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1 Introduction

The tight-binding method attempts to represent the electronic structure of condensed matter
using a minimal atomic-orbital like basis set. To compute tight-binding overlap and
Hamiltonian matrices directly from first-principles calculations is a subject of continuous
interest. Usually, first-principles calculations are done using a large basis set or long-ranged
basis set (e.g. muffin-tin orbitals (MTOs)) in order to get convergent results, while tight-bind-
ing overlap and Hamiltonian matrices are based on a short-ranged minimal basis representa-
tion. In this regard, a transformation that can carry the electronic Hamiltonian matrix from
a large or long-ranged basis representation onto a short-ranged minimal basis representation
is necessary to obtain an accurate tight-binding Hamiltonian from first principles.

The idea of calculating tight-binding matrix elements directly from a first-principles
method was proposed by Andersen and Jepsen in 1984 [1]. They developed a scheme
which transforms the electronic band structures of a crystal calculated using a long-ranged
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basis set of muffin-tin orbitals (MTO’s) into a much shorter-ranged tight-binding represen-
tation. In the framework of this transformation, tight-binding matrix elements can be calcu-
lated by first-principles LMTO method and casted into an effective two-center tight-binding
Hamiltonian called LMTO-TB Hamiltonian [1]. More recently, an improved version of such
a “downfolding” LMTO method, namely the order-N MTO [2], has also been developed
which allows the LMTO-TB Hamiltonian matrix elements to be extracted more accurately
from a full LMTO calculation [3].

Another approach to determine the tight-binding Hamiltonian matrix elements by first-
principles calculations was developed by Sankey and Niklewski [4] and by Porezag et al. [5].
In their approach, the matrix elements are calculated directly by applying an effective one-
electron Hamiltonian of the Kohn-Sham type onto a set of pre-constructed atomic-like orbi-
tals. The accuracy of the tight-binding Hamiltonian constructed in this way depends on the
choice of atomic-like basis orbitals. More recently, McMahan and Klepeis [6] have devel-
oped a method to calculate the two-center Slater-Koster hopping parameters and effective
on-site energies from minimal basis functions optimized for each crystal structure, in terms
of k-dependent matrix elements of one-electron Hamiltonian obtained from first-principles
calculations.

All of the above mentioned work was derived from a description of electronic structures
using a fixed minimal basis set, except the work of McMahan and Klepeis [6]. It should be
noted that while a fixed minimal basis set can give a qualitative description of electronic
structures, it is too sparse to give an accurate description of the energetics of systems in vary-
ing bonding environments. A much larger basis set would be required in the first-principles
calculations in order to get accurate and convergent results if the basis set is going to be kept
fixed for various structures. Thus, it is clear that in order for a minimal basis set to have good
transferability, it is important to focus our attention on the changes that the basis must adopt
in different bonding environments.

In the past several years, we have developed a method for projecting a set of chemically
deformed atomic minimal basis set orbitals from accurate ab initio wave functions [7–12].
We call such orbitals “quasi-atomic minimal-basis orbitals” (QUAMBOs) because they are
dependent on the bonding environments but deviate very little from free-atom minimal-basis
orbitals. While highly localized on atoms and exhibiting shapes close to orbitals of the iso-
lated atoms, the QUAMBOs span exactly the same occupied subspace as the wavefunctions
determined by the first-principles calculations with a large basis set. The tight-binding over-
lap and Hamiltonian matrices in the QUAMBO representation give exactly the same energy
levels and wavefunctions of the occupied electronic states as those obtained by the fully
converged first-principles calculations using a large basis set. Therefore, the tight-binding
Hamiltonian matrix elements derived directly from ab initio calculations through the con-
struction of QUAMBOs are highly accurate.

