach to
parametrization but with significant differences in detail.
Each group picked a terminated SiO4 cluster but with dif-
ferent terminations. They then chose a specific QM approx-
imation, Hartree–Fock (HF), to provide calibration data in
the form of energy as a function of geometrical structure
for their respective clusters. Each group then found multi-
ple parameter sets that fit the chosen potential form to their
respective QM data sets. From among those parameter
sets, each group chose the set that yielded the best fit of
certain calculated crystalline properties to experimental
data. Details differ, but that is the essential scheme.

For a multi-scale calculation to be unequivocally predic-
tive, there must be no reliance on experimental data.
Achieving freedom from experimental calibration is closely
related to the primary focus of this paper. Viewed in this
way, the objective is to obtain the parameter set for a given
potential that provides the best possible reproduction of
calculated QM properties for a given choice of QM
approximation. This is equivalent to pursuing the implicit
logic of the BKS/TTAM approach to its end, that is, doing
all the parameterization via QM.

The computed data reported in Ref. [13] show that an
all-QM calibration is not an easy task. That study treated
‘‘chemically or physically appealing’’ HmSinOq clusters. It
found a wide variation in calibration data sets even if
one restricts consideration to such clusters. The variation
has two main sources. First, there is no unique choice of
plausible reference cluster. Second, results for any particu-
lar cluster vary substantially depending upon choices of
methodology (level of refinement of approximation, basis
set size, etc.). The other possible extreme for a calibration
system, the perfect crystal alone, was studied in Ref. [14].
Comparison of the crystalline and cluster results in those
two papers makes clear that calibration of the same poten-
tial form will yield significantly different parameters.

As an example of reference data differences, the best-
quality molecular calculations of Ref. [13] give a range of
1.557–1.748 Å for the equilibrium Si–O bond length in 12
HmSinOq clusters. This range is in sharp contrast with the
a-quartz companion study [14], which obtained values of
1.628–1.638 Å. Clearly the question is, do these differences
affect the MD results for a many-particle system signifi-
cantly? We show here that the answer is unambiguously
affirmative and characterize the differences.

Ultimately more than just an understanding of parame-
trization methods and logic is needed. A truly successful
multi-scale simulation must have a way to calibrate (and
adjust) the classical embedding potential consistent with
the chemical reactions occurring in the QM region. This
study of a priori, non-adaptive parametrizations therefore
differs in its objective from the usual parametrization effort.
The usual requirement is that the parametrization give MD
results in accord with experiment. The parameter sets
tested here are not intended nor expected to be superior
to those already published for standard MD simulations.
Rather it is the dependence of MD results on QM calibra-
tion procedures that we scrutinize.

2. Parametrizations

2.1. Cluster energetics

First we consider the consequences of parametrizing to
cluster energies alone. This approach is appealing in part
because of its strong connection with chemical transferabil-
ity concepts. Use of cluster forces (instead of energies) is
considered below.

It is helpful to distinguish what we call BKS-type and
TTAM-type parametrizations. These differ by the absence
of non-coulombic Si–Si interactions in BKS-type fits
(BKS; aSi–Si = cSi–Si = 0) versus their presence in TTAM.
Notice, however, that our use of ‘‘TTAM-type’’ does not

signify an atom-by-atom additive parametrization, the
procedure used by TTAM.

Because there is no unique a priori choice of parametriz-
ing cluster, we used two intuitively relevant choices. For
BKS-type fits, we chose the cluster BKS [7,8] used,
H4SiO4. Fitting purely to it is a test of the robustness of
the BKS procedure without recourse to experimental crys-
talline data as a corrective. For TTAM-type fits, we chose
H6Si2O7. It tests the significance of including a real Si–Si
interaction in a silica-like cluster. In contrast, were we to
apply the logic of the TTAM atom-by-atom parametriza-
tion approach to their cluster, SiO4�

4 þ 4eþ, alone, the odd
result would be a non-Coulombic Si–Si interaction from a
cluster with only one Si. (Also there is a technical reason
for not using the cluster employed by TTAM: the bare ter-
minating charges cause problems. See Ref. [13] for details.)



