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Modeling Shearing of gO in Ni-Based Superalloys
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Abstract

The activation energies associated with the formation of a superlattice intrinsic

stacking fault (SISF) from an antiphase domain boundary (APB) and the forma-

tion of a superlattice extrinsic stacking fault (SESF) from a complex stacking fault

(CSF) in g 0 phase of Ni-based superalloys are calculated using a microscopic

phase field dislocation model in combination with the nudged elastic band

(NEB) method. The model incorporates the generalized stacking fault (GSF) en-

ergy and hence allows for dislocation dissociations. The results suggest that for-

mation of SESF from CSF rather than formation of SISF from APB is most likely

the operating mechanism for the isolated faulting of g 0 precipitates observed in

the experiments.

20.1

Introduction

In precipitation-hardened alloys, dislocation–precipitate interactions include Oro-

wan looping, precipitate shearing, and dislocation climbing over the precipitates.

In Ni-based superalloys all these mechanisms have been observed under different

deformation or microstructural conditions [1–3]. The transition in deformation

mode depends on precipitate size, applied stress, deformation temperature, and

time at temperature (due to microstructural coarsening). The classic strengthen-

ing mechanism for Ni-based superalloys has been the shearing of g 0 precipitates
by pairs of a/2h110i matrix dislocations coupled by an antiphase domain bound-

ary (APB). Recent experimental observations [4], however, have shown that stack-

ing faults rather than APBs are created in the g 0 precipitates during deformation.

Some of the possible mechanisms producing either a superlattice intrinsic stack-

ing fault (SISF) or a superlattice extrinsic stacking fault (SESF) rather than an

APB in the g 0 phase have been proposed, including Kear [5] and Condat [6]. How-

ever, no quantitative calculations of the kinetics of these mechanisms exist.
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Recently the energetics for the formation of SISF and SESF in g 0 particles have
been investigated using a quantitative microscopic-level phase field dislocation

model [7]. In the present contribution the major features of the model and the

main results on the activation energies for the formation of these two types of

stacking fault are summarized. The results may shed light on the possible mech-

anisms of g 0 shearing and microstructure sensitivity observed in disk alloys dur-

ing their creep deformation.

20.2

Method

A dislocation can be considered as, instead of a singular defect line, a boundary

that divides a glide plane into two areas that differ in inelastic shear displace-

ment. The phase field models for dislocation glide [8, 9] utilize a field description

of the inelastic shear displacement for dislocations. Although the inelastic

displacement field is generally defined in a three-dimensional (3D) crystal, it is

mostly concentrated in glide planes for dislocations and becomes nearly zero in

magnitude in the remaining ‘‘good’’ crystal. In the glide plane, the inelastic dis-

placement field varies rapidly only near the dislocation, by which the dislocation

core is identified. The use of inelastic displacement or, more generally, the local-

ized transformation strain field simplifies the description of dislocation in several

aspects. Since dislocations are merely identified at the positions where the shear

displacement changes rapidly on glide planes, the use of inelastic displacement

field can naturally treat dislocations of arbitrary number and geometry in a 3D

crystal. Introduction of the generalized stacking fault (GSF) energy to the phase

field dislocation model [9, 10] allows the system to sample not only the ‘‘good’’

crystal and the dislocations, but also various stacking faults associated with dislo-

cation activities. For example the creation and annihilation of APBs in g 0 due to

a/2h110i g-matrix dislocations has been simulated with no ad hoc treatment for

the stacking faults [11].

20.2.1

Dislocation and Stacking Fault Modeling

Recently a microscopic-level phase field dislocation model was developed to study

quantitatively dislocation core structures and various stacking faults [7]. The

model uses the inelastic shear displacement field, uðrÞ, to describe dislocations

and stacking faults. The equilibrium state, as well as the dynamic evolution, of

dislocations is governed by minimization of a total energy functional

E total½uðrÞ� ¼ Ecryst½uðrÞ� þ Eelast½uðrÞ� þW½uðrÞ� ð20:1Þ

that consists of Ecryst, the crystalline energy, Eelast, the elastic energy, and W, the

mechanical work by external loading. The crystalline energy (known as misfit en-

244 20 Modeling Shearing of g 0 in Ni-Based Superalloys



ergy in Peierls models [12, 13]) is a spatial integral of a nonconvex local density

function that characterizes the interplanar misfit potential between the crystal

halves at the two sides of the glide plane

Ecryst ¼
ð
dr

gðuðrÞÞ
d

ð20:2Þ

where g is the GSF energy and d the interplanar distance. The elastic energy,

Eelast, based on 3D linear elasticity Green’s function solution, is given in a close

form in Fourier space as [14]

Eelast ¼
ð

dg

ð2pÞ3 ½Cijkl~eeijðgÞ~eeklðgÞ � gi~ssijðgÞWjk~ssklðgÞgl=g 2� ð20:3Þ

where g is the reciprocal space vector, ~eeijðgÞ is a Fourier transform of the inelastic

