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We present an efficient and accurate computational approach to study phase-coherent quantum transport in
molecular and nanoscale electronics. We formulate a Green’s-function method in the recently developed ab
initio nonorthogonal quasiatomic orbital basis set within the Landauer-Büttiker formalism. These quasiatomic
orbitals are efficiently and robustly transformed from Kohn-Sham eigenwave functions subject to the maximal
atomic-orbital similarity measure. With this minimal basis set, we can easily calculate electrical conductance
using Green’s-function method while keeping accuracy at the level of plane-wave density-functional theory.
Our approach is validated in three studies of two-terminal electronic devices, in which projected density of
states and conductance eigenchannel are employed to help understand microscopic mechanism of quantum
transport. We first apply our approach to a seven-carbon atomic chain sandwiched between two finite cross-
sectioned Al�001� surfaces. The emergence of gaps in the conductance curve originates from the selection rule
with vanishing overlap between symmetry-incompatible conductance eigenchannels in leads and conductor. In
the second application, a �4,4� single-wall carbon nanotube with a substitutional silicon impurity is investi-
gated. The complete suppression of transmission at 0.6 eV in one of the two conductance eigenchannels is
attributed to the Fano antiresonance when the localized silicon impurity state couples with the continuum states
of carbon nanotube. Finally, a benzene-1,4-dithiolate molecule attached to two Au�111� surfaces is considered.
Combining fragment molecular orbital analysis and conductance eigenchannel analysis, we demonstrate that
conductance peaks near the Fermi level result from resonant tunneling through molecular orbitals of benzene-
1,4-dithiolate molecule. In general, our conductance curves agree very well with previous results obtained
using localized basis sets while slight difference is observed near the Fermi level and conductance edges.
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I. INTRODUCTION

The ongoing development of molecular and nanoscale
electronics1–8 is critical to the fabrication of solid-state de-
vices that has followed the Moore’s law for several decades.
Single-molecule-based field-effect transistors, rectifiers, in-
terconnects, and optical and mechanical switches may re-
place silicon in the post-complementary metal-oxide semi-
conductor �CMOS� devices and revolutionize information
technology if such devices can be massively and cheaply
fabricated and easily integrated. Molecular rectifier, known
as the first conceptual molecular electronics, was proposed
by Aviram and Ratner9 in the 1970s based on an organic
donor-bridge-acceptor architecture. However, for decades
such kind of molecular devices has not been synthesized,
controlled, or measured, simply because single molecule is
very sensitive to the chemical and dielectric environments,
hence extremely hard to manipulate. Thanks to the tremen-
dous success in experimental realizations and measurements
at nanoscale, reproducible results of electrical conductance in
molecular and nanoscale devices have finally been achieved
during the last decade by mechanically controllable break
junction,10–13 scanning tunneling microscope operated in the
break junction regime,14–18 and spontaneous formation of
molecular junctions,19,20 etc.

Elastic-scattering mean-free path of electrons in molecu-
lar and nanoscale devices is often larger than the size of
conductor itself, reaching the phase-coherent regime of elec-

tron transport, which is beyond the present CMOS technol-
ogy. A simple theoretical formula of electrical conductance
for phase-coherent transport was proposed by Landauer21

and Büttiker,22,23 G�E�=G0T�E�, which is the product of con-
ductance quantum G0=2e2 /h �“2” accounts for spin degen-
eracy� and electron transmission probability T�E� at energy
level E. Transmission probability T can be obtained from the
solution of single-particle quantum scattering problem and
the magnitude of T reflects scattering strength and interfer-
ence characteristics when electrons pass through two- or
multi-terminal devices. Clearly, the major assumption of the
Landauer-Büttiker formalism is phase coherence. Recently,
particular attention has also been devoted to inelastic-
scattering effect24–28 which, on one hand, may cause local
heating inside junctions and affect functionality and stability
of devices. On the other hand, it was argued29,30 that the
electron-phonon coupling could be one reason for negative
differential resistance observed in experiments, thus the as-
sumption of phase coherence has to be examined in the spe-
cific device that one is interested in. The Landauer-Büttiker
formalism also assumed the absence of electron correlation.
Meir and Wingreen31 extended the original formula in a
more general one which considers current passing through a
conductor containing interacting electrons instead of nonin-
teracting ones. The generalized Landauer-Büttiker formula
scales the original one by a self-energy correction due to
electron correlations in the conductor region. Such effect was
studied in the recent work by Ferretti et al.32,33 in one-
dimensional molecular junctions.
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During the past 20 years, computational approaches at the
ab initio level for phase-coherent quantum transport have
been extensively developed within the Landauer-Büttiker
formalism, including equilibrium and nonequilibrium
Green’s function �NEGF� methods,34–47 Lippmann-
Schwinger scattering-state approach,48–54 and layer
Korringa-Kohn-Rostoker approach.55 In practice NEGF
method is often constructed on top of single-particle theories
such as density-functional theory �DFT�,56,57 and Hartree-
Fock �HF� theory, neither of which include full quasiparticle
physics in electron transport. As a consequence, DFT usually
underestimates energy gap of semiconductors and insulators
while very often HF overestimates it due to the missing cor-
relation effect. It has been shown very recently that quasipar-
ticle self-energy correction from many-body perturbation
theory obtained using Hedin’s GW approximation58 greatly
improves the description of electronic gap between occupied
and unoccupied frontier adsorbate states, therefore drasti-
cally lowers theoretical electrical conductance toward experi-
mental results.59–61 An alternative approach, time-dependent
DFT,62 has also been proposed to include electron-electron
correlation into quantum transport.63–67

Practically speaking, DFT-NEGF and HF-NEGF calcula-
tions of electrical conductance in the full Hilbert space are
not only computationally very demanding, but also unneces-
sary in most cases, due to the fact that almost all molecules
and solids in nanoscale devices can be well described by
low-energy physics. In other words, electron wave functions
in molecules and solids do not deviate much from linear
combination of atomic orbitals �LCAO�.68 Therefore, in the
spirit of LCAO, localized basis sets are frequently adopted in
standard NEGF calculations, including Slater-type orbitals
�STO�, Gaussian-type orbitals �GTO�,69 and localized
pseudoatomic orbitals70,71 while STO and GTO have been
extensively used in quantum chemistry community for de-
cades. Consequently, Hamiltonian and overlap matrices are
also strictly localized in real space, which makes direct and
fast calculations of Green’s function and self-energy pos-
sible. Nonetheless, one question is often asked: are the lo-
calized basis sets used in NEGF calculations large enough to
represent the Hilbert subspace of those low-energy single-
particle states which are important for both ground-state
electronic structure and electron transport? The question can
only be addressed by directly comparing results from both
localized basis sets and plane-wave basis, the latter being
continuously tunable and spatially homogeneous. However,
the size of Hamiltonian in plane-wave basis is orders of mag-
nitude larger than the one in localized basis sets, which
makes direct inversion of Hamiltonian formidable. Fortu-
nately, maximally localized Wannier functions �MLWFs�
proposed by Marzari and Souza and Vanderbilt,72,73 adopting
the quadratic spread localization measure,74 paved a unique
and elegant way to provide an exact mapping of Hilbert
space spanned by Kohn-Sham wave functions inside particu-
lar energy window in a minimal basis. Green’s-function
method using the MLWF basis has become a rigorous
approach75–79 to calculate zero-bias electrical conductance at
the accuracy of plane-wave DFT. Recently Strange et al.80

carried out a detailed comparison of conductance in a couple
of nanoscale systems using both MLWFs from plane-wave

DFT calculations and numerical atomic orbitals from LCAO
calculations. It was shown that LCAO calculations using the
double-zeta polarized �DZP� basis agree very well with
MLWF calculations while the single-zeta �SZ� and SZ polar-
ized �SZP� basis sets give rise to large deviations. However,
from transmission curves it was also clearly observed that
even with DZP basis the energy positions of transmission
peaks in LCAO calculations deviate from the ones obtained
by MLWF calculations, especially the deep valence levels,
indicating the insufficiency of these numeric SZ, SZP, and
DZP basis sets. Despite tremendous success of MLWF ap-
proach, there is no closed-form solution for MLWFs, there-
fore iterative numerical procedures have to be adopted to
find the global minimum. Furthermore, the center and shape
of MLWFs are unknown until the iterative minimization of
quadratic spread is fully finished.

