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Abstract

A lattice dynamical finite-element method (LDFEM) is proposed for multiscale analysis of stressed complex crystals. Interatomic
potential is embedded into the constitutive relation within the hyperelasticity framework, and two energy-based lattice instability criteria,
the K criterion and the soft phonon criterion, are incorporated into LDFEM for capturing stress-driven instabilities in a perfect crystal.
The simulations of uniaxial loadings and a two-dimensional nanoindentation of B2-NiAl are performed using both LDFEM and molec-
ular dynamics (MD). The good agreement of the simulated mechanical responses between the two methods validates the proposed
method. Combination of the two criteria can provide a powerful tool for predicting lattice instabilities in complex crystals under load
at zero or low temperatures.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Multiscale simulations have been widely used for the
investigation of material response that involves different
length scales. Compared with atomistic simulation approa-
ches such as molecular dynamics (MD) and ab initio meth-
ods, multiscale methods are more efficient for studying
large-length-scale systems while capturing critical features
at atomic scale. Generally speaking, multiscale methods
can be classified into two types: concurrent and hierarchical
methods [1]. Concurrent multiscale methods couple different
length scales in each sub-domain and perform simulations in
each scale simultaneously. As a typical concurrent multi-
scale method, the local–nonlocal combination version of
the quasicontinuum (QC) method proposed by Tadmor
et al. [2] incorporates continuum theories with atomistic
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models, and reduces the degrees of freedom and computa-
tional demand by finite-element method (FEM) without los-
ing atomistic details in regions of interest [3]. It has been used
for investigating nanoindentation [4–11], fracture [12–14],
grain boundaries [11,15–18] and dislocations [2–20]. Other
concurrent multiscale methods include the macroscopic-
atomistic-ab initio dynamics (MAAD) proposed by Abra-
ham et al. [21], the coarse-grained molecular dynamics
(CGMD) by Rudd and Broughton [22], the coupled atomis-
tic and discrete dislocation (CADD) model by Shilkrot et al.
[23], and coupling molecular dynamics with continuum
mechanics via a bridging domain by Belytschko and Xiao
[24]. Hierarchical multiscale methods, on the other hand,
employ a continuum approximation to model subscale sys-
tems via a homogenization procedure and solve problems
in the continuum framework. It includes the local QC [25–
31] and some other methods with a similar concept of the
local QC, such as the work of employing a mixed atomis-
tic/continuum technique to solve boundary value problems
in strained semiconductors by Johnson et al. [32], the local
formulation implemented to study the behavior of carbon
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nanotubes (CNT) by Zhang et al. [33], and the interatomic
potential finite-element model (IPFEM) embedded with a
lattice instability criterion for predicting homogenous insta-
bility in perfect crystals proposed by Li et al. [34].

As an important off-shoot of the local QC, IPFEM
offers an efficient and accurate tool for multiscale analysis
at zero temperature. It employs the Cauchy–Born (CB)
hypothesis [35], linking the macro elastic deformation
and the atomic motions, to formulate the constitutive law
based on empirical interatomic potentials within the frame-
work of hyperelasticity. Li et al. [34] first studied the nan-
oindentation of Cu by IPFEM, and as its extensions,
Van Vliet et al. [36] performed a study of quantifying the
early stage of plasticity in fcc metals, Zhu et al. [37] pre-
sented a predictive model of nanoindentation-induced
homogeneous dislocation in Cu, and Zhong et al. [38] sim-
ulated nanoindentation and predicted dislocation in three
single crystals of Al, Cu and Ni. In our previous study
[39], the anisotropy in homogeneous dislocation nucleation
by nanoindentation of single-crystal Cu has also been
investigated by IPFEM. However, all of these investiga-
tions above focused on monatomic single crystals which
contain only one atom per primitive unit cell. It would be
interesting to study more complex crystals, because such
lattices with multiple atoms per primitive unit cell like Si
[21,25–27,31,32], CNT [24,33] and compounds [28,30]
may exhibit more sophisticated mechanical responses
under loadings. A related pioneering work by Tadmor
et al. [25] presented the constitutive relations using atomis-
tic energy functionals for complex crystals based on the
local QC.

An important work in IPFEM is to identify homoge-
nous lattice instability such as dislocation, twin, micro-
crack and phase transformation with instability criteria.
Most of the monatomic crystals exhibit elastic instability
under critical loading conditions, therefore Refs. [36–39]
based on IPFEM predicted homogenous lattice instability
with the K criterion proposed by Li [34] or its equivalent
criterion, which can capture elastic instability effectively.
However, for complex crystals or even simple lattices like
Al under simple loadings [40] at zero or low finite temper-
atures, the homogeneous lattice instability is usually a
dynamical instability occurring firstly with a wave number
away from the center of the Brillouin zone, rather than an
elastic instability corresponding to the long wavelength
limit. Thus, the more general soft phonon instability crite-
rion is of great significance to be embedded into IPFEM
simulations of mechanical behavior of materials, especially
for complex crystals.

