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Refractory diboride with silicon carbide additive has a unique
oxide scale microstructure with two condensed oxide phases
(solid1liquid), and demonstrates oxidation resistance superior
to either monolithic diboride or silicon carbide. We rationalize
that this is because the silica-rich liquid phase can retreat out-
ward to remove the high SiO gas volatility region, while still
holding onto the zirconia skeleton mechanically by capillary
forces, to form a ‘‘solid pillars, liquid roof ’’ scale architecture
and maintain barrier function. Basic assessment of the oxygen
carriers in the borosilicate liquid in oxygen-rich condition is
performed using first-principles calculations. It is estimated
from entropy and mobility arguments that above a critical tem-
perature TCB15001C, the dominant oxygen carriers should be
network defects, such as peroxyl linkage or oxygen-deficient
centers, instead of molecular O2

�
as in the Deal–Grove model.

These network defects will lead to sublinear dependence of the
oxidation rate with external oxygen partial pressure. The pres-
ent work suggests that there could be significant room in im-
proving the high-temperature oxidation resistance by refining
the oxide scale microstructure as well as controlling the glass
chemistry.

I. Introduction

REFRACTORY diborides (HfB2, ZrB2) with 20–30 vol% SiC
additive are prominent ultrahigh-temperature ceramics

withstanding temperatures 2000 K and above.1,2 During oper-
ation in air its surface is oxidized, giving rise to a crystalline
oxide skeleton (HfO2, ZrO2) and a silica-rich borosilicate liquid
that wets it,3–10 produced by the reactions:

ZrB2ðcÞ þ ð5=2ÞO2 ! ZrO2ðcÞ þ B2O3ðl; gÞ (1)

SiCðcÞ þ ð3=2ÞO2 ! SiO2ðlÞ þ COðgÞ (2)

respectively. Intense research is ongoing to characterize and
enhance this scale as a barrier against oxygen11–23 (the scale
microstructure can be seen in, for example, Fig. 4 of Opila
et al.15), which apparently is superior to that of either monolithic
diboride or SiC at the intended high temperatures (see Fig. 1).

The reason for the first superiority (ZrB21SiC4ZrB2) is well
understood. Pure B2O3 melts at 4501C and evaporates rather

quickly above 11001C. In contrast, SiO2 is a strong network
former (pure SiO2 has a glass transition temperature of
11751C), with much larger viscosity as well as much smaller
equilibrium vapor pressure than B2O3 (see Figs. 15 and 16 of
Monteverde and Bellosi).12,13 Thus, oxygen diffusion should be
more sluggish in the silica-rich liquid than in pure B2O3 (l),
which furthermore will be evaporating rather quickly above
11001C.

The reason for the second superiority (ZrB21SiC4SiC) is
less well understood. The crystalline oxide phase ZrO2(c) formed
is often highly porous—although in arc jet testing above 2000 K
it appears that ZrO2(c) could sinter into a less porous compact
layer,16,17 thereby potentially becoming protective also. Whether
the in situ formed ZrO2(c), when fully dense, is as a significant
barrier to oxygen diffusion as SiO2 (l) in open-circuit condition,
is an interesting question that depends on its electronic conduc-
tivity, which in turn depends on how the charge defects are
compensated inside the crystal, related to the amount of impu-
rities. Irrespective of the outcome of that discussion, however,
if ZrO2(c) is quite porous its barrier function is lost, because gas-
phase diffusion through the percolating cracks and pores, even
in the Knudsen diffusion regime, is much easier than diffusion in
condensed phases. In that case then, properties of the silica-rich
liquid will control the effective barrier function of the scale, be-
cause it flows to fill in the cracks and pores of ZrO2(c), as well as
forming an overlayer on top (a ‘‘liquid roof,’’ see for instance
Fig. 4 of Opila et al.15 and Fig. 6 of Rezaie et al.22), thus
occupying both parallel and serial oxygen transport routes.