Alternatively, we have recently developed an efficient
and robust method81 to transform Bloch wave functions ob-
tained from DFT calculations into a set of highly localized
nonorthogonal quasiatomic orbitals �QOs�, which are maxi-
mally similar to the Bloch subspace spanned by pseudo-
atomic orbitals. Compared to the original quasiatomic-
minimal-basis-orbital �QUAMBO� method by Lu et al.,82 the
current method not only arrives at the maximally similar
orbitals, but also avoids the problem of bad condition num-
ber due to the unoccupied Bloch subspace truncation error.
QOs and the associated ab initio tight-binding �TB� Hamil-
tonian and overlap matrices can accurately reproduce all the
electronic structure information up to a few electron volts
above the Fermi level. More importantly, explicit calculation
of unoccupied states is avoided by resorting to resolution-of-
the-identity property of Bloch space, hence dramatically re-
duces both computational effort and storage requirement.
Taking advantages of the corresponding TB Hamiltonian and
overlap matrices, efficient and accurate calculations of band
structure, Fermi surface, and Mülliken charge and bond order
have been carried out for isolated molecules, semiconduc-
tors, and metals. Therefore, similar to MLWFs, QOs can
naturally serve as a minimal basis set for Green’s-function
method to study electron transport. In this work, we describe
an efficient and accurate computational approach83 to study
phase-coherent quantum transport in molecular and nano-
scale electronics within the Landauer-Büttiker formalism
which retains the accuracy at the plane-wave DFT level.

This paper is organized as follows: in Sec. II Green’s-
function method with nonorthogonal localized basis for
phase-coherent quantum transport is briefly introduced. In
Sec. III we summarize our previous work on constructing
nonorthogonal QOs from plane-wave DFT calculations. In
Sec. IV Green’s-function method in the QO basis set is ap-
plied to three cases: �a� a seven-carbon atomic chain sand-
wiched between two Al�001� surfaces with finite cross sec-
tion, �b� a �4,4� single-wall carbon nanotube �CNT� with
substitutional silicon impurity, and �c� benzene-1,4-dithiolate
�BDT� molecule attached to two Au�111� surfaces. Calcu-
lated conductance is in very good agreement with other
NEGF results obtained using localized basis sets while slight
difference is found near the Fermi level and conductance
edges. In addition, conductance eigenchannel analysis is per-
formed to help understand microscopic mechanism of elec-
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tron transport in both devices. Finally, we summarize our
work in Sec. V. Relevant information of the program and
calculations is placed at a publicly accessible website.83

II. GREEN’S-FUNCTION METHOD FOR PHASE-
COHERENT QUANTUM TRANSPORT

A. Two-terminal quantum transport device

Two-terminal quantum transport device is represented by
standard structure:35,40 left electron reservoir ��L�—left lead
�L�—conductor �C�—right lead �R�—right electron reservoir
��R�, as shown in Fig. 1. Hamiltonian of the whole device
without reservoirs is simply written as

H = HL + HCL + HC + HCR + HR. �1�

HC, HL, and HR are Hamiltonians for conductor and left and
right semi-infinite leads, and HCL �HCR� is coupling matrix
between conductor and left �right� lead. Although the dimen-
sion of both leads is semi-infinite, Hamiltonians in nonor-
thogonal localized basis set for leads and conductor are lo-
calized sparse matrices. More explicitly, nonvanishing off-
diagonal terms of Hamiltonian H in Eq. �1� are very close to
the diagonal terms owing to finite spatial range of localized-
orbital basis. This localization feature allows fast matrix in-
version and thus efficient self-energy and conductance calcu-
lations, which will be explained below. First, the conductor
region should be large enough to make sure no interaction
between left and right leads. Second, the semi-infinite leads
are further divided into periodic principal layers84 along
transport direction. Here Hamiltonian for principal layers in
the left �right� lead is denoted by HL

i �HR
i �, where

i=0,1 ,2 , . . . ,�. Principal layer is chosen to be as small as
possible while ensuring the interaction between the ith prin-
cipal and the �i�n�th principal layer, HR

i,i�n, is negligible for
n�2. Thus, only HL

i,i�1�HR
i,i�1� needs to be considered. Fur-

thermore, due to the periodic structure of principal layers in
the left and right leads, Hamiltonian for each principal layer

and coupling matrix between any two adjacent principal lay-
ers are also periodic. That means HL

i,i−1=HL
10= �HL

01�†

= �HL
i−1,i�†, and HR

i,i−1=HR
10= �HR

01�†= �HR
i−1,i�†. Finally, a simi-

lar requirement applies to the interaction between the con-
ductor and its adjacent principal layers so that HCL

i and HCR
i

will be nonzero for i=0 only. In the nonorthogonal basis, one
also needs to make sure the same conditions are satisfied for
overlap matrix S.

B. Conductance within the Landauer-Büttiker formalism

To calculate conductance in phase-coherent transport we
apply Green’s-function method31,34 within the Landauer-
Büttiker formalism,21–23 given in the following equation:

G�E� = G0T�E� =
2e2

h
Tr��LGC

a �RGC
r � . �2�

Here G0 stands for conductance quantum and G0=2e2 /h �2
accounts for spin degeneracy�. “Tr��” is the trace of matrix in
the bracket and GC

r and GC
a are the retarded and advanced

Green’s functions of conductor at energy E. ��L,R� represents
the coupling between conductor and leads,

��L,R� � i���L,R�
r − ��L,R�

a � , �3�

where ��L,R�
r and ��L,R�

a are retarded and advanced self-
energy corrections to conductor Hamiltonian due to its cou-
pling with left and right semi-infinite leads. A simple rela-
tionship exists for retarded and advanced Green’s function
and self-energy, that is,

GC
r = �GC

a �†, ��L,R�
r = ���L,R�

a �†. �4�

Correspondingly, total current passing through the leads is
the integration of conductance over energy,

I =
2e

h
� dE�f�E − �L� − f�E − �R��T�E� , �5�

where f is Fermi distribution of electrons. As seen from the
above equations, two key quantities, GC

r and ��L,R�
r , are re-

quired for conductance calculations.
Following the schematic setup shown in Fig. 1 we can

simplify infinite full Hamiltonian H and its Green’s function.
Explicit forms of full Hamiltonian H and overlap matrix S in
terms of conductor and leads are

H = 	 HL HCL
† 0

HCL HC HCR

0 HCR
† HR


, S = 	 SL SCL
† 0

SCL SC SCR

0 SCR
† SR


 .