In the present study, we propose a lattice dynamical
finite-element method (LDFEM) as an extension of
IPFEM to study more complex Bravais crystals based on
the embedded-atom method (EAM) potential [41], and pre-
dict homogenous lattice instability by both the K criterion
and the soft phonon criterion. The rest of the paper is orga-
nized as follows. Section 2 briefly describes the continuum
formulation under finite elastic deformation, followed by
presenting the constitutive relation based on the EAM
potential for complex crystals in Section 3, and reviewing
the two instability criteria in Section 4. Section 5 gives three
examples of the LDFEM’s application including uniaxial
loadings and a two-dimensional (2-D) indentation of sin-
gle-crystal B2-NiAl, and compares the results with those
by MD simulations. Section 6 presents the conclusions
and discussions.

2. Continuum formulation under finite elastic deformation

Consider a reference configuration of a material occupy-
ing domain X0. When the material undergoes a uniform
deformation, the material coordinate X in the reference
configuration is mapped to x in the current (or deformed)
configuration occupying domain X, given by [42]

x ¼ Xþ uðXÞ; ð1Þ

F ¼ @x

@X
¼ Iþ @u

@X
; ð2Þ

where u(X) is the displacement vector from X to x, F is the
deformation gradient, and I is the identity tensor. Without
considering the body force, the equilibrium equation in the
reference configuration can be described by

r � P ¼ 0 in X0; ð3Þ

and the boundary conditions are given by

u ¼ �u on Cu; ð4Þ
P � n ¼ �T on Ct; ð5Þ
where P is the nominal stress tensor, �u is the prescribed dis-
placement vector on the boundary Uu, and �T is the surface
traction vector per unit undeformed area on the boundary
Ut. P is given by SFT, where S is the second Piola–Kirchhoff
stress tensor. As is known, if the external work applied to a
material is independent of loading history, the constitutive
law can be described as the hyperelastic formulation,

S ¼ @W
@E

; ð6Þ

C ¼ @S

@E
¼ @2W
@E@E

; ð7Þ

where W is the strain energy density, E is the Green strain
tensor, given by E ¼ 1

2
ðFT F� IÞ, and C is the second elastic

tensor. Eqs. (3)–(7) provide a Lagrangian description of so-
lid elastic deformation at the continuum level. How to
establish the connection between the macro elastic defor-
mation and the micro atomic motions is the key to realizing
a multiscale simulation combining the intrinsic advantages
of simulation techniques at different length scales.

3. Constitutive relation of LDFEM based on the EAM

potential for complex crystals

In order to embed the atomistic interactions governing
the mechanical response into the constitutive relation for
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continuum, the linkage between atomic movements and the
continuum deformation should be established. It can be
implemented through the CB hypothesis, which states that
an undeformed Bravais lattice vector of a crystal in the ref-
erence configuration can be mapped into a deformed lattice
vector in the current configuration, according to the defor-
mation gradient F. This hypothesis has been widely
employed for multiscale simulations of monatomic crys-
tals. Next, we employ it to formulate the constitutive rela-
tion for complex Bravais lattices.

We assume a crystal lattice contains N basis atoms in a
primitive unit cell and index each atom as a = (A, a) (or
b = (B, b), c = (C, c), . . .), where A (or B, C, . . .) is the
primitive unit cell number, and a (or b, c, . . .) is the basis
atom number. The coordinates of atom a in the reference
configuration are given by

Xa ¼ XA þ Za; a ¼ 1; . . . N ; ð8Þ
where XA are the coordinates of the atom that occupies the
origin basis site (called origin atom) in cell A, and Za are
the coordinates of atom a relative to the origin atom. We
set Z1 = 0, so atom (A, 1) (or (B, 1), (C, 1). . .) represents
the origin atom in cell A (or B, C, . . .). In a homogenously
deformed lattice with a deformation gradient F, the new
coordinates of atom a in the deformed configuration can
be written as

xa ¼ FXA þ za; ð9Þ
where za are the inner displacements of atom a, which are
not equal to FZa in general. The relative position vectors
between atoms a and b in the reference and deformed con-
figurations are denoted as Rab and rab, respectively, given
by

Rab ¼ Xb � Xa ¼ ðXB � XAÞ þ ðZb � ZaÞ; ð10Þ
rab ¼ xb � xa ¼ FðXB � XAÞ þ ðzb � zaÞ ¼ FRab þ ðzb � zaÞ:

ð11Þ

The magnitude of the vector rab is denoted as rab.
The temperature is assumed to be 0 K to exclude the

effect of thermal fluctuation of atoms, and the strain energy
density W is simply the interatomic potential per unit vol-
ume in the reference configuration. Based on the EAM
potential, W is given by

W ¼ 1

X0

X̂
a

Wa ¼ 1

X0

X̂
a

X
b–a

1

2
V abðrabÞ þ U að�qaÞ

" #
; ð12Þ

where X0 is the volume of a primitive unit cell in the refer-
ence configuration, Wa is the energy of atom a, Vab is the
pair potential between atoms a and b, Ua is the embedding
energy as a function of the host electron density �qa at the
site of atom a, which is given by

�qa ¼
X
b–a

qbðrabÞ; ð13Þ

with qb being the electron density function of atom b. The
symbol

P^
a in Eq. (12) indicates summation only over a
from 1 to N for index a, and the symbol
P

b–a in Eqs.
(12) and (13) indicates that index b runs over all the neigh-
boring atoms around atom a within a specialized cut-off ra-
dius Rcut.