In this article, we will review the concept and the formalism used in generating the
QUAMBOs from first-principles wavefunctions. Then we show that tight-binding Hamilto-
nian and overlap matrix elements can be calculated accurately by the first-principles methods
through the QUAMBO representation. By further decomposing the matrix elements into the
hopping and overlap parameters through the Slater-Koster scheme [13], the transferability
of the commonly used two-center approximation in the tight-binding parameterization can
be examined in detail. Such an analysis will provide very useful insights and guidance for
the development of accurate and transferable tight-binding models. Finally, we will also dis-
cuss a scheme for large scale electronic structure calculation of complex systems using the
QUAMBO-based first-principles tight-binding method.
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Tight-binding Hamiltonian from first-principles calculations 83

2 Quasi-atomic minimal-basis-sets orbitals

The method to project the QUAMBOs from the first-principles wave functions has been
described in detail in our previous publications [7–12]. Some of the essential features of the
method will be reviewed here using Si as an example. If the Si crystal structure contains N
silicon atoms and hence 4N valence electrons in a unit cell, the total number of minimal
sp3 basis orbitals per unit cell will be 4N . In our method, the 4N QUAMBOs (Aα) are
spanned by 2N occupied valence orbitals which are chosen to be the same as those from the
first-principles calculations, and by another 2N unoccupied orbitals which are linear com-
binations of a much larger number of unoccupied orbitals from first-principles calculations.
The condition for picking such 2N unoccupied orbitals is the requirement that the resulting
QUAMBOs deviate as little as possible from the corresponding 3s and 3p orbitals of a free
Si atom (A0

α). The key step in constructing the above mentioned QUAMBOs is the selection
of a small subset of unoccupied orbitals, from the entire virtual space, that are maximally
overlapped with the atomic orbitals of the free atom A0

α .
Suppose that a set of occupied Bloch orbitals φµ(k,r) (µ = 1, 2, . . . , nocc (k)) and virtual

orbitals φν(k,r) (v = nocc (k) +1, nocc (k) + 2, . . . , nocc (k) + nvir (k)), labeled by band µ

or ν, and wave vector k, have been obtained from first-principles calculations using a large
basis set, our objective is to construct a set of quasi-atomic orbitals Aα(r − Ri ) spanned
by the occupied Bloch orbitals φµ(k,r) and an optimal subset of orthogonal virtual Bloch
orbitals ϕp(k,r)

Aα(r − Ri ) =
∑

k,u

aµα(k,Ri )φµ(k,r) +
∑

k,p

bpα(k,Ri )ϕp(k,r) (1)

where

ϕp(k,r) =
∑

ν

Tνp(k)φν(k,r), (p = 1, 2, . . . , n p(k) < nvir (k)) (2)

The orthogonal character of ϕp(k,r) gives
∑
ν

T ∗
νp(k)Tνq(k) = δpq , in which T is a rect-

angular matrix which will be determined later.
The requirement is that Aα should be as close as possible to the corresponding free atom

orbitals A0
α . Mathematically, this is a problem of minimizing 〈Aα − A0

α|Aα − A0
α〉 under the

side condition 〈Aα|Aα〉 = 1. Therefore the Lagrangian for this minimization problem is

L = 〈Aα − A0
α|Aα − A0

α〉 − λ (〈Aα|Aα〉 − 1) (3)

The Lagrangian minimization leads to

Aα(r − Ri ) = D
−1/2
iα

⎡

⎣
∑

k,µ

〈
φµ(k,r)

∣∣ A0
α(r − Ri )

〉
φµ(k,r)

+
∑

k,p

〈
ϕp(k,r)

∣∣ A0
α(r − Ri )

〉
ϕp(k,r)

⎤

⎦ (4)

where

Diα =
∑

k,µ

∣∣〈φµ(k,r)
∣∣ A0

α(r − Ri )
〉∣∣2 +

∑

k,p

∣∣〈ϕp(k,r)
∣∣ A0

α(r − Ri )
〉∣∣2

(5)
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For this optimized Aα , the mean-square deviation from A0
α is

�iα = 〈
Aα − A0

α|Aα − A0
α

〉1/2 = [2(1 − D
1/2
iα )]1/2 (6)

It is clear from Eqs. (5) and (6) that the key step to get quasi-atomic minimal-basis-set orbitals
is to select a subset of virtual orbitals ϕp(k,r) which can maximize the matrix trace

S =
∑

i,α,k,p

〈ϕp(k,r)|A0
α(r − Ri )〉〈A0

α(r − Ri )|ϕp(k,r)〉 (7)