Retarded Green’s function Gr of Hamiltonian is defined as
�zS−H�Gr=I with z=E+ i� and � is an infinitesimal posi-
tive number. Its expanded form is written as

�zS − H�	 GL
r GLC

r GLR
r

GCL
r GC

r GCR
r

GRL
r GRC

r GR
r 
 = 	IL 0 0

0 IC 0

0 0 IR

 . �6�

Due to the short-ranged Hamiltonian and overlap matrices,
GLR

r and GRL
r of direct couplings are negligible. We then

FIG. 1. �Color online� Schematic representation of two-terminal
quantum transport device: two semi-infinite leads �light blue� con-
nect the conductor �red� to the reservoirs �blue� characterized by
electronic chemical potential �L and �R, respectively, in the semi-
infinite limit. For the sake of efficient surface Green’s function cal-
culation, semi-infinite leads are further divided into periodic princi-
pal layers �L0,L1, ¯ ,Ln;R0,R1, ¯ ,Rn� as small as possible
while ensuring negligible interaction between the principal layer
and its second nearest principal layers under localized basis set. The
conductor region has to also be chosen large enough to ensure van-
ishing coupling between left and right leads. For nonorthogonal
localized basis set, there exists a similar schematic plot for overlap
matrix S.
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have the following solution for retarded Green’s function GC
r

of conductor:

GC
r = �zSC − HC − �L

r − �R
r �−1, �7�

where

�L
r = �zSCL − HCL�GL

r �zSCL − HCL�†, �8�

�R
r = �zSCR − HCR�GR

r �zSCR − HCR�†, �9�

GL
r = �zSL − HL�−1, �10�

GR
r = �zSR − HR�−1. �11�

As we have mentioned before, ��L,R�
r is the self-energy due

to the coupling between conductor and leads, and they have
the same dimension as HC and SC. Semi-infinite G�L,R�

r is
retarded Green’s function of left and right leads. Notice that
in the device setup HC�L,R�

i =0 and SC�L,R�
i =0 for i�1 and

this allows us to reduce ��L,R�
r into a more compact form.

Here we take �L
r as an example.

�L
r = �¯ 0 0 zSCL

0 − HCL
0 �

�	
� ] ] ]

¯ zSL
0 − HL

0 zSL
10 − HL

10 0

¯ zSL
01 − HL

01 zSL
0 − HL

0 zSL
10 − HL

10

¯ 0 zSL
01 − HL

01 zSL
0 − HL

0



−1

�	
]

0

0

�zSCL
0 − HCL

0 �†



= �zSCL
0 − HCL

0 �gL
0�zSCL

0 − HCL
0 �†. �12�

Surface Green’s function gL
0 of the principal layer L0 is ex-

tracted from semi-infinite retarded Green’s function gL
r of the

entire left lead. A similar expression for �R
r can be directly

obtained by changing “L” to “R” in the above formula.
Moreover, surface Green’s function gL

0 and gR
0 are calculated

using an efficient iterative method proposed by Sancho
et al.,85–87 in which 2i principal layers are taken into account
after the ith iteration.

C. Density of states

Density of states �DOS�, �C�E�, in the conductor region is
closely related to the retarded Green’s function GC

r �E�

�C�E� = −
1

	
Im�Tr�GC

r �E�SC�� . �13�

Im refers to the imaginary part of the value. The position-
dependent DOS, �C�x ,E�, is also easy to compute in any
localized nonorthogonal basis set �em�,

�C�x,E� = −
1

	
�
mn

Im�GC
r �E��mnen

��x�em�x� . �14�

However we emphasize that DOS and local DOS �LDOS�
from the above equations simply reflect the total number and

the detailed distribution of single-particle states at specific
energy and position, respectively, and there is no exact one-
to-one mapping between DOS/LDOS and electrical conduc-
tance. Localized standing waves, for example, do not con-
tribute to conductance at all.

D. Conductance eigenchannels

Conductance calculated from Eq. �2� does not provide
information of current distribution. It is thus unable to tell us
deeper physics behind transport phenomena. For instance,
how do vacancy and impurity in carbon nanotubes and
graphene nanoribbons affect conductance? Why isomeriza-
tion in molecular switches will lead to different conduc-
tances? What is the intrinsic reason for negative differential
resistance �NDR�? Some of these questions can be answered
roughly by chemical intuitions but not quantitatively and
conclusively. Looking into the molecular and nanoscale elec-
tronics carefully, we can see that conductors and even leads
are very often made of low-dimensional materials subject to
quantum confinement. Low dimensionality and quantum
confinement directly limit the number of molecular orbitals
in conductors available near the Fermi level, hence limit the
number of conductance channels. Conductance channels es-
sentially come from the hybridization between molecular or-
bitals in conductors and delocalized Bloch states in leads.
The above conceptual conductance eigenchannels have al-
ready been theoretically formulated and practically
utilized.34,88 Presently it is one of the most powerful tools for
understanding the role of chemical bonding and antibonding
characteristics and determining microscopic transport
mechanism with the help of modern visualization
techniques.89

One simple way to define conductance eigenchannels is to
perform a singular value decomposition of the transmission
matrix t,

ULtUR
† = 	
1 0 ¯

0 
2 ¯

] ] �


 , �15�

where t���R�1/2GC
r ��L�1/2 and UL and UR are unitary trans-

formation matrices. As a result, total transmission is,
T�E�=�i
i

�
i, using the cyclic invariance of trace

T�E� = Tr��LGC
a �RGC

r � = Tr�t†t� . �16�

However eigenchannels from the above approach are nor-
malized in both flux and energy. Paulsson and Brandbyge
proposed a different approach88 which directly embed the
information of transmission coefficient into its corresponding
eigenchannel wave function. Such energy-normalized eigen-
channels provide local DOS coming from conductance chan-
nels and can be directly compared with other eigenchannels.
Here we briefly describe basic procedures proposed by
Paulsson and Brandbyge88 which is applied in our work un-
der the QO basis set.

Spectral function A of the conductor is defined by,
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AC�E� = i�GC
r − GC

a � = GC
r ��L + �R�GC

a , �17�

which is generated by incoming electron wave functions
from both left and right leads. We focus on spectral function
due to incoming electrons from the left lead, that is,
AL=GC

r �LGC
a . Under the Löwdin orthogonalization, the

corresponding spectral function is transformed into

ĀL=S1/2ALS1/2. Similarly, �̄R=S−1/2�RS−1/2. Eigenvalues

and eigenvectors of ĀL represent orthogonal scattering chan-
nels and the corresponding transmission coefficients in the
conductor when electron propagates from left to right, that is,

�
n

�ĀL�mn�U�nl = 
l�U�ml. �18�

The eigenvector contained in the unitary transformation ma-
trix U is then scaled by the corresponding transmission co-
efficient 
 as follows:

�Ũ�ml =� 
l

2	
�U�ml. �19�

Transmission matrix under the above orthogonal scattering
channels reads

Tl�l = 2	�Ũ†�̄RŨ�l�l, �20�

which is further diagonalized

�
n

Tmn�C�n� = T��C�m�. �21�

Here T� is transmission probability for eigenchannel � while
�C�m� is the coefficient of Löwdin-orthogonalized orbital m
in eigenchannel �. The corresponding eigenchannel in the
conductor can be explicitly expressed in nonorthogonal basis
set �ei��,

��� = �
i

ei��S−1/2ŨC�i�. �22�

��� essentially represents eigenchannels with conductance
amplitude embedded inside ��� itself. Probability current
density J��x� carried by eigenchannel ��� is simply

J��x� =
e

2m
���

���p − eA���� + ����p − eA������ .