Table 2
Parameters of the BKS type for silica from fitting to energetics of the
unconstrained H4SiO4

Q aij bij cij

Si–Si 2.0267 0 0 0
Si–O 18003.799 4.74236 133.7342
O–O �QSi/2 1388.7787 3.92408 242.4551

See text for cautionary notes. Qi in units of electron charge, aij in eV, bij in
Å�1, cij in eV Å6.
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For reference, all the calculations on the BKS cluster,
H4SiO4, were done at the highest level of refinement
(CCSD(T) with the richest basis set, aug-cc-pVDZ; see
Ref. [13] for nomenclature and details). Our fitting fol-
lowed the BKS prescription for handling the terminating
H atoms. Namely, they were treated as scaled silicons in
the pair potential, QH = QSi/4, with no other interaction.
We calculated energies on a grid of 15 geometries around
the computed equilibrium configuration: a single Si–O
bond stretched by ±0.4, ±0.2 Å, all four Si–O bonds uni-
formly dilated by ±0.4, ±0.2 Å, and one O–Si–O bond
angle distorted by ±6�, ±4�, and ±2�.

The BKS cluster introduces an unanticipated, spurious
termination effect. As shown in Ref. [13], a high-level calcu-
lation of the equilibrium H4SiO4 geometry has two distinct

O–Si–O angles, 100.3� and 114.2�. This behavior, which
did not occur in the original BKS calculation, is a conse-
quence of H-termination and the resulting O–H interac-
tion. The two distinct angles force the fitted O–O
potential to compromise between a shorter and longer
equilibrium O–O distance. The only way to do that with
a pairwise potential (which has only a single extremum),
Eq. (1), is via parameters that give an unphysical potential.
Such behavior showed up severely in the actual parametri-
zation: the fitted O–O potential has a local maximum at the
minimum, 100.3�, of the CCSD(T) energy as a function of
the smaller O–Si–O angle.

The BKS cluster energies as a function of geometric con-
figuration and relative to the equilibrium energy are listed
in Table 1. These were fit to the BKS/TTAM form Eq.
(1) by least squares as implemented in the ROBMIN mod-
ules in the code ROBFIT [15,16]. Those modules minimize
the fitting error with the Levenberg–Marquardt scheme
[17], in essence, an algorithm for mixing inverse Hessian
and steepest descent minimizations. The particular imple-
mentation in ROBMIN is unusual in three respects that
proved important in the present work. First, each variable
to be determined (here, each of the potential parameters) is
assigned its own Marquardt weighting parameter. Second,
optimum ratios of the Marquardt parameters for the next
minimization step are determined by analysis of failed min-
imization steps. The overall Marquardt parameter is deter-
mined by the requirement that the predicted v2 be equal to
the current v2 multiplied by a ratio that depends on the
current rate of convergence of the fitting.
Table 1
Energy shifts (Hartree au) for the unconstrained BKS cluster, H4SiO4 from C
calculated equilibrium

One RSi–O +0.2 Å + 0.4 Å �0.2 Å
DE 0.0163496 0.0487257 0.032449

All RSi–O +0.2 Å + 0.4 Å �0.2 Å
DE 0.0702095 0.2053619 0.140229

\O–Si–O +2� + 4� + 6�
DE 0.0001836 0.00071141 0.001558

See text.
Nonetheless, the fitting is difficult in two specific senses.
It is hard to avoid spurious negative parameters. In partic-
ular, it is easy to obtain cO–O < 0. In the original BKS
parametrization cO–O was set to zero in the cluster part
of the fit, then determined entirely from the crystalline part
of their fitting procedure. Working with cluster data alone
precludes this remedy.

The other major fitting problem is to decide how to
weight configurations that energetically are far from equi-
librium. Note Table 1 again. This weighting issue does
not seem to have been addressed in earlier work. Eventu-
ally we settled on an inverse linear weighting wi =
(E1 � E0)/(Ei � E0) where E0 is the calculated equilibrium
total energy and Ei are the energies of the strained config-
urations, with i = 1 the strained configuration nearest in
energy to E0. The resulting parameters are in Table 2.
We do not recommend these parameters for materials sim-
ulations because of the unphysical O–O local maximum
just discussed as well as the general grounds mentioned
earlier.

One way to evade the problem of two O–O equilibrium
separations is to use the ‘‘tetrahedrally constrained’’ (‘‘tc’’)
cluster results from Ref. [13]. Those calculations used the
same method and basis on a BKS H4SiO4 cluster held at
the tetrahedral O–Si–O geometry and with the terminating
Hs cyclic at the dihedral angle found by BKS. The imposed
symmetry of course resolves the O–O problem but at a con-
siderable cost in strain energy; see Ref. [13]. The symmetry
constraint also decouples the bond stretch (Td) and angular
(D2d) modes of motion for fitting. Calculated energies on a
grid of 14 bond lengths and 17 angles went into the fit. The
resulting parameters are in Table 3.