It is can be seen from Eqs. (11) and (12) that W is depen-
dent on F and z. For a given F, the inner displacements can
be calculated by minimizing the strain energy with respect
to z, i.e.,

@W
@zp
¼ @W ðF; zÞ

@zp

����
F

¼ 0; p ¼ 2; :::;N : ð14Þ

Based on the solved z, the second Piola–Kirchhoff stress S

can be obtained by

Sij ¼
@W
@Eij
þ @W
@zp

m

@zp
m

@Eij
: ð15Þ

Substituting Eq. (14) into Eq. (15), we have

Sij ¼
@W
@Eij

: ð16Þ

The second elastic tensor C can be computed by differenti-
ating Eq. (15) with respect to E, given by

Cijkl ¼
@2W

@Eij@Ekl
þ @2W
@Eij@zp

m

@zp
m

@Ekl
: ð17Þ

The term @zp
m

@Eij
on the right side of Eq. (17) can be determined

by differentiating Eq. (14) with respect to E, i.e.,

@2W
@Eij@zq

n
þ @2W
@zp

m@zq
n

@zp
m

@Eij
¼ 0: ð18Þ

So

@zp
m

@Eij
¼ � @2W

@zp
m@zq

n

� ��1
@2W
@Eij@zq

n
; ð19Þ

Substituting Eq. (19) into Eq. (17), C can be further rewrit-
ten as

Cijkl ¼
@2W

@Eij@Ekl
� @2W

@zp
m@zq

n

� ��1
@2W
@Eij@zp

m

@2W
@Eij@zq

n
: ð20Þ

The derivatives of the EAM-based strain energy density W

defined in Eq. (12) with respect to E or/and z in Eqs. (16)
and (20) are given in Appendix A, and the derivatives of r

with respect to E or/and z are given in Appendix B.
The LDFEM based on the EAM potential for complex

Bravais lattices at zero temperature has been formulated as
above. The governing Eqs. (3)–(5) can be solved with FEM
software package. In our work, it is implemented in ABA-
QUS/Standard software [43] by writing a user subroutine
called UMAT, which needs to provide the Cauchy stress
r and the tangent modulus C*, given by

r ¼ 1

detðFÞFSFT ; ð21Þ

C� ¼ @2W �

@E�@E�

����
E�¼0

; ð22Þ
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where the superscript � suggests that the reference configu-
ration is set as the current configuration. In each step, the
deformation gradient for each integration point is calcu-
lated based on the updated displacement field, and the
positions for the neighboring atoms are updated according
to the deformation gradient and the inner displacements. If
the current configuration is taken as the reference configu-
ration, the Cauchy stress r and the tangent modulus C* are
equivalent to the second Piola–Kirchhoff stress S and the
second elastic tensor C, respectively, which can be obtained
by substituting the deformed positions of the neighboring
atoms into Eqs. (16) and (20).
4. Lattice instability criteria

4.1. K criterion

The K criterion proposed by Li et al. [34] originates from
the studies of Hill [44,45] and Rice [46]. The former consid-
ered that the loss of strong ellipticity of the strain energy
density function indicates an elastic instability, and the lat-
ter derived the localization of plastic deformation into a
shear band as an instability of plastic flow or a precursor
to rupture. The K criterion considers the Helmholtz free
energy change of a representative volume element (RVE)
with a homogenous deformation by applying a long elastic
plane wave perturbation which gives zero displacements on
boundaries. Indeed, the K criterion reflects the concavity of
the Helmholtz free energy with respect to elastic wave
[34,47,48]. The sign of K is defined as

Kðk; wÞ ¼ C�ijklwiwk þ rjl

� �
kjkl; ð23Þ

where k and w are normalized vectors defined as the wave
vector and the polarization vector, respectively. Once the
minimum K (Kmin) for a material point becomes non-posi-
tive for a given pair of k and w, a defect will be nucleated.
If the corresponding kmin is more perpendicular than paral-
lel to wmin, the instability would probably result in a forma-
tion of dislocation or twin, with kmin and wmin as its slip
plane and Burger vector, respectively. Otherwise, a micro-
crack is likely nucleated, with kmin and wmin nearly parallel
to the crack plane normal. The K criterion was applied for
the first time to atomic scale in nanoindentation simulation
by Li et al. [34], and gave a reliable prediction of dislocation
nucleation, which was validated by the MD simulation.
4.2. Soft phonon criterion

Different from the rank-one uniform deformation per-
turbation applied to a RVE in deriving the K criterion,
the soft phonon criterion considers a perturbation with
respect to relative displacements at atomic scale, which
has been employed to investigate the ideal strength of
materials [40,49]. As all atomic motions in a crystal with
Born–Von Karman periodic boundary conditions (PBCs)
can be viewed as combinations of independent harmonic
phonon modes without coupling with each other as a result
of no anharmonic effects introduced approximately when
temperature approaches zero, the soft phonon criterion
gives both necessary and sufficient conditions for structural
dynamical instability, i.e., if there exists a phonon mode
with an imaginary frequency, the crystal will be unstable,
and vice versa. The instability may lead to nucleation of
dislocation, crack, modulated structure or new phase,
whose structure can be characterized by the soft phonon
modes. For instance, the modulation displacements of a
newly nucleated modulated structure are summation of
harmonics with the soft phonon modes. The frequency
and atomic displacements of a soft phonon mode with cer-
tain wave vector q in the Brillouin zone can be obtained
based on analysis of the eigenvalues and eigenvectors of
the dynamical matrix [50], defined as

DqðabÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
mamb
p

X
A

U
A

a

� ����0b
�

exp �iq � x
A

a

� �
�x

0

b

� �� 	
 �
;

ð24Þ

where m is the atomic mass, i is the imaginary unit, and U is
the force constant matrix, given by

UðabÞ ¼ @2 �W
@xa@xb

� dab
X

c

@2 �W
@xa@xc

; ð25Þ

with �W being the total potential energy of the system. The
expression of the second derivatives of �W with respect to x

based on the EAM potential for complex crystals is given
in Appendix C.