�23�

In the absence of external vector potential A, we have

J��x� =
e

m
Im���

��x� � ���x�� . �24�

Since complex wave function ���x� can be written as a
product of its amplitude and phase, ���x�
= ���x�exp�i���x��, probability current density can be re-
written as

J��x� =
e

m
���x� � ���x� , �25�

where ���x�= ���x�2. Therefore, electron density ���x� and
phase-gradient field ����x� are clearly two important com-
ponents.

E. k-point sampling in the transverse Brillouin zone

In order to treat bulk electrodes, we need to take into
account the periodic boundary condition �PBC� along two
transverse directions. This can be achieved by forming Bloch
functions ei,k�

of nonorthogonal basis set �ei�� at particular
k� of the transverse Brillouin zone,

ei,k�
�x� =

1

�NL�

�
L�

ei�x − XL�eik�·XL�, �26�

where L� runs through all unit cells on the transverse plane
in the Born-von Kármán boundary condition and NL�

is the
total number of unit cells on the plane. The corresponding
Hamiltonian and overlap matrices can be reformulated in the
above Bloch functions,

Hi,j�k�� � �ei,k�
Ĥej,k�

� = �
L�

Hij�L��eik�·XL� �27�

and

Si,j�k�� � �ei,k�
Ŝej,k�

� = �
L�

Sij�L��eik�·XL�, �28�

where Hij�L�� corresponds to Hamiltonian matrix element
between basis ei at unit cell 0 and basis ej at unit cell L�. The
size of Hamiltonian matrix H�k�� and overlap matrix S�k��
obtained from the Bloch transform is much smaller than the
original matrices in the Born-von Kármán boundary condi-
tion. Conductance can be calculated at each k�-point using
H�k�� and S�k��,

G�E,k�� = G0 Tr��L�k��GC
a �k���R�k��GC

r �k��� .

�29�

Finally, the total conductance is the sum of weighted conduc-
tance at all k� points,

G�E� = �
k�

w�k��G�E,k�� , �30�

where w�k�� is the weighting factor of k� in the transverse
Brillouin zone.

III. QUASIATOMIC ORBITALS

Here we briefly summarize the procedures of QO con-
struction while more details can be found in our previous
work.81 Our goal is to construct a set of localized QOs �QIi�
to reproduce all DFT Kohn-Sham eigenvalues and eigen-
states below an energy threshold Eth while these QOs are
maximally similar to their corresponding AOs �AIi�. QIi re-
fers to the ith QO on atom I, where i contains principal �n�,
azimuthal �l�, magnetic �m�, and spin ��� quantum numbers
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of atomic orbitals. Since accurate description of electronic
structure near the Fermi level is essential for transport calcu-
lations, this energy threshold Eth is often set to be a few
electron volts above the Fermi level. These to-be-reproduced
eigenstates satisfy the following Kohn-Sham equation:

Ĥ�nk� = �nkŜ�nk�, n = 1, . . . ,Rk �31�

forming a finite-dimensional subspace R�k�, where n and k
refer to Kohn-Sham states and the k-point sampling in the
first Brillouin zone, respectively. The positive definite Her-

mitian operator Ŝ accounts for pseudowave-function aug-
mentations in Vanderbilt’s ultrasoft pseudopotentials. In the
case of norm-conserving pseudopotentials it is simply the
identity operator. The rest Bloch eigenstates that belong to

infinite-dimensional subspace R̄�k�,

Ĥ�n̄k� = �n̄kŜ�n̄k� . �32�

Different Bloch states are orthogonal to each other and Rk
can vary with k. The full Bloch space B�k� at k point is the

union of two subspaces: B�k��R�k��R̄�k�.
To-be-reproduced Bloch states ��nk� in R�k� themselves

are not sufficient to construct QOs since the dimension of
R�k� is usually smaller than the dimension of QOs. We,
therefore, have to seek an optimized combination subspace

C�k��R̄�k�, consisting of mutually orthonormal states
�cmk�, m=1, . . . ,Ck, to maximize the “sum-over-square”
similarity measure L, or the total sum of of AO projection
squares onto the subspace defined by ��nk� and �cmk�,

L � �
Ii
���

nk
P̂�nk

+ �
mk

P̂cmk�AIi��2
,

=�
Ii

�P̂��nk�AIi��2 + �P̂�cmk�AIi��2. �33�

P̂ is projection operator, defined by

P̂��� �
��,��
��,��

�� =
��Ŝ��

��Ŝ��
�� , �34�

and P̂��nk�=�nkP̂�nk
. Optimized states �cmk� are linear

combinations of ��n̄k�. Ck=qN−Rk, where q is the
averaged number of AOs per atom and N is total number of
atoms in the unit cell. The first part in Eq. �33� is the total
sum-over-square projection of all AOs onto R�k�, which is
constant. Consequently we only need to focus on the second
part Eq. �33� and optimize C�k� to maximize L. Furthermore,

L does not depend on some part of R̄�k� which has no
overlap with Bloch subspace A�k� spanned by AOs.
In another word, C�k� is a subset of the complement
of R�k� within the union of R�k� and A�k�, that is,

C�k��Ā�k����R�k��A�k�� \R�k��. The important conse-
quence is that one can find C�k� from the finite complemen-

tary subspace Ā�k� instead of constructing C�k� from the

infinite R̄�k� as proposed in the original QUAMBO method,
while the final C�k� is exactly the same in both approaches as
proved in our previous work.81

Bloch form of AO AIi� at k consists of a component that

belongs to R�k�, and a component that belongs to R̄�k�,

AIi,k� = AIi,k
� � + AIi,k

� � , �35�

where

AIi,k
� � � �

n

P̂�nk
AIi,k� �36�

and

AIi,k
� � = AIi,k� − �

n

P̂�nk
AIi,k� . �37�

AIi,k
� � and AIi,k

� � can be calculated straightforwardly in
plane-wave basis without knowing ��n̄k�’s explicitly. We de-
note overlap matrix between �AIi,k

� � as Wk,

�Wk�Ii,Jj = �AIi,k
� ŜAJj,k

� � . �38�

Wk is a positive-semidefinite Gramian matrix. It can be di-
agonalized by a unitary matrix Vk such that Wk=VkYkVk

†,
where VkVk

† =IqN�qN. The diagonal matrix Yk contains non-
negative real eigenvalues. All the possible orthonormal states
�cmk� of combination subspace C�k� can be constructed using
eigenvalues and eigenvectors of Wk matrix,

cmk� = �
Ii

�V̄k�Ii,mAIi,k
� � , �39�

where �V̄k�Ii,m= �Vk�Ii,m�Yk�mm
−1/2. As a result, the sum-over-

square measure L defined in Eq. �33� can be rewritten in the
following simple form:

L = �
Ii

��
k

AIi,k
� ��2

+ �
k

Tr�WkV̄kV̄k
†Wk�

= �
Ii

��
k

AIi,k
� ��2

+ �
mk

�Yk�mm. �40�

�m�Yk�mm basically sums all Ck eigenvalues arbitrarily cho-
sen from total qN non-negative real eigenvalues of Wk ma-
trix. Therefore, Eq. �40� suggests that we can maximize L by
choosing the largest Ck eigenvalues and their corresponding
eigenvectors.

