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We have measured the lattice constants and Debye–Waller factors of ZrC from
12 to 1600K using neutron diffraction. The data have been analyzed with the
Grüneisen equation of state using an existing procedure for the Debye–Waller
factors and a new procedure for the CTE that takes the temperature dependence
of the elastic stiffness into account. The results of these measurements are in good
agreement with previous measurements and with recent calculations. We have
used the results of our measurements to estimate the melting point of ZrC with
the Lindemann rule and obtain an estimate of 4000K, in good agreement with the
measured melting point of 3700K of this highly refractory material. This last
result demonstrates the importance of anharmonic effects in determining the
melting point.

1. Introduction

ZrC is one of a large family of highly refractory interstitial compounds with the
NaCl-type structure [1]. The Nb(N,C) conventional superconductors and the HfC
materials that have the highest known melting point are close relatives. Previous
experimental work on ZrC includes thermal expansion measurements by Houska [2],
elastic constants and by Chang and Graham [3], phonon spectra by Smith et al. [4].
There have been recent calculations of the elastic properties and lattice dynamics by
Jochym and Parlinski [5] and of the anharmonic properties by Li et al. [6].

We used neutron diffraction to measure the thermal expansion of ZrC with the
intention of determining activation energies for carbon vacancy formation using the
method of Simmons and Balluffi [7]. In this paper we report thermal expansion
and Debye–Waller factor measurements over the temperature range 15–1600K.
The results of these measurements are generally in good agreement with previous
measurements and with recent calculations. We analyzed the thermal expansion data
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with a new procedure based on the Mie–Grüneisen equation of state that is explained
in the appendix to this paper.

2. Experiment

Zirconium carbide powder of particle diameter 20–30 mm was prepared via
carbothermic reduction of ZrO2 in a refractory metal furnace. The powder material
was determined by a combination of LECO analysis and combustion to contain less
than 100 ppm oxygen. Disks of approximate dimensions 90mm diameter� 15mm
thick were prepared by hot pressing the powder at 2100�C, 4000 psi to near
theoretical density. Diffraction samples of approximate dimensions 5� 5� 30mm3

were cut from the centre of the disks.
Diffraction measurements were made on the general purpose powder diffract-

ometer (GPPD) at the intense pulsed neutron source (IPNS) at Argonne National
Laboratory. Low temperature measurements were made using a closed cycle helium
refrigerator between 15 and 300K. High-temperature measurements were made
using a special furnace with an alumina tube heated to temperatures between 20 and
1300�C in a helium atmosphere. As the thermal time-constant of this furnace is
inconveniently long between 20 and 300�C, data were not collected in that range.
Temperatures were determined with Pt–PtRh thermocouples and are believed to be
accurate to �5�C.

The design of the furnace permitted measurements with only the �90�

detector banks of GPPD, whereas the low-temperature measurements provided
data with �90� and the higher resolution �148� detector banks. There was,
inevitably, a small discontinuity in the diffractometer calibration at room
temperature, and this was removed in the analysis procedure. A second
discontinuity in the Debye–Waller factor results was introduced by temporary
failure of the furnace at 900�C, and this was accommodated in the standard
analysis technique developed for the analysis of the temperature dependence of
Debye–Waller factors obtained by pulsed neutron diffraction [8–10]. Diffraction
data were analyzed with the general structure and analysis system (GSAS) of
Larson and Von Dreele [11].

3. Experimental results

Figure 1 shows the lattice constants of ZrC plotted versus temperature. They are
in good agreement with earlier measurements [2] and fair agreement with
calculations [6]. The analysis of the ZrC lattice constant data was based on an
optimization of equation (A3) from the appendix, modified to accommodate the
calibration discontinuity at 300K. The optimized parameters are the vibrational
temperature characteristic of thermal expansion, �, the Grüneisen constant �,
and a parameter � that is characteristic of the temperature dependence of the

2508 A. C. Lawson et al.
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stiffness:

� ¼ �
1

�B

@B

@T

� �
P

þ
@1n�

@1nV

� �
T

: ð1Þ

The result of the optimization for ZrC is �CTE¼ 627(30)K and �¼ 1.42(2) with

�¼ 4.9(5). The error in � is large, reflecting the insensitivity of the high temperature

thermal expansion to �. However, the error of the fit is quite small, as shown in

figure 1. The fitted parameters are used to calculate the thermal expansion, and the

result is shown in figure 2. For comparison, we have also plotted the calculated

thermal expansion reported by [6]. In the analysis we have used the value

B¼ 2.23� 1012 dynes cm�2 taken from the literature [2, 4], and a value of Vm

derived from the low-temperature lattice constant.
Figure 3 shows the fitted mean-square thermal displacements of the Zr and C

atoms plotted versus temperature using a standard definition of hu2i:

u2
� �

�
u2x
� �

þ
�
u2y
�
þ u2z
� �� �

3
: ð2Þ

Figure 1. Lattice constants of ZrC, fit to equation (A3) and the error of the fit. Also shown
are the experimental points of Houska [2] and calculated points of Li et al. [6].