The maximization can be achieved by first diagonalizing the matrix

Bk
νν′ =

∑

i,α

〈
φν(k,r)

∣∣ A0
α(r − Ri )

〉 〈
A0

α(r − Ri )
∣∣ φν′(k,r)

〉
(8)

for each k-point, where ν and ν′ run over all unoccupied states up to a converged upper
cutoff. The transformation matrix T which defines the optimal subset of virtual Bloch orbitals
ϕp(k,r) (p = 1, 2, . . ., n p(k)) by Eq. (2) is then constructed using the

∑
k n p(k) eigenvectors

with the largest eigenvalues of the matrixes Bk, each of such eigenvectors will be a column of
the transformation matrix T . Given ϕp(k,r), the localized QUAMBOs are then constructed
by Eqs. (4) and (5). As one can see from the above formalism development that the key con-
cept in this QUAMBO construction is to keep the bonding states (occupied state) intact and
at the same time searching for the minimal number of anti-bonding states (which are usually
not the lowest unoccupied states) from the entire unoccupied subspace. The bonding states
that kept unchanged and the anti-bonding states constructed from the unoccupied states can
form the desirable localized QUAMBOs.

Figure 1 shows the s- and p- like QUAMBOs of Si in diamond structure with different
bond lengths of 1.95 Å, 2.35 Å and 2.75 Å, and in fcc structure with bond lengths of 2.34
Å, 2.74 Å, and 3.14 Å, respectively. The QUAMBOs are in general non-orthogonal by our
construction as discussed above. One can see that the QUAMBOs constructed by our scheme
are indeed atomic-like and well localized on the atoms. These QUAMBOs are different from
the atomic orbitals of the free atoms because they are deformed according to the bonding
environment. It is clear that the deformations of QUAMBOs are larger with shorter interac-
tion distances. When the bond length increases to be 2.75 Å, the QUAMBOs are very close
to the orbitals of a free atom.

As we discussed above, the effective one-electron Hamiltonian matrix in the QUAMBO
representation by our construction preserves the occupied valence subspace from the first-
principles calculations so that it should give the exact energy levels and wavefunctions for
the occupied states as those from first-principles calculations. This property can be seen from
Fig. 2 where the electronic density-of-states (DOS) of Si in the diamond structure calculated
using QUAMBOs are compared with that from the original first-principles calculations. It is
clearly shown that the electronic states below the energy gap are exactly reproduced by the
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(a)

(b)

1.95 Å 2.35 Å 2.75 Å 

2.34 Å 2.74 Å 3.14 Å 

Fig. 1 Non-orthogonal s- and p- like QUAMBOs in Si (a) diamond structure in the (110) plane for three
bond lengths 1.95 Å, 2.35 Å and 2.75 Å, and (b) fcc structure in the (100) plane for three bond lengths 2.34
Å, 2.74 Å, and 3.14 Å

QUAMBOs, while the unoccupied states have been shifted upwards so that the energy gap
between the valence and conduction states increases from ∼0.7 eV to ∼1.8 eV. This shift is
expected because the QUAMBOs contain admixtures of eigenstates from the higher energy
spectrum.

It should be noted that the formalism for the QUAMBOs construction discussed in the
section is based on the wavefunctions from first-principles calculations using all-electrons
or norm-conserving pseudopotentials [14]. The formalism for constructing the QUAMBOs
from first-principles calculations using ultra-soft pseudopotential (USPP) [15] or projector
augmented-wave (PAW) [16], as implemented in the widely used VASP code [17,18], is
similar and has been recently worked out by Qian et al. [12]. Moreover, Qian et al. also adopt
a projected atomic orbital scheme [19–21] which replaces the unoccupied subspace from the
first-principles calculations in the above formula with a projection of the unoccupied part of
the atomic orbitals, and improve the efficiency and stability of the QUAMBO construction
procedure [12].
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Fig. 2 Electronic density of
states of diamond Si obtained by
using the QUAMBOs as basis
set, compared with those from the
corresponding LDA calculations
using the PW basis set

-5 0 5 10 15 20 25

D
en

si
ty

 o
f 

S
ta

te
s

E (eV)

PW

QUAMBO

3 Tight-binding matrix elements in terms of QUAMBOs

Once the QUAMBOs have been constructed, overlap and effective one-electron Hamiltonian
matrices in representation of QUAMBOs are readily calculated from first-principles.