Once �cmk� is chosen, we can merge basis functions in
R�k� and C�k� together,

��nk� = ��nk� � �cmk� . �41�

More specifically, they are

�nk = ��nk, n = 1, . . . ,Rk

cnk. n = Rk + �1, . . . ,Ck� .
�

Thus, ��nk� consists of a qN-dimensional orthonormal basis
for Q�k�=R�k��C�k�, We, therefore, can build up the full
Hamiltonian matrix �k between any two functions in ��nk�,
that is, ��k�n,n����nkĤ�n�k�. Due to the fact that �a� ��nk�
are eigenfunctions of Kohn-Sham Hamiltonian, �b� �cmk� are
not eigenfunctions, and �c� ��nk� and �cmk� belong to differ-
ent Bloch subspaces, we then have the following expression
for �k:
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��k�n,n� = ��nk�nn�, n,n� = 1, . . . ,Rk

��nkĤ�n�k� , n,n� = Rk + �1, . . . ,Ck�

0. otherwise.
�

It is worth noting that in the above equation Kohn-Sham

Hamiltonian Ĥ has to be applied explicitly to obtain the ma-
trix elements of �k between two different cmk’s at the same k.
Finally, nonorthogonal QO is formed by

QIi� = �
nk

P̂�nk
AIi� = �

nk
��k�n,Ii�nk� , �42�

where n=1, . . . ,qN, k runs over 1 , . . . ,L1L2L3 Monkhorst-
Pack grid, and

��k�n,Ii � ��nkŜAIi� �43�

is a qN�qN matrix.
Under QO basis, real-space ab initio TB Hamiltonian

HIi,Jj�XL� between QIi
0 and QJj

L in two unit cells can be easily
calculated as the following:

HIi,Jj�XL� � �QIi
0 ĤQJj

L � = �
k

e−ik·XL��k
†�k�k�Ii,Jj ,

�44�

where XL= l1a1+ l2a2+ l3a3 is an integer combination of unit-
cell edge vectors. Similarly, real-space overlap matrix
OIi,Jj�XL� can be obtained as

OIi,Jj�XL� � �QIi
0 ŜQJj

L � = �
k

e−ik·XL��k
†�k�Ii,Jj . �45�

Clearly HIi,Jj�XL� and OIi,Jj�XL� have the similar localization
property as QOs and should decay to zero as XL goes to
infinity. With ab initio TB Hamiltonian and overlap matrices,
we can efficiently compute eigenvalues at an arbitrary k
point �not necessarily one of L1L2L3 k points in DFT calcu-
lations�, by forming

HIi,Jj�k� = �
XL�Rcut

eik·XLHIi,Jj�XL� , �46�

and

OIi,Jj�k� = �
XL�Rcut

eik·XLOIi,Jj�XL� , �47�

where XL runs over shells of neighboring unit cells with
significant HIi,Jj�XL� and OIi,Jj�XL�. Typically we determine a
radial cut-off distance Rcut and sum only those elements sat-
isfying XL�Rcut in Eq. �46� and Eq. �47�. Then, by solving
the following generalized eigenvalue matrix problem,

H�k���k� = O�k���k�E�k� , �48�

we obtain total qN eigenvalues in the diagonal matrix E�k�
at each k point. It is expected that, if HIi,Jj�XL� and OIi,Jj�XL�
are strictly zero outside Rcut, all the Rk eigenvalues lower
than energy threshold Eth are exactly the same as the
eigenenergies obtained from DFT calculations. Therefore in
practice, before building up lead and conductor Hamiltonian
and overlap matrices for transport calculation, Rcut has to be

benchmarked by comparing TB and DFT band structures us-
ing the coarse k sampling. On the other hand, this cutoff will
be unnecessary if one is simply interested in a dense inter-
polation of electronic structure such as band structure, Fermi
surface, and Fermi velocity. Consequently, the interpolated
electronic structure will be very accurate and the original
DFT eigenvalues �nk from the coarse k sampling will be
exactly reproduced.

IV. APPLICATION

In the above section, we introduce an efficient method to
construct localized QOs and their corresponding ab initio TB
Hamiltonian and overlap matrices. With this localized basis
set, Green’s-function method based on the Landauer-Büttiker
formalism can be applied to calculate electrical conductance
of phase-coherent transport in molecular and nanoscale ma-
terials. We have implemented both QO method and equilib-
rium Green’s-function method, as well as the interfaces to
plane-wave DFT codes such as VASP,90 DACAPO,91 and
QUANTUM-ESPRESSO.92 Here we present three applications of
our approach: �a� a seven-carbon atomic chain sandwiched
between two Al�001� surfaces with finite cross-section:
Al�001�-C7-Al�001�, �b� �4,4� CNT with substitutional sili-
con impurity, and �c� BDT molecule attached to two Au�111�
surfaces: Au�111�-BDT-Au�111�. Our result is shown to be
consistent with other NEGF calculations. In addition, con-
ductance eigenchannel analysis is performed to understand
microscopic transport mechanism.

A. Al(001)-C7-Al(001) with finite cross section

Atomic structure of Al�001�-C7-Al�001� with finite cross
section is illustrated in Fig. 2, which is the same structure as
that used by others.41,46,53 The conductor is put inside a rect-
angular box of 14.0�14.0�34.238 Å3 and electrons trans-
port along the +z direction. The Al�001� lead is cut from fcc
aluminum with lattice constant of 4.05 Å and it consists of
four atomic layers with 4-5-4-5 aluminum atoms from left to
right. The distance between the edge carbon atom and the
nearest 4-Al atomic plane is 1.0 Å and the C-C bond length
is 1.323 Å. Both ends of carbon atomic chain are connected
to 4-Al atomic planes. Under PBC, the above specific inter-
face gives rise to different numbers of aluminum atomic lay-
ers in the left and right parts of the conductor. DFT calcula-
tions are performed in the QUANTUM-ESPRESSO package
using the Perdew-Burke-Ernzerhof generalized-gradient ap-
proximation �PBE-GGA� of exchange-correlation
functional,93 a plane-wave basis with a cutoff of 400.0 eV,
and ultrasoft pseudopotentials94 for both aluminum and car-
bon atoms. Energy threshold Eth is set to 5.0 eV above the

FIG. 2. �Color online� Atomic structure of Al�001�-C7-Al�001�
with finite cross section. L: principal layer in the left lead; C: con-
ductor; R: principal layer in the right lead.
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Fermi level for QO construction. Although valence electrons
in single aluminum atom only occupy s and p AOs, s, p, and
d AOs are strongly hybridized with each other near the Fermi
level of metallic aluminum leads. Thus, we construct nine
QOs �one s, three p, and five d-like QOs� for each aluminum
atom and four QOs �one s and three p-like QOs� for each
carbon atom. QO-projected DOS is shown in Fig. 3, which
clearly demonstrates that five d-like QOs �indicated by the
blue area in the uper part of QO-projected DOS curve� do
not contribute much in the deep valence levels, however they
have non-negligible contributions close to the Fermi level
and as energy level further increases they become dominant
beyond 10 eV above the Fermi level.