Note that the soft phonon instability criterion is not ten-
able rigorously at high temperatures, as the harmonic
approximation is no longer rigorous and energies of the
modes will be coupled with each other [47], which is, how-
ever, not a limitation for the K criterion which is based on
thermo-elasticity. Both the instability criteria require that
the model is under PBCs, or has uniform (or slowly vary-
ing) deformation field in which the homogenous unstable
region does not contact with external loading directly
[47,48]. Generally, the eigenmodes of instability predicted
by the K criterion correspond to a homogenous deforma-
tion at the primitive-cell level, differing from those by the
soft phonon analysis which usually indicate an inhomoge-
neous deformation from one primitive cell to the next. An
exceptional case is that a certain phonon mode becomes
unstable at the U-point in the Brillouin zone, where the soft
phonon criterion degenerates to the K criterion, i.e., they
are equivalent when the dynamical instability occurs in
the long wavelength limit.

5. Validation of LDFEM

In this section, we validate the LDFEM simulations of
uniaxial loadings and a 2-D cylindrical nanoindentation
of single-crystal B2-NiAl with complex Bravais lattices by



Fig. 1. Stress–strain curves of uniaxial tension along the [1 0 0] direction
with LDFEM and MD simulations. The inset shows a higher magnifica-
tion of the curves near the incipient instability.
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comparing the results of the MD simulations implemented
with the large-scale atomic/molecular massively parallel
simulator (LAMMPS) [51,52]. The EAM potential of NiAl
proposed by Mishin [53] is used for both the methods. The
LDFEM simulations are performed as static analysis at a
temperature of absolute 0 K, in contrast to 0.1 K in the
MD simulations, at which the thermal fluctuation of atoms
is allowed to activate phonons without introducing too
much kinetic energy. The two instability criteria are embed-
ded into the LDFEM simulations to predict homogenous
lattice instability, which is characterized by the eigenmodes
and compared directly with the MD’s visualized images.
For simplicity, we just fix the vector k in Eq. (23) and
the wave vector q in Eq. (24) within several low-index
and high-symmetry directions, which can cover most insta-
bility cases.

It is worth noting that the proposed LDFEM has no
inherent length scale, as it originates from the continuum
model. However, LDFEM can be assigned the same length
scale as that of MD during comparison, which is the basis
of the validation of LDFEM by MD.

5.1. Uniaxial loadings

The simulations of the uniaxial tension and compression
along the [1 0 0] direction of B2-NiAl single crystal are per-
formed with both LDFEM and MD. As for the LDFEM
simulations, a single 8-noded brick element with one
reduced integration point and six planes, denoted as x+,
x–, y+, y–, z+ and z–, is used to simulate a uniformly
deformed cell with each side’s original size of unit length.
The coordinate system is oriented such that x, y and z axes
correspond to the [1 0 0], [0 1 0] and [0 0 1] directions,
respectively. The x–, y– and z– planes are fixed in the x, y

and z directions, respectively, and the y+ and z+ planes
are traction free. The x+ plane is fixed in both the y and
z directions, and pulled (or pushed) along the x direction
for uniaxial tension (or compression), respectively. In each
step, the engineering strain is kept constant of 0.1% (or –
0.1%), and the y+ and z+ planes are fully relaxed until
the engineering stresses of ry and rz vanish. Note that
the six planes of the element do not act as free surfaces
of the material but periodic boundaries, as surfaces stress
is not considered in the LDFEM’s constitutive relation.
In the MD simulations, a 3-D periodic cell with 16 primi-
tive unit cells in all the x, y and z directions is used to inves-
tigate the uniaxial loading responses. The cell with the
same orientations of the brick element in the LDFEM sim-
ulations is equilibrated first at a temperature of 0.1 K for
10 ps in the isobaric–isothermal (NPT) ensemble [54] with
zero applied pressure, and then deformed by uniaxial ten-
sion (or compression) along the x direction at a constant
engineering strain rate of 10–3 ps–1 (or –10–3 ps–1) with pres-
sure-free conditions for the other two directions. The calcu-
lation of stress includes only the potential portion without
kinetic one in order to make comparable to that in the
LDFEM computation.
5.1.1. Uniaxial tension