In addition to the general caution about recommending
any of these parameter sets, there is a strong reason to dis-
trust this particular set. The minimum of the fitted energy
CSD(T), aug-cc-pVDZ calculations as a function of geometry shift from

�0.4 Å
4 0.1953456

�0.4 Å
1 0.8431855

�2� �4� �6�
1 0.0001944 0.0008015 0.0018650



Table 3
Parameters of the BKS type for silica from fitting to energetics for the
‘‘tetrahedrally constrained’’ H4SiO4 cluster

Q aij bij cij

Si–Si 2.4 0 0 0
Si–O 7293.45 4.7938 25.980
O–O �QSi/2 1301.98 2.6898 329.428

See text for details. Units as in Table 2.
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occurs at a notably larger angle, about 117�, than the min-
imum in the reference data. Curiously, the published BKS
parameters have the same flaw. Fig. 1 displays the problem.
Notice in particular that the fitted parameters give a poten-
tial that replicates the bond stretch energetics much better
than the published parameters but that both sets miss the
minimum in the angular energetics. (Notice that the zeros
of energy have been shifted to match in Fig. 1. The pub-
lished BKS and TTAM parameters give a zero of energy
that differs drastically from the separated atom limit of
the molecular or crystalline calculations.)

Turning to the TTAM-type fitting, we chose H6Si2O7 as
the reference molecule in part because it had been used as a
surrogate for silica energetics since at least the work of
Newton and Gibbs [18]. A pertinent review from that per-
iod is by Gibbs [19]. More recently Wong-Ng et al. [20]
modeled some aspects of silica fracture mechanics based
on Restricted Hartree–Fock (RHF) calculations for
H6Si2O7. Moreover, this molecule does provide information
on the Si–Si interaction. In the present work, the calculated
molecular energies (in the CCSD approximation) were for
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Fig. 1. Energies (eV) for tetrahedrally constrained H4SiO4 as a function of bond
data from high-level calculations, ‘‘CCSD(T)’’. Crosses connected by the do
CCSD(T) energies. Dashed curve is from published BKS parameters. Continuo
CCSD(T) energies are shifted by 16,012 eV and fitted energies by �6.8 eV; see
12 conformations: equilibrium plus 11 stretches of a single
Si–O bond [13]. This relatively small sample of configura-
tions illustrates the limits imposed by computational cost.
In particular, detailed exploration of the weak dependence
on the central Si–O–Si angle would have been very costly.
See Ref. [13] for details. However, the relative success of a
quantum mechanical Hamiltonian parametrized to the
stretching data alone [21] was encouraging.

TTAM-type fitting for clusters is complicated by the fact
that bij values in the vicinity of the TTAM value tend to
make the total potential energy rather insensitive to the
prefactor aij. If QSi also is kept as a variational parameter,
this fitting instability generally worsens. Since the primary
issue for this part of the study was the Si–Si interaction, we
would have preferred to address the issue by fixing all of
the other parameters (Si–O, O–O) to the published TTAM
values. Then with a starting value for QSi, the parameters
aSi–Si, bSi–Si, and cSi–Si could be fitted. This approach fails
because the Si–Si distances are always such that the Si–Si
potential is sampled only in its tail. The potential is quite
flat there and the fitting is ill-posed. Two other fits do
work, at least in the sense of providing a reasonably close
representation of the CCSD energy as a function of bond
distance. One is to fit only the Si–O parameters, the other
is to fit both Si–O and Si–Si parameters. For the latter case
we tried both QSi = 2.4 and 2.6 with relatively little effect
on the overall quality of fit. In both cases all other param-
eters were fixed at published TTAM values. Notice that
implicitly this forces a reliance on experimental data. The
parameters that result are in Table 4.
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Table 4
Parameters of the TTAM type for Silica from fits to H6Si2O7

Q aij bij cij

Si–Si 2.4 (chosen) 8.729 · 108 15.2187 4502.541
Si–O 10677.686 4.39775 110.039
O–O �QSi/2 1758.02 2.84641 214.877

Si–Si 2.6 (chosen) 8.729 · 108 15.3768 3869.636
Si–O 10062.449 4.35293 107.317
O–O �QSi/2 1758.02 2.84641 214.877