Band structure of Al�001� leads is shown in Fig. 4�a�.
Here four atomic layers are contained in a unit cell. Ab initio
TB band structure �black-solid lines� using Rcut=10 Å
agrees excellently with Kohn-Sham eigenvalues obtained
from DFT calculation �red-filled dots� below E=3.0 eV. The
slight deviation between 3.0 and 5.0 eV mainly comes from
the diffusive nature of QOs in metallic aluminum leads. DOS
and electrical conductance of Al�001� leads are shown in Fig.
4�b�. We observe step-like conductance curve and sharp DOS
peaks and they are the signature of perfect conductance
channels in pristine conductors. The conductance steps indi-
cate the maximum number of perfect conductance channels
in the leads, which can also be obtained by counting number
of bands crossing constant energy levels in the band structure
plot.

Electrical conductance and DOS of Al�001�-C7-Al�001�
are presented in Figs. 5�a� and 5�b�, respectively. We found
very good agreement between our conductance curve and the
ones calculated by Brandbyge et al. using TRANSIESTA

package,41 Ke et al. using SIESTA,46 and Smogunov et al.
using scattering state approach.53 However, a noticeable dif-
ference is observed in the conductance curves from localized
basis set and plane-wave basis calculations.53 Specifically,
the localized basis-set calculations provide larger conduc-
tance near the Fermi level. Furthermore, the positions of con-
ductance curve edges are slightly shifted. Our results, hence,
demonstrate that in general NEGF using localized basis sets
can offer accurate conductance curves, however, more atten-
tion has to be paid to choosing appropriate localized basis
sets in order to achieve both accuracy and efficiency.80

Furthermore, it is observed that total conductance is al-
ways no larger than 2 G0. From chemical intuition, perfect
carbon atomic chain usually has two 	 orbitals near the

Fermi level formed by px and py orbitals perpendicular to the
chain. Thus, it is likely that the maximum conductance of 2
G0 comes from two perfect conducting channels formed by
these 	 orbitals. To examine this speculation, we perform
conductance eigenchannel analysis at different energy levels
which are listed in Table I. In this case, the incoming elec-
trons propagate from left to right �along the +ẑ direction�. It
is found that indeed the major channels are all doubly degen-
erate and each of them is either smaller than G0 or close to
G0 depending on the energy. However, having conductance
values of eigenchannels will not help us decode microscopic
mechanism of transport phenomena. Actually all the detailed
information is carried by eigenchannel itself. Therefore, we
plot the corresponding eigenchannels in Fig. 6, whose phase
amplitude is indicated by color using the color map shown in
Fig. 7. In particular, red and cyan stand for the phase angle of
�	 and 0, respectively, representing real wave functions.

Several features are immediately revealed from Fig. 6.
First, it is clearly seen that electrons propagate through px-
and py-like eigenchannels of carbon atomic chain, which
confirms our previous speculation. Second, conductance
channels at lower energy contain less nodes than those at
higher energy. This is closely correlated with the distribution
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FIG. 4. �Color online� �a� Band structure �black-dashed line: the
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dots: DFT eigenvalues; black-open dots: DFT eigenvalues that are
not used; black-solid line: ab initio TB band structure.� �b� DOS
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of nodes in Kohn-Sham eigenstates since the linear but com-
plex combination of the latter ones forms the former conduc-
tance eigenchannel. Third, perfect phase oscillation on top of
large ���x� lobes only happens near conductance maximum
of 2 G0 such as Figs. 6�a� and 6�b�. Away from conductance
maximum the eigenchannels, such as Figs. 6�c�–6�f�, imme-
diately exhibit more and more red and cyan isosurfaces at the
left part of the conductor, suggesting that the incoming elec-
tron from the left lead is strongly scattered by the interface
between Al�001� lead and carbon atomic chain. The reflected
electrons cancel part of the forwarding phase oscillation at
these energy levels. As a result, the right part of the conduc-
tor contains small portion of transmitted electrons which still
display nontrivial phase gradient. These facts demonstrate
the importance of both amplitude ���x� and phase gradient
����x� of probability current density.

If we read the conductance curve in Fig. 5�a� more care-
fully, there are gaps in the conductance curve, for example,
E� �−1.8,−1.5� eV and E� �0.7,1.2� eV. Such gaps are

absent in pristine leads as shown in Fig. 4 and these small
gaps are also absent in an infinite carbon chain. To under-
stand the nature of these gaps, we focus on the first conduc-
tance gap at �−1.8,−1.5� eV and plot the band structure of
Al�001� lead in Fig. 8�a� as well as three conductance eigen-
channels �Al1, Al2, and Al3� at E=−1.6 eV in Fig. 8�b�.
Al1, Al2, and Al3 clearly exhibit pz, pz, and dxy characters,
respectively. However, we have to emphasize that the dxy
character in the eigenchannel Al3 is not directly from atomic
d orbitals but from the linear combination of atomic s and p
orbitals on each aluminum atom. Moreover, two px- and
py -	 conductance eigenchannels are found in infinite carbon
atomic chain within the above energy region, so the transport
gap is not due to nominal lack of states on the carbon. How-
ever, these two px and py	 channels in the carbon chain have
zero overlap with the above three eigenchannels �Al1, Al2,
and Al3� in the Al�001� lead due to difference symmetries.
Therefore, the corresponding matrix element in the self-
energy �L,R

r �Eqs. �8� and �9�� is zero, which leads to zero
conductance. In another word, the above conductance gaps
are demonstrations of a selection rule in phase-coherent
quantum transport, that is, G�E�=0 when

TABLE I. Conductance eigenchannel decomposition of
Al�001�-C7-Al�001�.

Label Energy �eV� Conductance �G0� Degeneracy

�a� −4.27 0.984 2

�b� −2.05 0.982 2

�c� 0.00 0.413 2

�d� 1.27 0.447 2

�e� 1.60 0.184 2

�f� 2.07 0.637 2

�g� −1.71 0.003 2

�h� 0.77 0.003 2
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FIG. 5. �Color online� Electrical conductance �a� and DOS �b�
of Al�001�-C7-Al�001�.
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FIG. 6. �Color online� Phase-encoded conductance eigenchan-
nels of Al�001�-C7-Al�001� at different energy levels.
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FIG. 7. �Color online� Colormap for quantum phase of conduc-
tance eigenchannels.
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��L,R�E�Ĥ�C�E�� = 0 �49�

at energy level E, where �L,R�E� and �C�E� are eigenchan-
nels of the leads and the conductor.

A corresponding signature is also observed in the atomic-
resolved projected DOS, shown in Fig. 9. Within the gap
�except at E=−1.71 eV� the projected DOS on the carbon
chain vanishes while the aluminum leads have non-
negligible projected DOS of atomic s and p characters which
can be seen from Fig. 3. We note that in addition to resonant
transport, the incoming Al�001� band states could generally
speaking induce two kinds of evanescent waves: one decay-
ing rapidly through vacuum, and one decaying slowly in the
carbon chain. Both kinds of evanescent waves could make
the conductance in the gap not mathematically zero. Here,
however, the second kind of evanescent waves is nonexistent
because the pz and dxy eigenchannels in the Al�001� leads do
not couple to the carbon chain’s px and py	 orbitals at this
energy region, and the carbon chain’s spz� and �� states lie
at energies far away, resulting in the vanishing coupling with
the Al�001� pz and dxy state. The first kind of evanescent
waves, which though exists mathematically, decay too rap-
idly in the vacuum region between two interfaces to have an
actual effect on conductance. Therefore, the gap conductance
can be taken to be literally zero.