The stress–strain (r–e) responses of the uniaxial tension
simulated by the two methods are shown in Fig. 1. It can
be seen that the r–e curves from the LDFEM and MD sim-
ulations fit very well before instability. The difference of the
curves after instability is due to the fact that the CB hypoth-
esis, the basis of LDFEM, is not true when defects occur in
the lattice. LDFEM predicts a dynamical instability at
ex = 9.11% (rx = 6.69 GPa) with the K criterion or an elastic
instability at ex = 37.60% (rx = 22.72 GPa) with the soft
phonon criterion. The MD simulation validates that the
incipient instability under tension is a dynamical instability
in essence at ex = 9.28% (rx = 6.78 GPa), which is in good
agreement with the prediction of the soft phonon criterion
embedded in the LDFEM. Fig. 2a and b depicts the phonon
spectra along high-symmetry directions for the undeformed
lattice and the lattice at ex = 9.11%, respectively. It can be
seen that one of the acoustic phonon branches has just soft-
ened at point M in the Brillouin zone with a wave vector of
q1 ¼ 1

2
a�1 þ 1

2
a�2 þ 0a�3 (with q�1 ¼ ½110�=2 as its direction vec-

tor scaled in the reciprocal space, same as below) in the
deformed lattice. Three other acoustic phonon modes with
wave vectors of q�2¼½1�10�=2;q�3¼½101�=2 and q�4¼½10�1�=2,
respectively, have also imaginary frequencies as a result of
geometrical symmetry. Analysis of the eigenvectors of the
dynamical matrix indicates that the displacements of Ni
and Al atoms for the four unstable modes are parallel
to v1 ¼ ½010; �100�; v2 ¼ ½010; 100�; v3 ¼ ½001; �1 00� and
v4 ¼ ½001; 100�, respectively. These phonon modes lead to
a transformation from the initial B2 structure into a low-
symmetry modulated structure, and the modulation dis-
placements u of each atom with respect to the homogenously
strained lattice positions can be described as a sum of the
four harmonic phonon modes above,

u ¼
X4

j¼1

Aj expð�iqj � xÞ; ð26Þ



Fig. 2. Phonon spectra along high-symmetry directions of B2-NiAl for:
(a) the undeformed lattice and (b) the lattice at a strain of ex = 9.11%
under uniaxial tension along the [1 0 0] direction.
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where A is the amplitude vector which is parallel with the
corresponding eigenvector v. Such a three-dimensional
modulated structure has been validated by the MD simula-
tion, with a representative crystal structure at the critical
strain of ex = 9.28% visualized by AtomEye [55], shown
in Fig. 3. It results in a stress fluctuation under tension
Fig. 3. Three-dimensional modulated structure of B2-NiAl at the critical strain
simulation. The modulation displacements of each atom with respect to the hom
waves visible. For all cases, x = [1 0 0], y = [0 1 0] and z = [0 0 1].
(Fig. 1) and will be reversed to a B2 structure when unload-
ing, implying it is a metastable structure.

It is interesting that the martensitic phase transforma-
tion from an initial B2 phase into a body-centered tetrago-
nal (bct) phase under uniaxial tension along the [1 0 0]
direction seen in NiAl nanowires [56] does not occur in
the present bulk NiAl. To identify the stable crystal struc-
tures under such a uniaxial tension, we analyze their
enthalpy as a function of lattice parameters for specific val-
ues of uniaxial stress based on the Mishin potential. The
undeformed B2 structure is set as the reference configura-
tion. The enthalpy per primitive unit cell under applied uni-
axial loading is given by [57]

Hðb=a; c=aÞ ¼ Eða; b; c; zÞ � Ajkriqi ð27Þ
where E is the formation energy per primitive unit cell, a, b

and c are the lattice parameters (those with a subscript 0
are the lattice parameters of the undeformed B2 structure),
ri is the engineering stress along the i direction, qi is the lat-
tice parameter in the i direction, Ajk is the cross section area
of the undeformed primitive unit cell perpendicular to the
loading direction, and Ajkriqi (summation not implied) is
the external work. For tension along the x axis, i = x,
Ayz = b0c0, and qx = a, with rx being the tensile engineering
stress. For each b/a and c/a pair, the lattice parameter a

and the inner displacements z are relaxed to minimize H.
Then the minimum H on the enthalpy surface with b/a
and c/a as the independent variables corresponds to certain
stable or metastable structure under the applied uniaxial
stress. Fig. 4a and b shows the energy (equal to enthalpy
at zero external loading) contour and the enthalpy contour
for the critical stress rx = 6.78 GPa, respectively. Only one
minimum can be found for both the cases with b/a = c/
a = 1.00 and 0.88 (H = –8.932 and –9.964 eV), respectively.
In fact, it is true for all cases from zero to the critical uni-
axial tensile stress, with the only minimum corresponding
to a deformed B2 structure with b = c smaller than a, so
the transformation from a B2 into a bct structure cannot
of ex = 9.28% under uniaxial tension along the [1 0 0] direction with MD
ogenously strained lattice positions are enhanced to make the modulation



Fig. 4. Contours of: (a) energy and (b) enthalpy for uniaxial tensile stress of rx = 6.78 GPa along the [1 0 0] direction based on Mishin potential.
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take place. In the nanowires, however, the surfaces energy
plays a dominant role in inducing the martensitic phase
transformation, i.e., the surfaces energy of a B2 structure
is higher than that of a bct structure at a critical tensile
strain, in contrast to no surfaces existing in the present bulk
NiAl with PBCs, which leads to the different instability
behavior for the two systems.