See text regarding QSi and the O–O parameters. Units as in Table 2.
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2.2. Crystal energetics

The procedure for fitting to the computed a-quartz data
from Ref. [14] was essentially the same as the energetic fit
for the clusters, with the additional aspect of lattice sum-
mation. Ewald summation did not prove necessary; a
simple summation by shells of neighbors until the next
additional contributions were below machine precision
sufficed. The resulting fits are shown in Table 5 for both
Perdew–Burke–Ernzerhof (PBE) gradient dependent
approximation and Hedin–Lundqvist (HL) approxima-
tions to the exchange-correlation energy Exc of density
functional theory. Details of these and other calculational
matters are in Ref. [14].

In addition to the fitting issues summarized already, the
cij are difficult to fit to approximate DFT energies. Exact
DFT would yield a van der Waals tail for asymptotically
large lattice parameters. Approximate exchange-correla-
tion energy kernels, such as those used in Ref. [14], cannot
reproduce that exact asymptotic behavior. Those approxi-
mations are local functionals of the charge density and its
gradients. Far from any nucleus, the density decays as
exp[�Cr], so the overlap density in that region also decays
exponentially, hence the asymptotic decay of the approxi-
mate Exc and the DFT Etot is exponential also. The practi-
Table 5
Parameters as fit to the PBE and HL energetics for a-quartz

q aij bij cij

PBE, BKS-type
Si–Si 2.5533 0 0 0
Si–O 10801.333 4.76156 59.9106
O–O �QSi/2 1559.1159 3.12569 95.8142

HL, BKS-type
Si–Si 2.3854 0 0 0
Si–O 10798.007 4.83689 56.9642
O–O �QSi/2 1689.0676 3.27648 78.6577

PBE, TTAM-type
Si–Si 2.4266 8.61588 · 108 15.2183 23.2603
Si–O 10658.861 4.7199 70.6100
O–O �QSi/2 828.9556 2.6117 214.370

HL, TTAM-type
Si–Si 2.4172 8.61588 · 108 15.1592 23.2603
Si–O 10683.035 4.74821 70.6100
O–O �QSi/2 1131.0659 2.73986 214.370

‘‘BKS-type’’ and ‘‘TTAM-type’’: see text. Units as in Table 2.
cal problem is worst for cSi–Si simply because the mean Si–
Si separation is larger than for O–O or Si–O.

Though unmentioned by TTAM [6], their procedure in
fact had a similar problem for Si–Si because they used
HF energies. Those cannot have a van der Waals tail either.
TTAM’s additive parametrization masked the problem.
(BKS [7,8] did not have the problem because they assumed
aSi–Si = cSi–Si = 0.) For TTAM-type fits to the a-quartz
computed data, we were unable to find a sensible, non-zero
set of Si–Si parameters with cSi–Si as one of the fitting vari-
ables. Attempts to do so always led to nonsensical, negative
values of the parameters aSi–Si, bSi–Si. As a pragmatic route
to a TTAM-type fit therefore, we set cSi–Si to roughly the
TTAM value and fitted the remaining parameters to the
a-quartz DFT results. For BKS-type fits, which have
several parameters fixed by design, we were able to find
reasonable values of the cij when calibrated to the a-quartz
computed data.

None of the parameter sets, either BKS- or TTAM-type,
that result from fitting to crystalline calculations much
resembles the published values however. Note particularly
the gross variation in the aO–O parameters for TTAM-type
fits to energetics from the PBE versus HL approximate
density functionals. In contrast, the BKS-type QSi from
PBE is reasonably close to the natural atomic orbital pop-
ulation found in Ref. [13], while the BKS-type fit to HL
data and both TTAM-type fits are close to the value of
2.4 used by both TTAM and BKS. Consequences of these
differences are pursued in Section 3.

2.3. Cluster forces

Since proper embedding of a QM region in an MD sim-
ulation is the objective, fitting to computed forces (energy
gradients) might be superior to fitting to computed ener-
gies. The two approaches obviously are equivalent on an
arbitrarily dense grid. But on a finite grid, the forces at a
point correspond to the infinitely dense mesh limit of
energy differences at multiple grid points. Therefore if
computed forces are available from the electronic structure
calculation it is uneconomical to ignore them. Also there is
a seemingly trivial but operationally important advantage
to calibration against computed forces. In fitting to com-
puted energies, the zero of energy in the electronic structure
calculation (cluster or solid) differs from the zero for the
sum over pair potentials by a constant. Since that constant
offset is unknown a priori, it must be obtained by the fitting
procedure even though it is irrelevant so far as embedding
the dynamics is concerned. Obviously that does not happen
with calibration to forces.