(transformation) strain tensor eijðuðrÞÞ1uðrÞnn=d, with n being the glide plane

normal. ~ssijðgÞ1Cijkl~eeklðgÞ, ½W�1�jk ¼ giglCijkl=g 2, and Cijkl is the elastic modulus

tensor. The integral, converted to a discrete sum, is taken in the entire Brillouin

zone except for a volume element of ð2pÞ3=V at g ¼ 0, with V being the volume

of the crystal. The mechanical work under applied stress s
appl
ij is given by

W ¼
ð
drs

appl
ij ðrÞeijðuðrÞÞ ð20:4Þ

Whereas the traditional gradient energy is absent in the model, the balance be-

tween the elastic energy and the crystalline energy naturally gives rise to a diffuse

dislocation core at the length scale of Burgers vector. Additionally, relaxation of

the inelastic shear displacement field is allowed only within the glide plane,

which is the same as in the Peierls dislocation model [12, 13]. However, the phase

field model offers the ability of treating arbitrary dislocation configurations. It en-

ables an efficient computation of planar dislocation structures and stacking faults

over a large length scale while maintaining a quantitative treatment of dislocation

cores [7].

20.2.2

Calculation of Activation Energy

The APB and complex stacking fault (CSF) energies are much higher than that of

the SISF and SESF in the g 0 phase. However, the formation of SISF or SESF in-

volves the creation of a new a/6h112i dislocation loop. The change in the total

energy may also include the interaction energy of the stacking fault with neigh-

boring dislocations and the applied mechanical work, which are all included in

Eq. (20.1). The minimum energy pathway and the corresponding activation en-

ergy can then be determined by locating the corresponding saddle point on the

total energy surface.
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An intuitive way is to sample the total energy surface by a series of trial stack-

ing faults with predefined size and geometry. If the ‘‘planned’’ configurations are

sufficiently close to that along the actual minimum energy path (MEP) of the fault

formation, the total energy mapped out will initially increase with the area of the

stacking fault and decrease afterwards, where the saddle point gives the activation

energy. Furthermore, relaxation of each configuration via Ginzburg–Landau

equation

quðrÞ
qt

¼ � dE total

duðrÞ ð20:5Þ

allows producing a more realistic relaxed dislocation core structure, and thus pre-

dicts more accurately the activation energy. This approach is used to study the for-

mation of SISF. In Eq. (20.5) t is the reduced time.

A more rigorous approach is to use the nudged elastic band (NEB) method

[15–18], which is now widely applied in theoretical chemistry and condensed

matter physics in finding MEP and saddle point on a high dimensional potential

energy surface. With the phase field total energy functional (Eq. 20.1) the NEB

method can be applied to identify the critical configuration and activation energy

of the stacking fault without pre-assumption of its geometry. An example of using

this approach to study the formation of SESF is also included.

20.3

Results

20.3.1

Nucleation of SISF from APB

Figure 20.1 shows the GSF energy for g 0 phase on a (111) plane and various stack-

ing faults with their associated Burgers vectors. The GSF energy is expressed in

a 2D Fourier series on a (111) crystallographic plane with the base vectors being

on the reciprocal lattice of the crystal [19], which naturally preserves the crystal

symmetry. The Fourier series is fitted to the fault energies: gCSF ¼ 221 mJ/m2,

gSISF ¼ 12:0 mJ/m2, and gAPB ¼ 172 mJ/m2. The elastic moduli used are

C11 ¼ 224:3 GPa, C12 ¼ 148:6 GPa, C44 ¼ 125:8 GPa [20].

The calculation of the activation energy of homogeneous nucleation of an SISF

is performed in a cubic computational cell of edge length 200 nm, with periodic

boundary conditions applied in all three dimensions. A circular a/6h112i disloca-

tion loop is placed on a prerelaxed APB (of which the shear displacement is auto-

matically determined by the GSF energy) that extends throughout the entire sim-

ulation cell on a (111) glide plane. The system size is found sufficiently large that

the effect from image dislocations is negligible. Each calculation uses a different

radius for the loop, and the initial core profile of the dislocation is single-step

sharp. The dislocation core is also relaxed with Eq. (20.5) for a certain number of
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iterations that have been found to be sufficient by a separate test on straight dis-

locations. The total energy of the system is then calculated using Eq. (20.1) for

both unrelaxed and relaxed cases, and the results are plotted with respect to the

loop radius in Fig. 20.2. In the plot the total energy is shifted by a reference en-

ergy of a configuration with pure APB. The activation energies are found to be

27.7 and 17.0 eV with and without core relaxation, respectively.

A more realistic configuration is illustrated in Fig. 20.3, where nucleation of an

SISF is considered in a finite APB region with an additional interaction with the

Fig. 20.1 GSF energy (in mJ m�2) of Ni3Al for (111) plane.