5.1.2. Uniaxial compression

The prediction of the stress–strain curves under uniaxial
compression via the LDFEM and MD simulations is pre-
sented in Fig. 5. The cell undergoes an elastic deformation
under loading from point A to B with almost the same
stress–strain responses, indicating a good agreement
between the two simulations. In contrast to the LDFEM’s
prediction of a dynamical instability at ex = –13.94%
(rx = –57.91 GPa) or an elastic instability at ex =
–16.33% (rx = –81.82 GPa), respectively, the MD simula-
Fig. 5. Stress–strain curves of uniaxial compression along the [1 0 0]
direction with LDFEM and MD simulations. The inset shows a higher
magnification of the curves near the incipient instability.
tion confirms that a dynamical instability occurs at ex =
–14.09% (rx = –59.23 GPa) corresponding to point B.

By analysis of the phonon spectrum at ex = –13.94%
(Fig. 6), two acoustic phonon modes become unstable, with
wave vectors of q�1 ¼ ½011�=2 and q�2 ¼ ½01�1�=2, and eigen-
vectors corresponding to atom displacements of
v1 ¼ ½0�11; 0�11� and v2 ¼ ½011; 01 1�, respectively. Different
from the stress fluctuation after instability under tension,
the two soft phonon modes result in a stress drop from
–60.09 to –58.98 GPa corresponding to point C (ex =
–14.43%). The representative crystal structures for points
B and C by the MD simulation are illustrated in Fig. 7a
and b, respectively. It can be seen that the cell still keeps
a B2 structure at point B, but transforms into a modulated
structure at point C, which also results in a stress fluctua-
tion under further loading. It should be noted that such a
modulated structure is not based on a B2 structure but
on a body-centered orthorhombic (bco) structure, because
the lattice parameters are obviously changed from point B

to C along with a sudden volume increase of about 2%. To
Fig. 6. Phonon spectrum along high-symmetry directions of B2-NiAl for
the lattice at a strain of ex = –13.94% under uniaxial compression along
the [1 0 0] direction. Point M0 denotes the wave vector of q� ¼ ½011�=2.



Fig. 7. Representative crystal structures at a strain of (a) ex = –14.09% and (b) ex = –14.43% corresponding to points B and C in Fig. 5, respectively, under
uniaxial compression along the [1 0 0] direction with MD simulation. For all cases, x = [1 0 0], y = [0 1 0] and z = [0 0 1].
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verify such a phase transformation, we also analyze the
enthalpy as a function of lattice parameters for uniaxial
stress of rx = –50, –60, and –75 GPa, respectively. It can
be seen from the enthalpy contours shown in Fig. 8 that
there’s only one minimum for rx = –50 and –60 GPa but
three minima for rx = –75 GPa. For the former two cases,
the only minimum is in the vicinity of b/a = c/a = 1.21 and
1.23 (H = –2.259 and –0.999 eV), respectively, correspond-
ing to a B2 structure with lattice parameters slightly differ-
ent from those at zero stress. For the last case, however,
two minima are symmetrical with b/a = 1.14 and c/
a = 1.45 (or b/a = 1.45 and c/a = 1.14), while the third
one is in the vicinity of b/a = c/a = 1.25. The first two min-
ima correspond to a bco structure with an enthalpy of
0.857 eV, 0.003 eV lower than that for the third corre-
sponding to a B2 structure, implying that the bco structure
is more stable. However, the formation of the ideal bco
structure is not observed after instability in the MD simu-
lation. This is because the modulated bco structure has a
lower enthalpy than the ideally normal bco structure under
the uniaxial compression loading with rx 6 –60 GPa.
Therefore, the observed instability is a phase transforma-
tion from a B2 structure into a modulated bco structure,
which is successfully predicted by LDFEM. It is notable
that such a transformation can also be observed using
the Voter–Chen potential [58] (not shown), but has not
been reported in experiments or ab initio calculations,
which are in our consideration in the further study,
however.
With the progress of compression from point C, the cell
undergoes an elastic deformation and keeps a modulated
bco structure until it is transformed into an amorphous
atomic structure at a strain of –16.73% (not shown).
Unloading from any strain prior to the amorphization,
e.g. point D with a strain of –16.00%, the cell is recovered
elastically to point E (ex = –11.19%, rx = –34.75 GPa),
reversed to a B2 structure at point F (ex = –11.00%,
rx = –35.75 GPa) and undergoes another recovery of elas-
tic deformation within a B2 structure till the origin point A.
The different loading and unloading responses by the MD
simulation give a hysteresis loop exhibiting a pseudoelastic
behavior.

5.2. 2-D nanoindentation

Nanoindentation has been an effective tool for investi-
gating the mechanical properties of materials [59]. In this
section, we compare the simulations of a fully 2-D cylindri-
cal nanoindentation of B2-NiAl crystal via both LDFEM
and MD. Coordinate system is taken as x[1�1�2], y[1 1 0]
and z[1�11]. An analytic rigid cylindrical indenter with a
radius R of 100 Å and an axis along the z direction is
imposed normal to the (1 1 0) surface with a size of
400 � 200 Å in the x–y plane. For the LDFEM simulation,
4-noded plane-strain linear rectangular elements are used,
and the typical size of the elements near the indenter is
about 1 Å. The model has a fixed bottom, a free top surface
and two fixed sides in the x direction. There is no friction