We suggest an explanation for the second superiority
(ZrB21SiC4SiC) in Section II, based on the notion that a
protective condensed-phase oxide scale must be stable both
thermochemically and mechanically, even when the volatility
diagram2,21,24,25 predicts high vapor pressures (41 atm5
101 325 Pa) in certain regions of the scale. We think the exper-
iments15,16,21,22 suggest that with a porous ZrO2(c) skeleton, the
high gas volatility problem can be avoided simply by the liquid
phase retreating somewhat outwards,21 while still maintaining
mechanical integrity by holding onto the outer ZrO2(c) skeleton
with capillary forces. The porous ZrO2(c) skeleton acts as a
condensing substrate and mechanical support to the borosilicate
liquid. This is not available when oxidizing monolithic SiC,
where the SiO2 (l) is mechanically unstable against gas bubble
coalescence and layer shear-off or spallation above the SiO
boiling temperature.

In Section III, we make some molecular-level predictions
regarding likely oxygen transport mechanisms in the borosili-
cate liquid, based on density functional theory (DFT) calcula-
tions. While it is commonly accepted that molecular O2

permeate through the glassy network at low temperatures,26

the DFT calculation results suggest that network incorp
orated defects such as peroxyl linkage27,28 or oxygen-deficient
centers29,30 will overtake molecular O2 as dominant oxygen car-
riers at aboveB15001C.
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II. Thermochemical and Mechanical Stability Analysis of the
Oxide Scale

ZrB21SiC has a complex scale structure containing at least two
condensed phases: ZrO2(c), which in this section is assumed to
be a highly porous skeleton with percolating holes, and a silica-
rich liquid phase that wets the skeleton. Gas species of the
greatest interest are B2O3, SiO, and CO, although BO, B2O2,
B2O, etc. are also present and can be the dominant gas carriers
in reducing conditions, and can play important roles in mass
transport.31 SiO could evolve by for instance:

2SiO2ðlÞ ! 2SiOðgÞ þO2 (3)

(3) is a key reaction that has been used in constructing vola
tility diagrams.2,21,24,25 When in contact with SiO2(l), with de-
creasing oxygen chemical potential or the equivalent partial
pressure (pO2k), SiO will have higher equilibrium vapor pres-
sure (pSiOm). Volatility diagram of the ZrB21SiC system2,21

indicates that when T4TB�17751C, the peak equilibrium va-
por pressure of SiO inside the scale could exceed 1 atm, which
would then induce a boiling transition (gas bubbles can nucleate
and grow inside the liquid). This violently disrupts the SiO2(l)
scale in the case of oxidizing monolithic SiC. However, the scales
of ZrB21SiC and HfB21SiC appear to be much more tolerant
of such a boiling transition. It is precisely in this T4TB regime
that ZrB21SiC and HfB21SiC demonstrate oxidation resistance
superior to monolithic SiC, which otherwise is considered a
highly oxidation-resistant material (see Fig. 1).

We hereby suggest a ‘‘dynamic view’’ (Fig. 2(a)) and a
‘‘steady-state view’’ (Fig. 2(b)) of why ZrB21SiC is superior to
monolithic SiC. The two views are inherently consistent. Imag-
ine a ZrB21SiC specimen is gradually being heated up in an
oxygen-rich environment like normal air (pO25 0.2 atm), ini-
tially from T � TB. At such high ambient pO2, a protective
SiO2(l) film will condense on top from the very beginning,24 that
wets the ZrO2(c) skeleton, leaving no voids at the base. At
ToTB, monolithic SiC in fact resist oxidation better than
ZrB21SiC. Also at ToTB, the pSiO branch of the volatility di-
agram2,21 in contact with SiO2(l) has a formal thermodynamic
definition but is not physically realizable as pure SiO gas bub-
bles, because any SiO gas bubble anywhere will be crushed by
the dual forces of surface tension and hydrostatic pressure,
which we take to be 1 atm inside SiO2(l). However, as the tem-
perature is brought up to T4TB, a sharp transition happens
inside SiO2(l). Now SiO gas bubbles can nucleate at the base,
with Dp� pSiO�1 atm40 working against the surface tension.
The dynamic view (Fig. 2(a)) examines how the gas bubbles
grow and coalesce, paying attention to the role of the ZrO2(c)
skeleton.