Most modern molecular codes provide ‘‘analytical gra-
dients’’. This is quantum chemistry jargon which signifies
that, for each nuclear configuration, the code computes
force components from analytical expressions for the gra-
dient of whatever approximation to the QM total energy
was chosen. Typically the gradient components are with
respect to internal molecular coordinates, a tedious



1.2 1.4 1.6 1.8 2
−30

−25

−20

−15

−10

−5

0

5

10

dE
/d

(S
i−

O
) (

eV
/Å

/b
on

d)

Si−O bond length (Å)

Td  mode

60 80 100 120 140 160
−16

−14

−12

−10

−8

−6

−4

−2

0

2

O−Si−O angle (degree)
dE

/d
(O

−S
i−

O
) (

eV
/ra

d/
an

gl
e)

D2d mode

Fig. 2. Computed gradients with respect to bond stretch and angular motions of H4SiO4. Symbols as in Fig. 1.
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nuisance but not a true barrier. Such is the case with the
ACES-II code [22] we used. Analytical gradients are rela-
tively uncommon in periodic codes. Fitting function algo-
rithms, such as in the code GTOFF we used [23], have a
particularly difficult technical problem of dealing with so-
called Pulay forces associated with the fitting functions.
Thus GTOFF does not have analytical gradients, so this
part of the study was restricted to the molecular clusters.

Once again, we primarily used the ‘‘tc’’ H4SiO4 BKS
cluster. Gradients for distortions of H4SiO4 with the pub-
lished BKS parameters, turn out to be closer to the
CCSD(T) gradients than might have been supposed (see
Fig. 2). Notice that the fitted parameters reproduce the
Td force components from the electronic structure calcula-
tions almost exactly, whereas the published parameters are
too stiff. However the fitted parameters do only a little
better than published ones for the D2d force component.
The comparison is a bit surprising because the original
BKS fit used cluster reference energies computed at a lower
level of theoretical refinement, RHF, than was used here,
CCSD(T). Details are in Ref. [13].

With the published parameters as a starting point, we
are able to generate a set of fitted parameters that repro-
Table 6
Parameters of the BKS type for silica from fitting to forces for the
‘‘tetrahedrally constrained’’ H4SiO4 cluster

Q aij bij cij

Si–Si 2.40 0 0 0
Si–O 7149.17 4.7864 27.661
O–O �QSi/2 1359.30 2.8086 215.829

See text for details. Units as in Table 2.
duces the Td gradients almost exactly but still has a prob-
lem with D2d gradients. The resulting parameters are
displayed in Table 6. As was shown in Fig. 1, the energetics
that those parameters yield reproduce the CCSD(T) Td

motion energetics quite well (without any zero shifting),
but mislocate the minimum in the D2d motion.

3. MD simulations

3.1. System and methods

For a simple comparative test of the effect of different
parametrizations on calculated materials properties, we
considered the tensile fracture of silica nanorods. The sys-
tem building block is a modular ring of Si6O12 = 6 * SiO2,
with 6 Os in the Si ring plane, and, formally, 3 above and 3
below (alternatively, six above and six below, both shared
with the next module up or down). Each end cap is built
similarly, from a full SiO ring filled out with 3 alternating
bridging Os, corresponding to 12 + 3 + 6/2 = 18 atoms
per end cap. The topmost (or bottommost) 15 atoms in
each endcap are fixed for longitudinal motion; see below.
Hence we refer to ‘‘15-atom’’ endcaps. Two versions of this
system were used: a 36 formula unit (108 atom) nanorod
consisting of four Si6O12 modular rings subject to extension
plus the two caps and a 72 formula unit (216 atom) system
with ten Si6O12 rings subject to extension and the same cap-
ping. Only results for the larger system are presented here
(there was no substantive difference in the behavior of the
smaller one).

The particular nanorod configuration (stacks of 6-mem-
ber rings) is designed to mimic quartz. It consists of tetra-
hedra such that each Si has four neighbors and each O two.