Thermal expansion and atomic vibrations of zirconium carbide to 1600K 2509
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Figure 3. Mean-square atomic thermal displacement (hu2i) for Zr and C in ZrC measured by
neutron diffraction. Also shown is the average displacement curve calculated by Li et al. [6].

Figure 2. Volume coefficient of thermal expansion (CTE) for ZrC derived from a fit to
equation (A3). Also shown is the curve calculated by Li et al. [6].

2510 A. C. Lawson et al.
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The Debye model is used for both C and Zr; we also tested the Einstein model
for the C data, but the Debye model fits are better, as determined by the values
of reduced �2. For zirconium, the Debye temperature is somewhat temperature-
dependent: �Zr¼ 484(18)� 0.038(9)TK; for carbon, the the Debye temperature is
independent of temperature: �C¼ 1220(11)K. In an early stage of the
refinements, we found that the atom fraction of carbon is independent of
temperature; the average value is 1.00(1), and this refinement was subsequently
switched off.

The two atomic vibrational frequencies, as measured by the Debye
temperatures, are quite different, but the spring constants are about the same,
as shown by the ratio:

�Zr

ffiffiffiffiffiffiffiffiffi
MZr

p

�C

ffiffiffiffiffiffiffiffi
MC

p ¼ 0:91ð4Þ: ð3Þ

The average Debye temperature is found from the average spring constant:

� ¼
�Zr

ffiffiffiffiffiffiffiffiffi
MZr

p
þ�C

ffiffiffiffiffiffiffiffi
MC

pffiffiffiffiffiffiffiffiffi
MZr

p
þ

ffiffiffiffiffiffiffiffi
MC

p ¼ 680ð26ÞK, ð4Þ

in reasonable agreement with the value of 627K found from the thermal expansion.
We can determine atomic Grüneisen constants from the temperature depen-

dences of the �: �¼�0þ cT. For carbon, we find �C¼ 0. For zirconium, we find

�
Zr
¼ �

cZr
�Zr�

¼ 3:4ð9Þ: ð5Þ

For the average Grüneisen constant we have [12]:

� ¼
�ZrCZrðT Þ þ �CCCðT Þ

CZrðT Þ þ CCðT Þ
�

1

2
�Zr ¼ 1:7ð5Þ: ð6Þ

The atomic Grüneisen constants must in principle be somewhat temperature
dependent to track the temperature dependences of the heat capacities, but we have
neglected this feature in view of the large error of �Zr. The significant difference
between the two atomic Grüneisen constants shows that the anharmonic motion of
the Zr atoms is by itself responsible for the thermal expansion of ZrC, and the
carbon atoms do not contribute.

4. Comparison with previous work

Data obtained by previous investigators are shown and compared with the present
results in table 1. Houska [2] used X-ray diffraction to measure the lattice
constants and Debye–Waller factors of ZrC to the very high temperature of
1700�C. We determined the thermal expansion for his data by a linear fit to the
lattice constants; his reported Debye–Waller temperature is also shown in table 1.
Chang and Graham [3] used ultrasonic methods to obtain the single crystal elastic
constants and their temperature dependence over the range 4–300K. They made

Thermal expansion and atomic vibrations of zirconium carbide to 1600K 2511
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thermal expansion measurements in the range 4–500K to provide necessary

corrections to their elastic data, but did not report a thermal expansion. We have

estimated a CTE by making a linear fit to their graph of thermal expansion. We

also determined a value for B�1(dB/dT ) from their graphs of the temperature

dependence of the elastic constants. Chang and Graham [3] also reported a value

for the elastic Debye temperature. Smith et al. [4] determined the phonon spectrum

of ZrC experimentally using neutron scattering. Their results confirmed the

ultrasonic measurements, and no anomalies were found in the spectra. Jocym and

Parlinski [5] calculated the phonon spectrum and obtained good agreement with

the measured spectrum of Smith et al. [4]. The calculated bulk modulus agrees with

that obtained by Chang and Graham [3]. Li et al. [6] calculated the phonon

frequencies and their volume dependences. From these, they were able to get the

Grüneisen constant and the thermal expansion. The present work proceeded in

reverse order: we measured the thermal expansion and derived a value for the

Grüneisen constant. All of these results are collected in table 1. A calorimetric

Debye temperature [13] is included for comparison.
The table shows that our measured thermal expansion is a bit higher than the one

calculated by Li et al. [6]. If this discrepancy were on the experimental side,

a temperature error of the order 10% (measured lower than actual) would be

required, and such an error seems to us too large to be credible. Figure 1 includes a

comparison of our lattice constants with those obtained by Houska [2] and the

thermal expansion results of Li et al. [6]. Li et al. [6] also calculated the Debye–