It is likely that the ZrO2(c) skeleton will regulate gas bubble
dynamics. Unlike unconstrained growth inside a completely

liquid scale, gas bubbles (SiO, CO, B2O3, BO, O2, etc. mixture)
in a semisolid porous scale are forced to grow into long fingers
(a pressure difference of the order atm is large enough to dis-
place a liquid, but usually not enough to displace a solid). Re-
action (3) could then happen on one end of the gas finger, BO,
B2O3, SiO, CO, etc. would then diffuse along the gas finger with
O2 diffusing in the opposite direction, and finally when pO2 gets
high enough, SiO could get reoxidized to form SiO2(l) on the
other end of the finger,22 and B2O3, etc. would get solvated in
the liquid and continue to diffuse up the scale. This is equivalent
to a channeling transfer of SiO2(l) from one end of the finger to
the other, which is mechanically untenable without the support
and constraint of the ZrO2(c) skeleton. In reality the pores are
tortuous instead of straight, giving the effusing SiO(g)
much opportunity to react with O2(g) near the end, and the
SiO2(l) product collected on the ZrO2(c) substrate. The skeleton
may also impart significant mechanical integrity to the
scale in the case of bubble outbreaks (bubble diameter con-
strained by the pore diameter) or under external shear flow, be-
cause SiO2(l) adheres strongly to a highly porous ZrO2(c)
skeleton by capillary forces across a large contact area. In short,
the dynamical view is that the ZrO2(c) skeleton helps to
collect and retain the silica-rich liquid, playing an important
mechanical role.

There is also a ‘‘steady-state’’ explanation (Fig. 2(b)), begin-
ning with the interpretation of volatility diagrams.24,25 Volatility
diagrams represent chemical equilibria when assuming some
volatile gas species are in contact with certain condensed phas-
es—solid or liquid. Solid or liquid makes a difference here, be-
cause a liquid could flow in or flow out, easily retreating from a
region if necessary. If a certain condensed phase retreats, then an
originally high volatile gas pressure—assuming the condensed
phase was there—loses its significance. For instance, pB2O3 in
Fig. 11 of Opeka et al.2 must appear more important than it
really is in ZrB21SiC oxidation, because we know there is no
B2O3(l) to make contact with in reality at these temperatures.
Another way of seeing this is that in reality all condensed-phase
B2O3, if they exist, are solvated inside SiO2(l), with much lower
activity than in pure B2O3(l), and thus the actual pB2O3 vapor
pressure should be lowered in proportion and will not be as
dangerously high as it originally looks. This understanding of
the volatility diagram may be translated into the following rule:
liquid phases will retreat from the region where some volatile gas
species, were they in contact, will have high vapor pressure
(approaching hydrostatic pressure inside the liquid), to region
of lower vapor pressure according to the volatility diagram; after
the retreat, the actual vapor pressure of the volatile gas species will
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Fig. 1. One-hour oxidation resistance of monolithic HfB2, monolithic
SiC, and HfB21SiC composite (taken from Clougherty, Pober, and
Kaufman).7

Fig. 2. The ‘‘dynamic view’’ (a) and ‘‘steady-state view’’ (b) of why
ZrB21SiC has better oxidation resistance than monolithic SiC above the
SiO boiling transition temperature.
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be automatically lowered than what the volatility diagram has
originally indicated for the evacuated region.

The above rule comes from thermochemistry. Applying the
rule to oxidizing monolithic SiC above TB (see Fig. 2(b) middle),
we see that the only thermochemically sound steady-state ar-
rangement is for SiO2(l) to retreat to the low pSiO–high pO2

region, and let gas-phase diffusion take over in the intervening
gap, where there will be no condensed liquid phase, thus shut-
ting down the high gas volatility. Unfortunately, although this
setup is thermochemically and diffusion-kinetically sound, it is
obviously mechanically unstable. The ‘‘scale’’ would easily shear
off or spall. This is fundamentally because in monolithic SiC,
with only a single condensed-phase oxide product, which
is a liquid, there is no way to satisfy both thermochemical and
mechanical stabilities simultaneously at T4TB.

In contrast, when oxidizing ZrB21SiC, one gets two con-
densed-phase oxide products. ZrO2(c) itself has only low vola-
tilities of ZrO(g) and ZrO2(g) (see Fig. 11 of Opeka et al.2).
Furthermore it is a solid. So it does not retreat from the high
SiO volatility region, maintaining mechanical connection with
the main body. The silica-rich borosilicate liquid duly retreats
from the high SiO volatility region, thereby removing the high
SiO volatility automatically. This staggered placement of solid
and liquid phases at T4TB, with internal gas finger diffusion
and gas–solid reactions (Fig. 2(b) bottom), is both thermochem-
ically and mechanically sound if the ZrO2(c) skeleton is long
enough, such that even after the retreat the liquid phase can still
hold onto the solid by capillary forces, to have a ‘‘solid pillars,
liquid roof’’ architecture as suggested by many experi-
ments.15,16,21,22 The actual oxidation of SiC particles at T4TB