Strikingly, in Fig. 5�b� we also found within conductance
gaps, there are sharp peaks in the DOS at E=−1.71 and
0.77 eV. We take the first peak at E=−1.71 eV as an ex-
ample again. The sharp peak in the total DOS exactly corre-
sponds to the narrow straight line in the atom-resolved pro-
jected DOS in Fig. 9, extending through both carbon chain
and Al�001� leads. Conductance eigenchannel analysis fur-
ther reveals that there exist two degenerate channels at
E=−1.71 eV, however each of them contributes a very small
conductance value of 0.003G0. The corresponding conduc-
tance eigenchannel, shown in Fig. 6�g�, is a bound state,
which is localized near the carbon atomic chain. It is very
important to notice that the symmetry of this localized chan-
nel is also incompatible with the symmetry of Al1, Al2, and
Al3 channels in Al�001� lead, therefore this localized channel
should not carry any current according to the selection rule
discussion above. It is in fact also an evanescent wave, start-
ing from a discrete px and py	 state in the finite carbon chain
and decaying exponentially into the semi-infinite Al�001�
leads, since its eigenenergy falls into an energy gap in the
subset of Al�001� band states which can couple to carbon’s
px and py 	 state by symmetry. Because of the lack of cou-
pling to Al�001� band states, this localized state �similar to
donor level in semiconductors� is infinitely sharp in energy,
and not smeared. The small numerical conductance comes
from the numerical error due to the short leads used in the
conductor, where the bound state formed between two inter-
faces does not completely vanish near the left and right
boundaries of the conductor. We, therefore, did a separate
calculation by adding four additional aluminum atomic lay-
ers to both sides of the present conductor, and the conduc-
tance indeed vanishes. This reminds us that in general un-
physical conductance peaks may appear in conductance
curves when the far end of the leads used in the setup of
conductors is not long enough to resemble the true pristine
lead. Furthermore, since electron density ���x� �Eq. �25�� of
this bound state is large, the small conductance values can be
only manifested in the small phase-gradient field ����x�,
leading to almost negligible phase-oscillation in the conduc-
tance eigenchannel shown in Fig. 6�g�. Although ����x� is
infinite in the transition zone between cyan �positive real�
and red �negative real� lobes, ���x� is zero there. So it does
not contribute to the current.

In addition, we would like to point out that the above
bound state may become very important when finite bias
voltage is applied. Electronic structure of the left and right
leads will change with the bias voltage and symmetry-
compatible conductance eigenchannels in the leads could be
aligned close to the energy level of the bound state and have
strong coupling with this state, forming a resonant tunneling
channel. In this case, a Breit-Wigner conductance peak95

with Lorentzian line shape is expected to appear in the con-
ductance curve and contribute significantly to the total con-
ductance. When the bias voltage further increases,
symmetry-compatible conductance eigenchannels will be
shifted away from the energy level of the bound state and the
Breit-Wigner conductance peak will disappear. Correspond-
ingly, the total conductance may drop substantially. Thus, in
the current-voltage �I−V� curve one will observe a NDR
region near the energy level of the bound state. The above
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NDR characteristic shares exactly the same origin as the one
found in resonant tunneling diodes96–98 in double barrier
structures which were proposed and demonstrated in the
early 1970s.

Finally, the detailed orbital hybridization between mo-
lecular orbitals of carbon atomic chain and surface states of
two Al�001� leads can be directly identified from Fig. 6.
Since under small bias the total current is determined by the
conductance around the Fermi level, we take the eigenchan-
nels in Fig. 6�c� at E=0 eV �or, the Fermi level� as an ex-
ample. On the left surface layer, two pp� bonding orbitals
are formed on two pairs of Al-Al bonds, which are further
antibonded with each other, finally forming a surface state.
This surface state is then antibonded with antibonding 	�

state of carbon atomic chain. However, on the right end of
carbon chain the antibonding 	� state forms a group of pp�
bonding orbital with the p orbitals of four surface atoms on
the right lead.

B. (4,4) CNT with substitutional silicon impurity

Atomic structure of �4,4� CNT with substitutional silicon
impurity is presented in Fig. 10. The conductor is put inside
a rectangular box of 13.512�13.512�19.607 Å3 and elec-
trons transport along the +z direction. The left and right leads
are formed by pristine �4,4� CNT with C-C bond length of
1.414 Å along the tube direction and C-C bond length of
1.399 Å perpendicular to the tube direction. Five atomic lay-
ers close to the silicon impurity are fully relaxed, resulting in
two Si-C bonds along the tube direction with bond length of
1.780 Å and one Si-C bond perpendicular to the tube direc-
tion with bond length of 1.864 Å. DFT calculations are per-
formed in the QUANTUM-ESPRESSO package using the PBE-
GGA of exchange-correlation functional, a plane-wave basis
with a cutoff of 340.0 eV, and ultrasoft pseudopotentials for
both carbon and silicon atoms. Energy threshold Eth is set to
7.0 eV above the Fermi level for QO construction. Four QOs
including one s and three p-like QOs are constructed for
each silicon and carbon atom, shown in Fig. 11. The original
AO characteristics are well preserved in QOs, meanwhile
chemical environment due to the surrounding atoms clearly
affects the detailed shapes.

Band structure, DOS, and electrical conductance of pris-
tine �4,4� CNT are shown in Figs. 12�a� and 12�b�. Two
atomic layers are contained in a unit cell for both band struc-
ture and conductance calculations in the pristine �4,4� CNT,
as indicated by dash lines in Fig. 10. Ab initio TB band
structure �black-solid lines� using Rcut=8 Å is in a nice
agreement with Kohn-Sham eigenvalues obtained from DFT
calculation �red-filled dots� below E=7.0 eV. The black-
open dots below E=7.0 eV are unbound states which exhibit
little atomic characters, thus they are not used in the con-
struction of QOs, hence are not meant to be reproduced by
TB Hamiltonian. In the band structure plot two bands cross
the Fermi level. This is reflected in the conductance curve of
2 G0 around the Fermi level in Fig. 12�b�. Both steplike
conductance curve and sharp DOS peaks near the edge of
conductance steps are again found in pristine CNT�4,4�.

Electrical conductance of �4,4� CNT with substitutional
silicon impurity is shown in Fig. 13. First, conductance of

the defect conductor is always lower than that of pristine
CNT, demonstrating that maximum of conductance is con-
trolled by the pristine CNT itself. Second, conductance of the
original pristine CNT is affected considerably, but not com-
pletely destroyed. This is due to the fact that silicon and
carbon share the same valence electronic structure, thus simi-
lar sp2 bonds of Si-C and C-C are formed on the nanotube.
Interestingly, a conductance dip is found near E=0.6 eV,
indicating that silicon impurity atom and its induced struc-
tural relaxation indeed introduce some important difference
from carbon atoms in CNT. To understand microscopic
mechanism of this conductance dip, we carry out conduc-
tance eigenchannel analysis at five different energy levels,
ranging from −1.0 to 1.1 eV. The corresponding conductance
is listed in Table II. Two major eigenchannels are found for
each energy levels. Conductance of channel 1, G1, is always

FIG. 10. �Color online� Atomic structure of �4,4� CNT with
substitutional Si impurity. L: principal layer in the left lead; C:
conductor; R: principal layer in the right lead. C: gray atoms; Si:
green atom. Dashed lines in the left and right leads indicate the unit
cell adopted for band structure and conductance calculations in the
pristine �4,4� CNT.