Waller factors for the zirconium and carbon atoms, and these are in excellent

agreement with our experimental results, as shown in figure 3; we have divided their

values by three in accordance with our definition of hu2i.
There is considerable disparity among the Debye temperatures reported in

table 1. The neutron Debye–Waller temperature for Zr is in good agreement with the

Debye temperature from low-temperature heat capacity, but the Debye–Waller

temperature for carbon is considerably higher, in accordance with the much lower

mass for carbon. As we have already shown, this leads to an average Debye

temperature that agrees with the measured Debye temperature for thermal

expansion.
The vibrational density of states (DOS) was calculated by Jocym and Parlinski [5]

and by Li et al. [6]. In figure 4 we show the vibrational DOS from Li et al. [6]

together with the DOS from the Debye model used for Debye–Waller and heat

capacity data analyses. The DOSs are in general agreement, but the atomic

calculations show much finer structure. According to the interpretation given by

Li et al. [6], nearly all the frequencies below 10THz are zirconium-like and nearly all

above are carbon-like. We may therefore think of the light carbon atoms executing

high frequency vibrations inside their zirconium cages.
The � values in table 1 are in generally good agreement. The value of � is

nearly twice the value for �, and equation (1) suggests a large value for

q¼ (@ ln �/@ lnV )T, the volume variation of the Grüneisen constant. However,

comparison of our results for Cu. given in the appendix, to results from the

literature, show that values of q obtained from thermal expansion measurements

may not be reliable.

Thermal expansion and atomic vibrations of zirconium carbide to 1600K 2513
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5. Lindemann rule and high melting point

With a melting point of 3700K [14], ZrC is a member of a family of high-melting
point materials. HfC has the highest known melting point for a binary, 4160K [15].

In the absence of a melting theory with a more established physical basis, we can
apply the Lindemann melting rule, which states that a material melts when the

amplitude of thermal vibration is a small fraction (about 0.08) of the interatomic
distance. We have used equations derived previously [16, 17] to estimate the melting

point of ZrC. It turns out that it is very important to take the temperature

dependence of the Debye temperature into account:

Tmelt ¼
f 2�2=3mkB�

2

3 �h2
: ð7Þ

In equation (7) f is the ratio of vibrational amplitude to interatomic distance required
for melting according to the Lindemann criterion, and � is the atomic volume.

We take f¼ 0.08, as suggested by figure 6 of Lawson [17]. If � is temperature

dependent, then we have an implicit equation for Tmelt that can be solved
numerically. It is solved explicitly by Lawson et al. [16].

On the basis of the data presented in figure 3, we estimate Tm¼ 4000K, which is

8% higher than the observed value. Ignoring the temperature dependence of �, we
get Tm¼ 9600K, which is more than twice the experimental value. It appears that the

melting point in this important family of interstitial carbides is limited by the
temperature dependence of the stiffness. (Li et al. [6] also estimate a melting point of

4000K, but their estimate neglects anharmonic effects, and they use a somewhat
different formulation of the Lindemann rule.)

Figure 4. Phonon density of states (DOS) calculated by Li et al. [6] compared to the Debye
model DOS derived from neutron diffraction data.

2514 A. C. Lawson et al.
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6. Discussion and summary

ZrC is a semimetal (its electrical conductivity is about one-third of that of pure Zr),
but with strong covalent interactions whose consequences were studied by Li et al. [6].
Using a simple 2nd-moment potential (embedded atom) formwith isotropic ‘‘hopping
strengths’’, they found it was infeasible to adequately fit the properties of ZrC.
Angular interactions are indeed quite strong when one looks at the spatial distribution
of forces induced by a small displacement of the Zr or C atom in the lattice, in density
functional theory (DFT) calculations. Thus they developed a pseudo 2nd-moment
potential, where the overall potential form still looks like the 2nd-moment potential,
but with angular interactions in the ‘‘hopping strength’’. Furthermore, to avoid
the problem of over-fitting a small DFT data set, they sought a minimal
representation of the angular interactions, with the least number of parameters.

Due to the small number of parameters (fitted already to DFT force constants
and cohesive energies), we do not expect that significant improvement could be
achieved with the present potential form in fitting new properties, without
deteriorating some other properties. The philosophy of this potential is to seek a
robust 0th-order description, rather than the luxury of achieving high accuracy in a
certain property. Having said that, it is probably not too surprising that the finite-
temperature vibrational properties of ZrC can be predicted well, since we fitted to the
harmonic force constants. This minimal potential form should work with similar
quality for TiC, HfC and maybe other semimetals.