Fig. 3. The equilibrium 216-atom silica nanorod.
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Hence there are no dangling bonds nor artificial termina-
tions and the system is chemically plausible. Additional
motivation for treating these nanorods arises from the fact
that they are the minimal molecular-scale system with
meaningful mechanical properties (e.g. Young’s modulus)
usually associated with an extended system. Intermediate
in size between molecules and the bulk, these nanorods
are tractable with all three simulation techniques: empirical
potentials, quantum chemical electronic structure calcula-
tions, and DFT periodically-bounded supercell calcula-
tions [24].

Each simulation began by Broyden–Fletcher–Goldfarb–
Shanno [25] energy minimization at T = 0 K. If a stable
structure were found, then it became the initial configura-
tion for the MD. MD was not attempted on any system
without a stable T = 0 K structure. During the MD runs,
the axial coordinates (z) of the endcap atoms were fixed
at their T = 0 K values. All other coordinates (x, y for end-
cap atoms, x, y, and z for others) then were relaxed for
1000 time steps. The temperature was held at T = 5 K by
velocity rescaling whenever the kinetic temperature devi-
ated by more than 1 K. Time steps of 2.15 fs were used;
testing showed no significant change with use of much
shorter steps. At each time step after equilibration, the
nanorods were elongated by an increment equivalent to a
strain rate of 5 m/s until and well beyond failure. The
MD code [26] uses the sixth-order Gear predictor–correc-
tor integrator [1,27].

3.2. Calculated stress–strain curves

The published BKS and TTAM parameters give a sta-
ble equilibrium nanorod of the type shown in Fig. 3.
Unsurprisingly, the BKS-type fit to the energetics for
the unconstrained H4SiO4 does not give a stable
T = 0 K equilibrium configuration. This follows from
the unphysical character of the O–O interaction generated
by the parameters in Table 2. Recall discussion above.
More significantly, the BKS-type parameters fitted by
energy criteria to ‘‘tc’’ H4SiO4 also fail to yield a stable
T = 0 K equilibrium nanorod. In this case the problem
is a bit more subtle. Study of Figs. 1 and 2 helps in under-
standing. The fitted potential is too repulsive for angular
compressions and too weak for large angular expansions.
As a result the system will not stay together. Presumably
the published parameters are better in this regard because
of the corrective influence of experimental crystalline
data.

Neither of the TTAM-type fits tabulated in Table 4 will
give a stable 216-nanorod either. Here the difficulty seems
to be related to the Si–Si interaction problem discussed
above. It may also be that the restriction of calibration
data to a single bond stretch is a factor. Considering other
distortions would have been computationally prohibitive
however.

Fig. 4 gives a comparison of the stress–strain behavior
of all the BKS-type fits that work, namely gradient fit to
‘‘tc’’ H4SiO4 and a-quartz fits. Fig. 5 gives TTAM-type
results. There are clear qualitative differences. Published
BKS parameters give the highest yield strength by far,
perhaps not surprising in view of Fig. 1, especially for Td.

The HL and PBE fits differ relatively little but are sub-
stantially different from the published BKS parameter set.
Most notable is the gradient-fitted BKS set, which gives
roughly two-thirds the yield strength of the nanorod (at
slightly lower failure strain) versus the published-BKS-
parameters. Comparison of Figs. 4 and 5 show a curious
behavior for the gradient fitted BKS-type potential. It gives
essentially the same failure strain as published TTAM
parameters but at about 10% lower yield strength. This is
a stark example of the non-uniqueness of single-cluster
parametrization.
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In general the fitted TTAM systems fail ‘‘at once’’:
beyond the yield strain the stress is essentially independent
of strain. In marked contrast, the system with published

TTAM parameters and all the systems with BKS-style
parameters generate failure that seems to be related to indi-
vidual bonds (pair attractions): notice the sawtooth of
failure and partial rebound. This is a clear qualitative differ-
ence generated simply by a change in parametrization.
Since the failure mechanisms of nanorods are not the focus
of this work, we eschew further analysis.