Fig. 20.2 Activation energy of homogeneous nucleation of SISF from APB.
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leading a/2h110i matrix dislocation. The simulation size is 424� 212� 212

nm3. The radius of the g 0 particle and the interparticle spacing (due to the peri-

odic boundary condition) are 140 and 72 nm, as provided from experimental ob-

servation. The initial configuration is produced by applying a resolved shear

stress of 693 MPa on the matrix dislocation. The dislocation is forced through

the g matrix between two g 0 particles, while in the meantime it partially cuts into

the g 0 particle. The configuration is found nearly in equilibrium under the ap-

plied stress. Afterwards a circular SISF is introduced in the same way as before.

The activation energies are found to be respectively 22.7 and 17.7 eV with and

without core relaxation (Fig. 20.4).

Fig. 20.3 Nucleation of SISF in a finite APB (at the marker M).

Slip regions are shown in different shade. The g 0 particle is outlined

by the dashed circle.

Fig. 20.4 Activation energy of nucleation of SISF in finite APB.
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20.3.2

Nucleation of SESF from CSF

The calculated activation energies for the formation of SISF on APB seem too

high for the process to be a plausible mechanism. Therefore, we consider the for-

mation of SESF by successive a/6h112i slip in two adjacent (111) glide planes

and a subsequent short-range diffusive reordering between the two atomic planes

[21]. Furthermore, we assume that the slip in one plane occurs much later than

the slip in the other plane, so that the formation of SESF is equivalent to a homo-

geneous nucleation in the plane one atomic step above an existing infinite CSF.

The second assumption may be considered reasonable since the repulsive force

between the two identical a/6h112i dislocations, if the leading one is still in the

neighborhood, will considerably raise the barrier for SESF formation. The GSF

energy in this case involves a two-layer configuration. Prior to a full planar poten-

tial being available, we use a GSF energy that is constrained along the h112i di-

rection, as shown in Fig. 20.5. The portion of the energy from CSF to pseudo

twin corresponds to a slip on the second plane. At this moment the energy is sim-

ply rescaled to match the pseudo twin energy to the known SESF energy that ac-

counts for the short-range reordering. A more accurate calculation is underway.

The system size considered for the calculation is 200 nm� 200 nm� 200 nm.

Fifty images are used with the NEB calculation for the MEP and the activation

energy. The two ending images correspond to an infinite CSF and an infinite

SESF, respectively. All the remaining images are initially created by linear inter-

polation. We also applied an external stress along the h112i direction with vari-

ous magnitude to assist nucleation. Figure 20.6 shows the energies under an ap-

plied stress of 500 MPa. Since the geometry of the critical configuration is no

Fig. 20.5 Ni3Al pseudo twinning multiplane generalized stacking fault

energy (along 1/6h112i) and the rescaled portion (approximately from

l ¼ 1 to 2) for SESF after short-range reordering. The energy is

calculated in VASP with 108 atoms.
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longer an assigned parameter, we use the total inelastic strain in the glide plane

as the indication of the size of the SESF nucleus. The activation energy is found

to be 3.7 eV (Fig. 20.6). Moreover, as the applied stress increases to 600 MPa the

activation energy reduces to 0.5 eV (Fig. 20.7).

Fig. 20.6 Activation energy of formation of SESF from an infinite CSF.

Fig. 20.7 Variation of the activation energy of SESF with applied stress.
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20.4

Summary

Activation energies for nucleation of SESF in CSF and nucleation of SISF in APB

are calculated using a microscopic phase field dislocation model combined with

the NEB method. The results show that the activation energy for formation of an

SESF is considerably lower than that for the formation of an SISF. Presence of

dislocations in the neighborhood may alter the nucleation barrier. In the case of

an SESF, since the leading a/6h112i partial dislocation that creates the first layer

CSF has the same Burgers vector as the dislocation that subsequently produces

the SESF, their mutual repulsive elastic interaction is expected to increase the

activation energy. In the case of SISF, however, the Burgers vector of the leading

a/2h110i matrix dislocation is nearly perpendicular to the one that connects APB

to SISF. Their elastic interaction has little effect on the activation energy, as indi-

cated by the calculation. Under an applied stress the activation energy for SESF

can be reduced considerably, e.g., from 3.7 eV at 500 MPa to 0.5 eV at 600 MPa.

Since the two partial dislocations in the two layers of CSF have the same Burgers

vector, the optimal stress direction is parallel to the Burgers vector, because it can

facilitate the formation of both CSF and SESF. For SISF, since the two Burgers

vectors are normal to each other, the effect of the applied stress is reduced. With

a rough estimate, the activation energy with an applied stress in the direction 45�

to both Burgers vectors (with no relaxation of dislocation core) can be reduced by

30%.
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