Siα, jβ = 〈
Aα(r − Ri )

∣∣ Aβ(r − R j )
〉

(9)

Hiα, jβ = 〈Aα(r − Ri )|H
∣∣Aβ(r − R j )

〉
(10)

H in Eq. 10 can then be expressed by using the corresponding eigenvalues εn and eigenfuc-
tions φn from original DFT calculations, i.e., H = ∑

n
εn |φn〉 〈φn |, and thus the matrix

elements Hi,α, jβ can be calculated easily.
Note that in our approach the electronic eigenvalues and eigenfunctions of the occupied

states from first-principles calculations are exactly reproduced by the QUAMBO represen-
tation. Although the overlap and effective one-electron Hamiltonian matrices in terms of the
QUAMBOs are in a minimal basis representation, the matrices obtained from our method
go beyond the traditional two-center approximation. Therefore, the Slater-Koster tight-bind-
ing parameters [13] obtained by inverting such first-principles matrices are expected to be
environment-dependent.

In order to examine how the overlap and hopping integrals are dependent on the environ-
ment and to see how serious the error the two-center approximation will make in traditional
tight-binding approaches, we have performed calculations for 3 types (i.e, diamond, simple
cubic (sc), and face-centered cubic (fcc)) of crystal structures of Si with several different bond
lengths for each type of structures in order to study the tight-binding parameters in different
bonding environments. Based on the overlap and effective one-electron Hamiltonian matrix
elements from our QUAMBO scheme, the Slater-Koster overlap integrals sssσ , sspσ , sppσ ,
and sppπ , and hopping integrals hssσ , hspσ , h ppσ , and h ppπ are then extracted using the
Slater-Koster geometrical factors [13]. The results for the overlap and hopping integrals as a
function of interatomic distance in the three different crystal structures are plotted in Figs. 3
and 4, respectively.

Figure 3 shows the overlap parameters sssσ , sspσ , sppσ , and sppπ from different structures
and different pairs of atoms, plotted as a function of interatomic distance. Note that the two-
center nature of overlap integrals for fixed atomic minimal basis orbitals may not necessarily
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Fig. 3 Overlap integrals as a function of interatomic distance for Si in the diamond, sc, and fcc structures

hold for the QUAMBOs because QUAMBOs are deformed according to the bonding envi-
ronments of the atoms. Nevertheless, the overlap parameters obtained from our calculations
as plotted in Fig. 3 fall into smooth scaling curves nicely. These results suggest that the
two-center approximation is adequate for overlap integrals.

By contrast, the hopping parameters as plotted in Fig. 4 are far from being transferable,
especially for h ppσ . Even for the best case of hssσ , the spread in the first neighbor interaction
is about 1 eV. For a given pair of atoms, the hopping parameters h ppσ and h ppπ obtained
from the decompositions of different matrix elements can exhibit slightly different values,
especially for the sc and fcc structures. The hopping parameters from different structures do
not follow the same scaling curve. For a given crystal structure, although the bond-length
dependence of hopping parameters for the first and second neighbor interactions can be fitted
to separate smooth scaling curves respectively, these two scaling curves cannot be joined
together to define an unique transferable scaling function for the structure. These results
suggest that under the two-center approximation, it is not possible to describe the scaling of
the tight-binding hopping parameters accurately.

It is interesting to note from Fig. 4 that the structure which has larger coordination number
tends to have larger hopping parameter (in magnitude) as compared to the lower-coordinated
structure at the same interatomic separation. It is also interesting to note that the scaling
curve of the second neighbor interactions tends to be above that of the first neighbors at the
same interatomic distance. These behaviors are indications of significant contributions from
three-center integrals, because more contribution from the three-center integrals is expected
for pair of atoms that have more neighbors which enhance the effective hopping between the
two atoms.
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Fig. 4 Non-orthogonal tight-binding hopping integrals for Si as a function of interatomic distance in
the diamond, sc, and fcc structures obtained by decomposing the QUAMBO-based effective one-electron
Hamiltonian according to the Slater-Koster tight-binding scheme