Previously we had reported [28] that the TTAM-type
parametrization for the PBE-DFT (generalized gradient
approximation) a-quartz data (‘‘TTAM-PBE’’) did not
give a stable nanorod. TTAM-HL does. This instability
was for the T = 5 K MD, not for T = 0 K pure energy
minimization. Even after re-examination, however, we
have not found any fitted parameter set for TTAM-PBE
that will give a stable T = 0 K configuration. This differ-
ence between TTAM-style fits to data from different
DFT XC approximations is a striking sensitivity. Recall
from Ref. [14] that the PBE and HL exchange correlation
models give calculated a-quartz properties that differ rather
modestly. The differences are quantitative, not qualitative.
Yet those seemingly modest shifts are enough to have a
qualitative impact on the simulation predictions generated
by the fitted potentials.
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A subtle general characteristic of all these curves is their
evident curvature from about ten percent of yield strain all
the way to failure. This is considerably more nano-scale
ductility than found in full QM calculations on the same
system [24]. Again there are implications for embedding.
As long as the local strain is in the linear stress–strain
region, the embedding should be comparatively straightfor-
ward. A problem would arise if the QM were substantially
more brittle than the MD; consider for example a fracture
simulation.

None of the TTAM-style parameters fit to H6Si2O7 via
fitting both Si–O and Si–Si together give a stable T = 0 K
nanorod. Comparison of the parameter values in Table 4
with the published TTAM values shows why. Without a
more extensive exploration of the configuration space of
H6Si2O7, we see no way of getting a useful parametrization
from that cluster. The obvious barrier is computational
cost.

3.3. Combining cluster and crystalline data

We did not study fits to cluster and bulk data together
because of method incompatibility. The problem is related
to the systematic, unbounded error growth found when
intertwining methods in calculating surface energies [29].
In view of the qualitative differences in MD calculations
caused by the relatively modest difference in two DFT
models, we see no merit in combining data from DFT
and CCSD(T) calculations into one fit. Even if that proce-
dure were to work in this case, there could be no assurance
of its generality. It also would be at odds with the objective
of embedding a QM region in the best possible classical
region. Since only one QM method would be used in a
given region, there is little relevance to concurrent fitting
to results of several distinct QM calculations in the same
region.

4. Conclusions

Most potentials are developed for the purpose of doing
MD alone. That not only avoids any need for explicit QM,
but actually allows parameter values that might be difficult
to extract or even justify from QM calculations on a partic-
ular set (usually small) of reference systems. Predictive,
first-principles simulations obviously cannot exploit this
logical loophole. In particular, multi-scale embedding
strategies must aim to have a large CM region that differs
as little as possible from the smaller, embedded QM region.
Consistency requires that this be true even in those circum-
stances when the QM region, for some other reason, does
not give experimentally valid results.

It would be preferable to have an embedding strategy
that did most of its work in stand-alone QM calculations
prior to a specific simulation. Put simply, it would be
highly desirable to have a generic silica embedding poten-
tial pre-calibrated to a selected first-principles QM approx-
imation. The present work shows that there are severe
difficulties with that approach. First, there are reference
systems and QM approximations that, in combination with
a plausible potential form, fail completely to reproduce the
most basic QM outcome, a stable equilibrium structure. A
satisfactory embedding strategy must screen out such com-
binations of systems and potentials. Second, there are large
difference in parameter sets that correspond to seemingly
modest differences in the choice of method and technical
details (basis set size for example). Yet for an a priori
scheme to work, it is crucial not to depend upon significant
intervention by the user.

In a multi-scale simulation, the benefit of the CM poten-
tial is that it avoids explicit consideration of the electronic
degrees of freedom. This strategy cannot succeed for all
properties of the system. The issue then becomes, which
properties are to be calculated and to what accuracy? There
is also the issue of transferability of the potential. This
work shows that re-fitting popular existing forms of SiO2

potentials to a more limited, though higher quality first-
principles database, does not necessarily yield better poten-
tials. It might be that use of a mixed data set, i.e. one
having both cluster and bulk data, would be a good strat-
egy. But, as we have just discussed, to avoid incompatible
QM approximations, present-day computational costs
would restrict any such mixed approach to DFT calcula-
tions. Highly refined QM approximations, such as cou-
pled-cluster methodology, simply cost too much to be
applied to any but the simplest bulk systems.

If the pre-calibrated embedding potential approach is to
succeed at all, it will require at least two other kinds of pro-
gress. The harder task is to find a reliable, systematic way
of identifying a crucial reference system or systems. The
issue is illustrated by the fact that the particular potential
used here requires a tetrahedrally constrained H4SiO4.
Another illustration is the potential expense of an adequate
H6Si2O7 calibration data set. More realistic potential func-
tions also will be essential, yet they must be simple enough
to allow an embedding to be developed swiftly and not as a
significant research project per se. Based on the present
work, we are dubious about the prospects for such a
multi-scale strategy. What appears to be a more promising
multi-scale approach is discussed in Ref. [30].
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