then no longer follows reaction (2), but directly

SiCðcÞ þO2ðgÞ ! SiOðgÞ þ COðgÞ (4)

a gas–solid reaction without going through the liquid phase,22

which will lead to a porous ‘‘SiC-depleted’’ substrate layer in the
ZrB21SiC.13 The ZrO2(c) ‘‘solid pillars’’ will also grow longer at
the base by gas–solid reaction, with O2(g) reactant and BXOY(g)
product. On the other end of the gas finger, we will have the
reverse of reaction (3):

2SiOðgÞ þO2 ! 2SiO2ðlÞ (5)

which replenishes the ‘‘liquid roof ’’.
The above explanation, if correct, could rationalize why the

microstructure of ZrB21SiC is important for its oxidation re-
sistance,20 because the pore sizes of ZrO2(c) might be related to
the preoxidation SiC particle sizes. As Gasch et al. mentioned,13

‘‘at 20 volume percent SiC, if the SiC particles are assumed to be
small spheres randomly distributed throughout the HfB2 matrix,
the amount of SiC should be above the percolation threshold.
This means that the SiC particles form a network that is inter-
connected in three dimensions.’’ For a certain fixed volume
fraction, smaller pores and better connectivity inside ZrO2(c)
could enhance the collection and retention of the silica-rich liq-
uid. Thus, nanoscale SiC particles might improve the oxidation
resistance of ZrB21SiC,20 by refining the microstructure of the
in situ formed ZrO2(c) skeleton.

The proposed view also explains why 70–80 vol% of the com-
posite is dedicated to ZrB2. It is seen that a porous ZrO2 could be
advantageous for the oxidation resistance for amechanical reason
(not a diffusion kinetics one), if there is also a liquid oxide prod-
uct phase to ‘‘collaborate’’ with. The porous skeleton needs to be
strong enough as well as sufficiently long, to have enough room
for the liquid oxide phase to retreat outward. Otherwise, the two
phases may still have to separate (‘‘high volatility blows away the
liquid roof’’), and the entire system would lose oxidation protec-
tion. One cannot have toomuch SiC (and thus the liquid) and not
enough oxide skeleton, and maintain the mechanical and the-
rmochemical stabilities of the ‘‘solid pillars, liquid roof’’ archi-
tecture. Because capillary force holds the solid and liquid phases
together, microstructural refinement of the oxide scale will lead to

stronger capillary adhesion per unit volume, which could lead to
significant improvement of the overall oxidation resistance.

III. Oxygen Transport in Silica-Rich Liquid

From Section II model, we see that if ZrO2(c) has a percolating-
holes microstructure, the borosilicate liquid will define the effec-
tive barrier against oxygen, irrespective of whether fully dense
ZrO2 is intrinsically better barrier (in open-circuit condition)
against oxygen or not than the borosilicate liquid, as the liquid
occupies both serial and parallel oxygen transport pathways in
the ‘‘solid pillars, liquid roof’’ architecture. In this section we
focus on the atomic-level events that govern oxygen transport in
the borosilicate liquid.

Experimentally, it is still challenging to accurately determine
the composition profile of the borosilicate liquid because boron
is a light element. According to the Hertz–Knudsen–Langmuir
equation,32 the net evaporation flux of a species from a liquid
surface is

J ¼ aDp=ð2pmkBTÞ1=2 (6)

Where Dp is the difference between the equilibrium vapor pres-
sure and the actual vapor pressure of the species at the surface,
and a is a coefficient of order 1. Because pure B2O3(l) has much
higher equilibrium vapor pressure than pure SiO2(l) in an oxy-
gen-rich environment, a borosilicate liquid facing air would
preferentially evaporate B2O3 instead of SiO2. Thus the boro-
silicate liquid should be overall silica rich, with a composition
gradient that is B2O3 depleted at the liquid–air interface, and
B2O3 enriched at the gas finger–liquid interface (Fig. 2(b)), as
B2O3(g) and other boron-bearing gas species31 are carried along
with SiO(g) in the gas finger and get absorbed into the liquid.
Previously, Bongiorno and Pasquarello have studied oxygen
transport in pure silica glass28,33,34 using a multiscale modeling
approach that combines high-level quantum mechanical (DFT)
calculations of the diffusing oxygen species and local energy
barriers, with kinetic Monte Carlo sampling of connected
migration pathways. To bound the results, we decide to model
a borosilicate liquid composition of equal B2O3 and SiO2