To express the tight-binding Hamiltonian matrix in terms of QUAMBOs also allows us to
address the issue of the effects of orthogonality on the transferability of tight-binding models
from the first-principles perspective. We can construct orthogonal QUAMBOs from non-
orthogonal ones using the symmetrical orthogonalization method of Löwdin [22]. Starting
from the Bloch sum of non-orthogonal QUAMBOs

Ãα(k, r) = 1√
N

∑

n

exp(ik · rn)Aα(r − rn) (11)

the overlap matrix of Ãα(k, r) can be defined as

Sαβ(k) =
∑

n

exp(ik · rn)
〈
Aα(r)

∣∣ Aβ(r − rn)
〉

(12)

For each k-point, we perform the symmetrical orthogonalization method of Löwdin [22],

Ãorthog
α (k, r) =

∑

β

Sβα(k)−1/2 Ãβ(k, r) = 1√
N

∑

n,β

exp(ik · rn)Sβα(k)−1/2 Aβ(r − rn)

= 1√
N

∑

n

exp(ik · rn)
∑

k′,β
Sβα(k′)−1/2 Ak′

β (r − rn) (13)
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Then the orthogonal QUAMBOs can be expressed by

Ãorthog
α (r − rn) =

∑

k,β

Sβα(k)−1/2 Ak
β(r − rn) (14)

since
〈
Aorthog

α (r − rn)

∣∣∣ Aorthog
β (r − rn′)

〉

= 1

N

∑

k,k′

〈
Ãorthog

α (k,r)
∣∣∣ Ãorthog

β (k′, r)
〉

exp(ik · rn − ik′ · rn′)

= 1

N

∑

k

exp[ik · (rn − rn′)]δαβ

= δnn′δαβ (15)

Figure 5 shows the orthogonal s- and p- like QUAMBOs in Si diamond and fcc struc-
tures with three different bond lengths, respectively. In comparison with the non-orthogonal
QUAMBOs as shown in Fig. 1, the orthogonal QUAMBOs are much more tightly localized
on the center atoms, but some wavefuction components have been pushed out to the neighbor-
ing atoms in order to satisfy the orthogonal requirement. Using the orthogonal QUAMBOs,
the effective one-electron Hamiltonian matrix in the orthogonal QUAMBO representation
can be calculated and the orthogonal Slater-Koster hopping integrals can be extracted follow-
ing the decomposition procedures discussed in the non-orthogonal tight-binding case. The
results are plotted in Fig. 6. It is interesting to note that the orthogonal hopping parameters
as a function of interatomic distance decay much faster than their non-orthogonal coun-
terparts. Therefore, the interactions in the orthogonal tight-binding scheme are essentially
dominated by the first neighbor interactions which depend not only on the interatomic sepa-
rations but also on the coordination of the structures. In contrast to the non-orthogonal model,
the magnitudes of the orthogonal hopping parameters decrease as the coordination number
of the structure increases. These coordination-dependence of the hopping parameters and the
short-range nature of the interactions are qualitatively similar to the environment-dependent
tight-binding model of Wang et al. [23,24]. In their model, the coordination dependence
of the hopping parameters is considered through a bond-length scaling function, and the
short-ranged interactions is guaranteed by the screening function. However, though small,
the contributions from the second and higher neighbor hopping parameters are not entirely
negligible. In particular, some hopping parameters in the orthogonal TB scheme are found to
change sign at the second and higher neighbors. The sign changes in the second and higher
neighbor interactions can be attributed to the effects of the orthogonality which push some
orbital wavefunctions to the nearby atomic sites in order to satisfy the orthogonal condition
as one can see from Fig. 5. Such effects have not been noticed in previous tight-binding
models.