Fig. 8. Contours of enthalpy for uniaxial compression stress of: (a) rx = –50 GPa, (b) rx = –60 GPa, and (c) rx = –75 GPa along the [1 0 0] direction
based on Mishin potential. Stable or metastable structures are denoted corresponding to the minima.
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between the indenter and the top surface. The indentation
proceeds in a displacement control and the indentation
depth is set to 0.01 Å per step. The model for the MD sim-
ulation has a same size and boundaries in the x–y plane as
those set in the LDFEM simulation, and a periodic bound-
ary condition in the z direction. There are 9 layers of atoms
of (1�1 1) plane along the z direction, and no displacement is
allowed in this direction to be compared with the plane
strain in the LDFEM simulation. The indentation is con-
trolled in a static process with an indentation depth of
0.01 Å per step to eliminate the effect of strain rate on
indentation behavior. It is achieved by introducing an
external repulsive interatomic potential between the inden-
ter and the atoms at the top surface,

W ¼ Aðr � RÞ3 for r 6 R

0 for r > R

(
; ð28Þ

where r is the distance between the indenter and the atom,
and A = 50 eV Å–3 is chosen empirically to control the
rigidity of the indenter in the present study. In each step,
the system is thermally equilibrated at a temperature of
0.1 K using a Nosé–Hoover thermostat [60,61].

The load L versus indentation depth h responses (Fig. 9)
show a good agreement between the two simulations. A
dynamical instability occurs at h = 12.38 Å, with four soft
acoustic phonon modes with wave vectors of q�1 ¼
½10 1�=2; q�2 ¼ ½10�1�=2; q�3 ¼ ½0 11�=2 and q�4 ¼ ½01�1�=2 in
the Brillouin zone, respectively, predicted by the soft pho-
non criterion. Simultaneously, the K criterion predicts that
two dislocations with slip systems of (0 1 1) ½11�1� and
ð1 0�1Þ [1 1 1], respectively, are equally likely to be activated
at h = 13.59 Å. The two criteria predict the same instability
material point (element), which is 36.05 and 37.09 Å below
the initial top surface along the central y axis at each
respective critical indentation depth.

Even though the indentation deformation is limited to 2-
D, the predicted instability products may have 3-D config-
urations. To verify the 3-D instability predictions by the
criteria, each configuration of the model per indentation



Fig. 9. Load versus indentation depth curves of the 2-D nanoindentation
with LDFEM and MD simulations. The inset shows a higher magnifica-
tion of the curves near the incipient instability.
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depth of 0.01 Å near the incipient instability in the MD
simulation is saved, and then post-processed to get an
equilibrated state by relaxing the displacements of atoms
in all the three directions. It is found that a modulated
structure and a dislocation dipole are nucleated at
h = 12.71 and 13.32 Å, respectively, a little higher and
lower than each respective critical indentation depth corre-
sponding to the dynamical and elastic instability predicted
by the two instability criteria in the LDFEM simulation.
The positions of the two nucleation sites are 37.78 and
40.16 Å below the initial top surface along the central y

axis, respectively, agreeing well with the LDFEM simula-
tion results. The equilibrated configurations of the model
at the two critical indentation depths above are shown in
Fig. 10. Equilibrated configuration by full relaxation of the 2-D nanoindenta
inset shows a higher magnification of the region where a modulated structure a
and z = ½1�11� .
Figs. 10 and 11, respectively. It can be seen that a modu-
lated structure develops firstly in a local region surrounded
by stable lattices during relaxation (Fig. 10). The surround-
ing stable lattices acting as a “firewall” isolates the unstable
region so that the load drop cannot be seen in the L–h

curve. After the indentation depth reaches a critical value,
the unstable region breaks through the “firewall” in relax-
ation and leads to a nucleation of a dislocation dipole
(Fig. 11). The asynchrony of the two critical depths shows
that the dynamical instability does not necessarily mean
immediate structural collapse [62], e.g. dislocation nucle-
ation. It is notable that the critical indentation depth of
13.32 Å in the MD simulation is ahead of 13.59 Å corre-
sponding to an elastic instability, implying that the nucle-
ation of the dislocation dipole is still a product of
dynamical instability. With the development of the inden-
tation depth, the dislocation dipole then splits under full
relaxation, with the lower dislocation migrating into the
inner of the crystal and the upper slipping to the top sur-
face along the slip plane of (0 1 1), which results in a load
drop. Both members of the dipole are mixed dislocations in
nature, with slip directions of ½11�1� and ½�1�11�, respectively,
and the same direction of dislocation line along the z½1�11�
direction. This first nucleated dipole suppresses the nucle-
ation of the other equivalent one with a slip plane of
ð10�1Þ, which is also possible to be activated predicted by
the instability criterion.