proportions.
One major challenge in modeling any glass or liquid is to have

reliable atomic structures. We have adopted the structure gen-
eration approach of Van Ginhoven, Jonsson, and Corrales,35

which was shown to reproduce experimental pair distribution
functions for pure silica. The approach requires a classical in-
teratomic potential to perform long-time molecular dynamics
(MD) simulations at the beginning, followed by further DFT
optimizations. To generate the classical potential, we adopt the
van Beest, Kramer, and van Santen parameterization36 for Si–O
interactions, but fit B–O and Si–B interactions to a series of
small DFT calculations for bulk B2O3, using the software pack-
age GULP.37 Then, starting from random positions for oxygen,
boron and silicon atoms in the supercell, we perform a sequence
of classical MD simulations at temperatures 6000, 5000, 4000,
3000, 2000, and 1000 K. The resulting structures were then used
as input geometries for further DFT calculations (Vienna ab
initio simulation program38,39 with spin-polarized PW91 func-
tional,40 projector augmented wave method,41,42 planewave ki-
netic energy cutoff 400 eV). For our initial studies, a cubic
supercell containing 14SiO217B2O3 formula units is used, with
total 77 atoms. The average density is 2.3 g/cm3. A typical liquid
structure at T5 25001C, after further equilibration by ab initio
MD, is shown in Fig. 3(a). It clearly has a framework structure
with no long-range order, and contains with no dangling bonds
(all Si are fourfold coordinated to O, and all B are threefold
coordinated to O).

Based on these atomic structures, we have studied the ther-
modynamic stability and diffusion kinetics of solvated oxygen
molecules O2

� and atomic O� in borosilicate liquid. The former
stay inside the open cages of the framework and do not interact
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chemically with the framework. The latter are chemically incor-
porated into the network in the form of peroxyl linkage
Si–O–O–B27,28 (Fig. 3(b) inset), extra bridging O between two
B (Fig. 3(b) inset), and others. Because diffusion could be a rare
event, simply performing MD simulations and tracking the
mean squared displacements may not be sufficient, and ener-
gy-landscape exploration techniques such as nudged elastic
band (NEB)43 calculations may be needed. These methods com-
pute the minimum energy path (MEP) and saddle-point config-
uration of thermally activated processes, and then use
transition-state theory44 to estimate the rates.

First, we place one O2
� inside a cage and perform DFT MD

simulation at 25001C for 11 ps (see movie S1 at http://
alum.mit.edu/www/liju99/Papers/08/JACerS/). It is very clear
from the MD trajectory (in contrast to those of simple liquids

such as Ar, as well as water) that the borosilicate liquid still
maintains a very ‘‘rigid’’ framework at 25001C. Indeed, pure
silica is a strong glass-forming liquid,45 and its viscosity does not
show a precipitous drop above the glass transition temperature.
For instance, even at 25001C, pure silica still has a shear viscos-
ity ZB104 poise, which is a million times thicker than that of
room-temperature water. This means the liquid still has a well-
defined network structure at any given moment, and its topo-
logical change does not occur at the same timescale as, for in-
stance, its own Si–O–Si bond stretching. Also, from the 11 ps ab
initioMD trajectory, we find the O2

� is essentially trapped inside
one cage. It just bounces back and forth many times inside a
jiggling cage, with no possibility of escape within the MD sim-
ulation timescale. These facts suggest that one is still justified to
use transition-state theory and numerical schemes like the NEB
method43 to characterize diffusion of O2

�, despite it is embedded
in a liquid. From our MD simulations, adding 50% B2O3 to sil-
ica does not seem to change this consideration qualitatively.

A complication for the NEB calculation is that unlike in
crystals, diffusion inside an amorphous framework has a distri-
bution of local minima and activation energies.33,34 Not all cages
have the same volume, nor the same energy for opening up the
constrictions (see movie S2) when O2

� squeezes from one cage
into the other. In Fig. 5 of Bongiorno et al.,33 we have shown a
typical DFT–NEB-calculated MEP of O2

� diffusion (vehicular
diffusion mode). The forward hop barrier is 1.8 eV, whereas the
backward hop barrier is 1.4 eV. These are somewhat higher than
the 1.12 eV effective migration barrier that Bongiorno and Pas-
quarello34 predicted for O2

� vehicular diffusion in pure silica,
perhaps because of the B2O3 modifications to the network.
More calculations are needed in order to have better statistics.