4 Large-scale electronic calculations using the QUAMBO scheme

The above development in QUAMBO construction and “exact” tight-binding matrix ele-
ments calculation enables us to perform tight-binding electronic-structure calculations for
large systems directly from the first-principles approach, without a fitting procedure to gen-
erate tight-binding parameters. A scheme based on this idea has been developed by Yao et al.
[25]. In this scheme, an overlap or tight-binding Hamiltonian matrix of a big system is built
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(b)

(a) 1.95 Å 2.35 Å 2.75 Å 

2.34 Å 2.74 Å 3.14 Å 

Fig. 5 Orthogonal s- and p- like QUAMBOs in Si (a) diamond structure in the (110) plane for three bond
lengths 1.95 Å, 2.35 Å and 2.75 Å, and (b) fcc structure in the (100) plane for three bond lengths 2.34 Å, 2.74
Å, and 3.14 Å

by filling in the n × n “exact” sub-matrices (where n is the number of minimal basis orbitals
for each atom) for every pair of atoms in the system. Note that the QUAMBOs and hence
the n × n sub-matrices of tight-binding are dependent on the environment around the pair
of atoms, the n × n “exact” sub-matrices has to be calculated for every pair of atoms in the
system. This can be done by first performing first-principles calculations for a relatively small
system with the same environment around the pair of atoms as if they are in the big systems,
then the n × n tight-binding matrix for this pair of atoms can be constructed following the
QUAMBO scheme. This approach will break the first-principles calculations of a big system
into calculations for many much smaller sub-systems. In many cases of our interest (e.g.,
defects in crystals), the bonding environment of many different atom pairs in the big system
may be essentially the same, therefore, first-principles calculations are needed only for a
limited number of smaller systems and an accurate tight-binding overlap and Hamiltonian
matrices for the big system can be constructed.
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Fig. 6 Orthogonal tight-binding hopping integrals for Si as a function of interatomic distances in the dia-
mond, sc, and fcc structures obtained by decomposing the QUAMBO-based effective one-electron Hamiltonian
according to the Slater-Koster tight-binding scheme

The method was recently applied to studies the electronic structure of graphene nano-
ribbons [25]. For calculating the electronic structure of perfect armchair-grapheme nano-rib-
bons (A-GNRs) of different width, three different types of atoms in the nano-ribbons have
been identified as illustrated in Fig. 7 where atom a represents a carbon atom inside the
ribbon, atom b represents a carbon atom at the edges, and atom c is a hydrogen atom for
passivation. Only one training sample of a Na = 7 A-GNRs as shown in Fig. 7 and a single
first-principles calculation are needed to extract all the necessary “exact” 4 × 4 or 4 × 1
tight-binding matrices for each pair of a-a, a-b, b-b, and b-c atoms from these three type of
non-equivalent atoms, respectively. Fig. 8 shows the band structures and electronic density
of states (DOS) for A-GNR with the width Na = 7 and 13 (solid lines) from the QUAMBO-
tight-binding scheme using the small 4 × 4 and 4 × 1 tight-binding matrices generated from
the Na = 7 training cell as described above. The results from full first-principles calculations
(circle) were also shown for comparison. One can see that the QUAMBO-TB band struc-
tures agree very well with the full first-principles results up to 1eV above the Fermi-level.
The electronic band gap variation of a perfect A-GNR as a function of the width of the
nanoribbon has also been studied. Fig. 9 shows the oscillating behavior of band gap with a
period of Na = 3 obtained from our QUAMBO-TB scheme agree very well the results from
first-principles calculations [26–28]. The efficiency of the QUAMBO-TB scheme enable us
to calculate the electronic structure of much wider grapheme nano-ribbon, as one can also
see from Fig. 9 where the band gap of a nanoribbon up to 100 Å in width has been calculated
by our QUAMBO-TB method.
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92 C.-Z. Wang et al.

Fig. 7 (Color online) A-GNR
with Na = 7 was chosen to be a
training cell. Dotted rectangle
indicates the unit cell. The left
arrow gives the periodical
direction. Atom a and b are
treated to be different due to
different local environment

Fig. 8 TB band structures based
on the QUAMBO-generated TB
parameters (solid line) com-
pared with first-principles DFT
results (circle) for A-GNR with
Na = 7 and 13 respectively

Fig. 9 (Color online) TB band
gap (solid lines) of A-GNR with
different size compared with
first-principles DFT results
(symbols)