The von Mises stress distributions calculated by
LDFEM and MD at h = 12.70 Å just before the incipient
instability are compared, shown in Fig. 12a and b, respec-
tively. Note that the Cauchy stress by Eq. (21) for both the
methods is not defined for a single atom but a primitive
unit cell. In the LDFEM simulation, the stress at each
material point is calculated based on the local deformation
tion system at an indentation depth of 12.71 Å with MD simulation. The
ppears incipiently. The coordinate system is taken as x = ½1�1�2� , y = [1 1 0]



Fig. 11. Atomic structure of the dislocation dipole by full relaxation of the 2-D nanoindentation system at an indentation depth of 13.32 Å with MD
simulation: (a) view along the z½1�11� direction; (b) view along the normal direction of the slip plane of (0 1 1), with the atoms below and above the two
adjacent slip planes near the incipient dislocation nucleation site being removed; (c) illustration of the slip system of the dislocation dipole. Red and blue
atoms are those on the two adjacent slip planes.
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gradient. While in the MD simulation, it is needed to clas-
sify each atom into respective primitive unit cell firstly, and
then calculate the Cauchy stress by substituting the actual
coordinates of the neighboring atoms into Eqs. (16) and
(21). Both the simulations give the maximum von Mises
stress of about 34 GPa. The good agreement of the von
Mises stress distributions obtained by the two methods fur-
ther validates that LDFEM simulation is faithful to the
underlying atomistic model.

6. Conclusions and discussions

We have proposed a constitutive relation of LDFEM
for complex crystals incorporating the crystalline anisot-
ropy and nonlinear elastic effects within the hyperelasticity
framework. In this method, the CB hypothesis has been
employed to link the macroscopic continuum elastic defor-
mation to microscopic atoms movements, and the inner
displacement has been elaborately considered, as it differ-
entiates the constitutive model between monatomic and
complex crystals. The explicit expressions for the stress
and elastic tensor have been derived based on the EAM
potential for complex Bravais lattices, and simultaneously,
two energy-based lattice instability criteria to be embedded
into LDFEM for predicting homogenous lattice instability
in a perfect crystal have been critically reviewed.

LDFEM and MD simulations of uniaxial loadings of
single-crystal B2-NiAl with 3-D PBCs along the [1 0 0]
direction have been performed, and homogeneous lattice
instabilities by the two instability criteria have been pre-
dicted. The results from both the methods have been care-
fully compared. The good agreement of the stress–strain
responses and the predicted instability behaviors by the
two methods validates the proposed LDFEM’s capability
to perform simulations at atomic scale. The MD simula-
tions confirm that a dynamical instability occurs incipiently
under both the uniaxial tension and compression loadings,
though with different products: a modulated structure and
a new phase, respectively. The absolute value of stress
required for the incipient instability under tension is 6.78
GPa, much lower than that of 59.23 GPa under compres-
sion, showing the asymmetry of tension and compression
of B2-NiAl along the [1 0 0] direction.

The proposed method is further validated by comparing
the results of a fully 2-D cylindrical nanoindentation of NiAl
with the LDFEM and MD simulations. Both the accordance



Fig. 12. Contours of von Mises stress (in GPa) at an indentation depth of 12.70 Å with: (a) LDFEM and (b) MD simulations.
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of the indentation load–depth responses and the von Mises
stress distributions indicate that LDFEM is able to deal with
complex loading problems. The two critical indentation
depths, corresponding to a dynamical instability and a dislo-
cation nucleation predicted by the two criteria in the
LDFEM simulation, respectively, give lower and upper
bounds for those in the MD simulation. It can be explained
as follows: a threshold volume of region is required to
accommodate unstable waves to transmit, so the occurrence
of an actual homogenous dynamical instability, e.g. forma-
tion of a modulated structure, lags behind the ideal crite-
rion’s prediction; only after the region grows up to a
critical volume can the unstable waves break through the
“firewall” which isolates the unstable regions from stable
ones, transmit to the entire system and then lead to disloca-
tion nucleation. Such a nucleation occurs before the elastic
instability as a result of its short-wavelength-instability nat-
ure. This scenario is different from the study by Dmitriev
et al. [62], in which the soft phonon criterion predicts that
the crystal would become unstable firstly in the long wave-
length limit corresponding to an elastic instability, though
no dislocation is nucleated actually until unstable waves with
relatively shorter wavelength appear.

IPFEM’s significant computational efficiency in dealing
with large-length-scale system without losing atomic reso-
lution has been exhibited in the previous studies [34,36–
39]. In fact, it is very suitable to investigate the mechanical
properties such as theoretical strength and hardness of
materials at large length scales. Besides inheriting such a
prominent feature of IPFEM, the presently developed
LDFEM greatly broadens the investigated materials once
the structure and the interatomic potential of the material
are given. Furthermore, it is quite promising for LDFEM
to couple with other atomistic simulation methods to real-
ize studies of complicated mechanical response of materials
with experimentally length/time scales. Simultaneously,
many extensions are under development to further broaden
the LDFEM’s applicability. For instance, the presence of
defects such as free surfaces and pre-existing dislocation,
finite temperature and strain-rate dependence of mechani-
cal responses may be included in the future. Such exten-
sions may help LDFEM become a versatile multiscale
simulation method.
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Appendix A. Derivatives of the strain energy density

The first and second derivatives of the EAM-based
strain energy density W with respect to the Green strain
E or/and the inner displacements z, are given by
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Appendix B. Derivatives of the distance between two atoms

The first and second derivatives of rab, the distance
between atoms a and b, with respect to the Green strain
E or/and the inner displacements z, are given by
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Appendix C. Derivative of the total potential energy

With restriction to the EAM potential, the total poten-
tial energy �W, determined by summation of the interatomic
potential over all atoms in the system, is given by
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The second derivative of �W with respect to the coordinates
of two different atoms a and b is given by
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