For vehicular diffusion inside a liquid, there is a well-known
Stokes–Einstein relation:

DðOn
2Þ � kBT=6pZRðOn

2Þ (7)

where R(O2
�) is a nominal hydrodynamic radius of the molecule.

Even though the Stokes–Einstein relation is quite successful in
simple liquids, it can fail in network-forming liquids.46,47 Norton
measured the permeation of gaseous oxygen through vitreous
silica and found an activation energy of 27 kcal/mol (1.17 eV)48

for D(O2
�), in substantial agreement with later measurements.26

However, the activation energy governing Z, the viscosity of
vitreous silica, is in the range of 5.3–7.5 eV.49 So clearly Eq. (7)
does not work. From our DFT modeling, the physics governing
the activation energy of O2

� vehicular diffusion is seen to be an
elastic deformation of the framework (elastic opening of the
constrictions, see movie S2) without changing its network
topology. But the physics behind the activation energy of Z
must involve network topology changes, which necessarily in-
volve Si–O bond breaking.

In addition to O2
� vehicular diffusion, oxygen transport may

also occur by Grotthuss-type oxygen-hopping mechanisms,50

mediated by network defects such as peroxyl linkage27,28 or ox-
ygen-deficient centers.29,30 These mechanisms would involve
bond breaking, and typically higher effective activation ener-
gies—mostly due to the formation energies of such defects.
Figure 3(b) shows one such pathway, where an O2

� breaks up
into two O�:

On
2 ! On þOn (8)

The two O�s then move independently of each other for a while,
and eventually recombine on the other side of the cage (see
movie S3) in this particular NEB calculation setup. In node 3 of
the calculated MEP (Fig. 3(b) inset), one O� takes the form of a
peroxyl linkage Si–O–O–B, while the other O� takes the form of
an additional B–O–B bridge, making the two boron atoms four-
fold coordinated.

We find from multiple NEB calculations in the borosilicate
framework that these coordination defects, once formed, can
interconvert easily, suggesting low migration barriers, similar to
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interstitial defects in metals. On average, the right-hand
side (RHS) of reaction (8) is about 2.8 eV higher in potential
energy than the left-hand side (LHS), as indicated by node 3, 4,
5, 6 of Fig. 3(b) MEP (see also movie S3). However, there are
two free translational centers on the RHS: the two O�s, once
formed, can move independently of each other inside the liquid.
The LHS has only one free translational center, in order
to maintain its molecular form. Thus the RHS of reaction (8)
has entropic advantage of approximately kBlnc, where c
is the prevalent oxygen carrier concentration (per formula
unit of SiO21B2O3), whereas the LHS has energy advantage.
The classic enthalpy–entropy tradeoff in free energy then
suggests that there exists a temperature TC, below which O2

�

is dominant in concentration, and above which O�s
are dominant, if the borosilicate is in an oxygen-rich environ-
ment (the equivalent pO2 is high). In lower equivalent pO2 en-
vironment, oxygen-deficient centers29,30 are also possible carriers.

In reference to O2 in the gas phase, we find the average po-
tential energy of O2

� solvated in borosilicate is 0.73 eV per mol-
ecule, which is essentially the elastic energy in the framework
needed to accommodate the molecule. The average potential
energy of O�, on the other hand, is about 1.78 eV per O. These
energies are used to compute the concentration of O2

� and O� in
borosilicate in equilibration with pO25 0.1 atm, shown in
Fig. 4. Note that cO�2 scales linearly with pO2, whereas cO�
scales linearly with (pO2)

1/2. Thus, deeper and deeper into the
scale, as the oxygen chemical potential gets lower and lower,
the Grotthuss-type oxygen transport should become relatively
more and more important.