The efficiency of the QUAMBO-TB scheme also enable us to study the electronic structure
of grapheme nano-ribbons with defects, which usually require a much large unit cell and it
is not easy to calculate using straightforward first-principles calculations. Yao et al. have
studied the electronic structures of a Na = 6 A-GNR with random edge defects on one edge
of the ribbon at different defect ratio [25]. The supercell used in the calculation contains 1200
carbon atoms and about 200 hydrogen atoms. The edge defects were generated by randomly
removing pairs of carbon atoms at one side of A-GNR as shown on Fig. 10(a). The carbon
atoms at the defected edge were again passivated by hydrogen atoms. For this defect system,
only some additional QUAMBO-TB matrix elements around the edge defects are needed to
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(a)

(b)

Fig. 10 (Color online) (a) Schematic view of a part of a supercell of Na = 6 A-GNR containing more than
one thousand atoms with edge defects randomly distributed on one side.. (b) The training cell used to generate
the additional TB parameters for the A-GNR with edge defects

be generated using a training cell as shown in Fig. 10(b), where the curved arrows indicate the
new matrix elements between these sites to be added to the existing QUAMBO-TB matrix
elements database from the Na = 7 training cell as discussed above. Based on this set of
QUAMBO-TB matrix elements from first-principles calculations performed on two small
unit cells, actuate tight-binding overlap and Hamiltonian matrices for the defected graphene
nano-ribbons of various defect concentration can be constructed, and the electronic structure
of A-GNRs with random edge defects can be studied. The results of band gap as the function
of defect ratio in the Na = 6 A-GNR are shown in Fig. 11. The random distribution of the
edge defects gives some variation of the band gap at each defect concentration; however, there
exists a general trend of the band gap with increasing defect concentration. The band gap
reaches its minimum (which is quite small) at the edge defect ratio of 70%. This implies that
edge defects have a significant effect on electronic structures of A-GNRs, which is consistent
with the indications from experiments [29].

5 Concluding remarks

Using the recently developed quasi-atomic minimal-basis-set orbitals, we show that accu-
rate tight-binding Hamiltonian and overlap matrix elements can be extracted from first-
principles calculations. Based on the information from the QUAMBO-TB matrix elements,
the transferability of two-center tight-binding models can be examined from a first-principles
perspective. Our studies show that tight-binding models with two-center approximation are
not adequate for describing the effective one-electron Hamiltonian matrix elements under
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Fig. 11 Band gap as a function of edge defects ratio in an Na = 6 A-GNR with random edge defects. A
perfect Na = 6 and Na = 5 A-GNRs corresponds to 0% and 100% defect ratio in this plot respectively

different bonding environments. While we discuss about Si and C systems in this article,
similar analyses have been carried out for other systems such as Al, Mo, Fe, SiC etc. [9,11,12].
Such analyses provide useful insights and guidance for generating accurate and transferable
tight-binding models. In particular, we show that environment-dependence of the tight-bind-
ing parameters need to be adequately described, and it may also be necessary to include
three-center integrals explicitly if we want to describe accurately the electronic structures
of complex systems by tight-binding approach. Although the QUAMBO-TB scheme can
help us gaining insight into how the tight-binding interactions are dependent on the envi-
ronment, how to model and parameterize such environment-dependence of the tight-binding
interaction still remains an open question and need much further investigation.

Another route to utilize the QUAMBO-TB scheme for calculating the electronic structure
of a large system is to use a divide-and-conquered strategy which divides the Hamiltonian
and overlap matrices of a big system into a set of much smaller n×n QUAMBO-TB matrices
of pair of atoms with different bonding environment. First-principles calculations are needed
for small number of atoms around the pairs, yet a QUAMBO-TB matrix for the whole large
system can be constructed accurately. We have shown that such “QUAMBO-on-demand”
approach has been quite successful for the studies of electronic structure in grapheme nano-
ribbons. One could construct a variety of training cells to generate a database of Hamiltonian
parameters for a catalogue of local bonding environments. This opens a promising avenue to
do electronic-structure simulations and total energy calculations for big systems directly from
first principles. The computational savings thus achieved is analogous to savings obtained
using Green’s function boundary condition near infinite half space, but it can handle complex
geometric arrangements. A sophisticated computational technology needs to be developed
in the future to automate this process.
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