In the present work, we found that lattice constants and Debye–Waller factors
measured by neutron diffraction are in good agreement with previously reported
data and with existing theory. The temperature dependence of the two atomic
Debye–Waller factors indicates that the zirconium atoms are much more
anharmonic than the light carbon atoms. This anharmonic behaviour, in particular
the elastic softening, is responsible for limiting the melting point of ZrC to 3700K.
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Appendix: Thermal expansion analysis and application to copper

We have developed a new procedure for thermal expansion data that
will be presented in detail and validated by application to data for
copper. Thermal expansion data are often analyzed with the Grüneisen equation

Thermal expansion and atomic vibrations of zirconium carbide to 1600K 2515
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of state [18, 19]:

P� P0 ¼
�U

V

where P is the pressure, U is the internal energy and � is a constant, now known as

the Grüneisen constant. U is usually taken from the Debye model with characteristic

temperature �D. Taking the temperature derivative at constant volume, it follows

that the thermal expansion is proportional to Cv, i.e.

� ¼
�C

BV
:

When this analysis is made for real materials, it is found that � is not precisely

constant but is rather a weak function of temperature.
Since the temperature variation of the internal energy and heat capacity is usually

not known in advance, we assume that these quantities are given by the Debye model

and that � is strictly constant with temperature. We also anticipate that � may differ

somewhat from the calorimetric �D because the thermal expansion depends more on

transverse vibrations [20, 21] than does energy. If measured heat capacity data are

available, then the usual thermodynamic Grüneisen constant can be computed by

scaling the constant � by the ratio of the measured heat capacity to the Debye heat

capacity. Our assumptions will not work for all materials; in Si, for example, the

extra vibrational modes arising from the open structure drive the thermal expansion

negative at low temperatures.
As a result of the volume change induced by the thermal expansion, the bulk

modulus and Grüneisen constant vary with temperature according to

B¼B0(1� ��T ) and �¼ �0(1þ �qT ), where � and q are defined by:

q �
@1n�

@1nV

� �
T

,

� � �
1

�B

@B

@T

� �
P

:

The quantity � is the Anderson–Grüneisen constant. The thermal expansion is now

given by

@V

@T

� �
P

¼
�0ð1þ q�T ÞC

B0ð1� ��T Þ
�

�0C

B0ð1� ��T Þ

� ¼
�0ð1þ q�T ÞC

V0B0ð1� ��T Þ
�

�0C

V0B0ð1� ��T Þ

with

� ¼ �þ q: ðA1Þ

This gives a quadratic equation for � with the solution

�ðT,�, �, �Þ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4��CðT,�ÞT=B0V0

p
2�T

: ðA2Þ

2516 A. C. Lawson et al.
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Given a set of � versus temperature values, a fit to this equation can be optimized for

�, � and �; for lattice constants, the optimization can be done with a fit to the

integral of equation (A2):

VðT,�, �, �Þ ¼ V0 1þ

Z T

0

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4��Cð�,�Þ�=B0V0

p
2��

d�

 !
: ðA3Þ

We now test equation (A3) against the high-quality data of Hahn [22] for copper.

The fit shown in figure A1 is quite good considering the simplicity of the model.

The optimization gives �CTE¼ 324.1(5) and �¼ 1.993(2), with �¼ 4.00(2). Values in

the literature are �D¼ 343K [23] and �¼ 1.985 [24].
In addition to the definition of �, there is a relationship [19] between � and q that

involves the pressure derivative K0 ¼ (@B/@P):

K 0 ¼ �þ 1� q�
@1nCV

@1nV

� �
T

: ðA4Þ

The last term in equation (A4) is negligible for T4� and for Cu has the value

þ0.2 at room temperature.
Depending on how much is known in advance about a given material, several

tactics are available for data analysis. Given that � and � are determined from the

thermal expansion, one estimates K0 from Stacy’s version of the Debye model [25]

and calculates q and � by simultaneous solution of equations (A1) and (A4). This is

model 1 in table A1. In model 2, an experimental value for � is taken from the

Figure A1. Volume coefficient of thermal expansion (CTE) for copper derived by the
application of equation (A3) to the data of Hahn [22].

Thermal expansion and atomic vibrations of zirconium carbide to 1600K 2517



D
ow

nl
oa

de
d 

By
: [

G
eo

rg
ia

 T
ec

hn
ol

og
y 

Li
br

ar
y]

 A
t: 

16
:3

0 
24

 M
ay

 2
00

7 

literature, q is estimated from equation (A1) and K0 from equation (A4). In model 3,

we take an experimental value for K0 and use equations (A1) and (A4) for q and �,
respectively. Other routes may be suggested by circumstance. In table A1 we have

applied models 1–3 to copper and 1–2 to ZrC. We find that the derived values for

� and q are only in fair agreement with the literature. Perhaps it would be better to

have a value for K0 measured at T4� and to avoid use of the Debye model

altogether.
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