Norton measured the solubility of O2
� in pure silica at 10781C

and pO25 1 atm to be 1.9� 10�3 cm3 STP O2 gas per cm3

silica.48 This amounts to 5.1� 1016 per cm3 silica or a dimen-
sionless concentration of about c5 10�5, at pO25 1 atm. This is
about two orders of magnitude higher than our DFT-predicted
O2
� solubility in borosilicate, shown in Fig. 4. This could be due

to the structural difference between pure silica framework and
borosilicate framework. As Bongiorno and Pasquarello34 noted,
the potential energy of O2

� depends sensitively on the cage in-
terstice volume, and there is certainly a structural difference be-
tween pure silica and B2O3-modified networks. This could also
be partly due to the intrinsic errors of PW91 density function-
al,40 which are known to give large errors treating isolated mol-
ecules (the reference state), and nonbonding interactions (O2

�

interactions with the framework).
The above uncertainties aside, it is still a rather conservative

estimate that above TCB15001C the dominant oxygen carriers
in the borosilicate ‘‘liquid roof’’ are network defects instead of
molecular O2

�, because there are other factors not shown in

Fig. 4 that disfavors the Deal–Grove mechanism: (a) the DFT
calculations indicate that the O�s not only have entropy advan-
tage, but also mobility advantages over O2

�, (b) intense aero-
thermal heating environment may introduce a significant level of
dissociated oxygen on the outer liquid surface,14,33 which would
favor O� diffusion from a nonequilibrium kinetics perspective,
(c) as pO2 drops from B104 Pa on the outer liquid surface too
10�5 Pa equivalent at the internal gas finger–liquid interface
(Fig. 2(b)) according to the volatility diagram,2,21 the balance
will shift more and more away from O2

� vehicular diffusion to
network defect Grotthuss diffusion. Oxygen-deficient cen-
ters29,30 may play a significant role in oxygen transport at low
equivalent pO2s. It seems plausible that oxygen in the borosil-
icate liquid could react with the underlying substrate or SiO(g),
injecting oxygen vacancies (e.g., regions of high B and Si stoic-
hiometry) into the liquid, which then diffuse up the scale to re-
combine with O2

� or O� somewhere inside the liquid. (d) In all
the DFT calculations, we have only considered neutral network
defects. Charging the defects may significantly greatly reduce
their formation energies,30,51 although we will then need to solve
the complementary problem of what other defects compensate
the charge and carry out ambipolar diffusion under open-circuit
condition.

The mobility advantage of the peroxyl linkage over O2
� suggests

that arc-jet testing,13,33 which introduces a nonequilibrium distri-
bution of dissociated oxygen atoms on the surface, will likely lead
to faster oxidation than ordinary furnace testing at the same tem-
perature. Also, because the network defects are chemically incor-
porated into the network and thus interact more strongly with
solutes than O2

�, small changes in the glass chemistry could lead to
large changes in the oxygen diffusivity by defect trapping/getter-
ing,30 much more than what Eq. (7) could have suggested.

IV. Summary

We present a congruent explanation of the oxidation protection
of ZrB21SiC based on a ‘‘solid pillars, liquid roof’’ scale archi-
tecture, where the borosilicate liquid defines the effective diffu-
sion barrier, and the solid zirconia collects and retains the liquid
and provides mechanical support. Internal gas fingers will form
as the liquid phase retreats to remove the high SiO volatility
above a boiling transition temperature. At such high tempera-
tures, to satisfy both thermochemical and mechanical stabilities,
the ‘‘solid pillars, liquid roof’’ architecture seems to be a viable
solution, not available to monolithic SiC.

Compared with the borosilicate liquid phase, whether
fully dense zirconia is blocking or unblocking to oxygen in
open-circuit condition depends on its electronic conductivity
(transference number), which in turn depends on how the charge
defects are compensated inside the crystal, related to the amount
of impurities. If the zirconia phase has a highly porous micro-
structure, however, then the above discussion is likely irrelevant
and the borosilicate liquid phase will control the effective diffu-
sion barrier, because it will occupy both serial and parallel ox-
ygen transport pathways.

At low temperatures, it is commonly accepted that molecular
oxygen O2

� dominates oxygen transport. However, from first-
principles calculations with detailed borosilicate atomic structures,
it seems unlikely that this will remain the case at temperatures of
practical interest for the ZrB21SiC thermal protection system
(above 15001C). This means that the oxidation rate will likely
have a complex, sublinear dependence with respect to the external
oxygen partial pressure. Also, if the oxygen carriers are chemically
incorporated and interact strongly with the framework, there is
hope that by tuning the glass composition, the carriers could be
trapped, thereby slowing down oxygen diffusion.
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