FIG. 11. �Color online� Quasiatomic orbitals in �4,4� CNT with
substitutional Si impurity. Left �Right� column: s-, px-, py-, and
pz-like QOs on carbon �silicon� atom.
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close to one quantum of conductance, thus is not influenced
by the silicon impurity at all in the �−1.0, 1.1� eV energy
range. On the other hand, conductance of channel 2, G2,
changes dramatically. It varies from one quantum of conduc-
tance at E=−1.0 eV to almost zero at E=0.6 eV, then to
0.77 G0 at E=1.1 eV. To understand the mechanism, we plot
the phase-encoded conductance eigenchannel in Fig. 14. It is
clearly shown that channel 1 on the left column exhibits
perfect phase oscillation from the left to the right of the
conductor, suggesting almost negligible back-scattering in
the presence of silicon impurity. However, channel 2 on the
right column shows strong scattering near the silicon impu-
rity when E is increased to 0.6 eV, displaying more red and
cyan isosurfaces. At E=0.6 eV, the incoming electron is
completely reflected back, and forming evanescent wave,
which carries vanishing current. When energy further in-
creases away from 0.6 eV, the eigenchannel in Fig. 14�e�
transmits nontrivial current again, showing clear phase oscil-
lations in both ends of the conductor.

The phase-encoded conductance eigenchannels clearly re-
veal that the complete suppression of one conductance chan-
nel arises from destructive interference �antiresonance� when
a discrete impurity state is coupled to the left and right con-
tinuum states, a particular scenario of the well-known Fano
resonance99–101 when the asymmetry parameter approaches
to zero. This phenomena has been observed in the previous
first-principles studies of electron transport in CNTs by Choi

et al.102 when �10,10� CNT contains boron and nitrogen im-
purities as well as carbon vacancies, Lee et al.77 when �5,5�
CNT is functionalized by small molecules through �2+1�
cycloadditions, García-Lastra et al.103 when single molecules
are chemisorbed on �6,6� CNT, and Fürst et al.104 when iron
and vanadium adsorbed on �10,10� CNT. In general, the
strength of effective scattering potential at the impurity has a
pole at the Fano antiresonance energy.101 At this energy, the
impurity becomes an infinite potential barrier to this channel
despite the small size of the impurity atom relative to the
eigenchannel wave function and completely reflects back the
incoming wave. As a result, a standing-wave-like state is
formed as the incoming wave is completely reflected back by
the localized impurity state. This is exactly what we have
observed at 0.6 eV in the second eigenchannel shown in Fig.
14�c�, which contributes a very small conductance value of
0.002 G0. In addition, we have done a separate calculation
near 0.6 eV using a finer energy grid and much smaller
broadening parameter �. We found the conductance of the
second channel indeed goes to zero at E=0.6096 eV, in
agreement with the Fano antiresonance model. Even though
near 0.6 eV the conductance drop only happens to the second
channel, it is expected that depending on the coupling
strength the silicon impurity will introduce Fano antireso-
nance to the other conducting channels at different energies.

Interestingly, close to 0.6 eV both s- and pz-like QOs of
silicon impurity has significant contributions to projected
DOS and eigenchannels while s-like QOs of carbon atoms
away from silicon impurity has negligible contributions. Al-
though silicon and carbon belong to the same group, the
large size of silicon impurity introduces a strong structural
deformation. Furthermore, carbon has higher electronegativ-

TABLE II. Conductance eigenchannel decomposition of �4,4�
CNT with substitutional Si impurity.

Label Energy �eV� G1 �G0� G2 �G0�

�a� −1.00 0.993 0.963

�b� 0.00 0.990 0.867

�c� 0.37 0.989 0.513

�d� 0.60 0.987 0.002

�e� 1.10 0.990 0.771
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ity than silicon and electron will be more attracted to carbon
atoms. Indeed QO-based Mulliken charge analysis indicates
in �4,4� CNT silicon impurity loses 0.9 electron in total,
which is equally distributed to its three nearest carbon neigh-
bors. Both structural effect and electron density redistribu-
tion mentioned above push s and pz states up to 0.6 eV above
the Fermi level, which eventually leads to resonant suppres-
sion of transmission.

C. Benzene-1,4-dithiolate molecule between Au(111)
metallic surfaces

Atomic structure of BDT molecule between Au�111� me-
tallic surfaces is presented in Fig. 15, which is similar to the
structure used by Strange et al.80 The left and right leads are
formed by perfect Au�111� surface with Au lattice constant
of 4.180 Å, corresponding to Au-Au bond length of
2.956 Å. The principal layer is the same as the unit cell used
in the ground-state DFT calculations, which contains 3�3
atoms in the surface plane and three layers of gold atoms
along the transport direction �+ẑ�. In the conductor, in order
to reduce the effect of surface layer on the bulk leads we use
six Au atomic layers in the left lead and seven Au atomic
layers in the right lead, which are slightly different from
those adopted by Strange et al. The distance between the
surfaces of the left and right leads is 9.680 Å. The
BDT molecule was initially placed at the hollow sites
of Au�111� surface and only the BDT molecule in the con-
ductor has been fully relaxed. As a result, dAu-S=2.436 Å,
dS-C=1.737 Å, dC-C=1.401 Å, and dC-H=1.089 Å. The
plane containing the BDT molecule is perpendicular to x̂
direction. Structural relaxation and ground-state DFT calcu-
lation are performed in the QUANTUM-ESPRESSO package us-
ing the PBE-GGA of exchange-correlation functional, ultra-

soft pseudopotentials, and a plane-wave basis with a cutoff
of 340.0 eV. We use 5�5 k-point sampling along the trans-
verse directions in the DFT calculation while nine irreducible
ones of the total 25 k points are adopted in the conductance
calculation. Energy threshold Eth is set to 5.0 eV above the
Fermi level for QO construction. Furthermore, one, four,
four, and nine QOs are constructed for each H, C, S, and Au
atom, respectively, corresponding to quasiatomic �s�, �s , p�,
�s , p�, and �d ,s , p� characters. The representative QOs are
shown in Fig. 16. It is again demonstrated that QOs gener-
ally inherit the original AO characters but the detail shapes
are affected by their surrounding chemical environment.

The total conductance shown in Fig. 17 agrees very well
with the conductance curve in Fig. 6 of Ref. 80. Particularly,
zero-bias conductance at the Fermi level is 0.278 G0, in ex-
cellent agreement with 0.28 G0 by Strange et al. using ML-
WFs. However such agreement does not imply that QO and
MLWF on top of ground-state DFT calculations can quanti-
tatively describe quasiparticle transport properties. On the
contrary, measured conductance in experiments is much
smaller than the calculated ones.10,105–107 Beside geometric
uncertainty and electron-phonon coupling effect in the ex-
perimental setup, this is largely due to the fact that quasipar-
ticle energies and wave functions cannot be appropriately
obtained from ground-state DFT. Therefore, it is very prom-
ising to use Hedin’s GW approximation of quasi-particle en-
ergies and wave functions as the input of NEGF calculations,
which can enlarge the energy gap between quasielectron and
quasihole states and localize their associated wave functions,
thus reducing the coupling strength, density of states, and
total conductance at the Fermi level. Compared to the con-
ductance curve using localized basis sets,80 small difference
is observed again including position and width of conduc-
tance peaks.

Electronic structure of the BDT molecule plays a critical
role by providing a bridge for electron transport through the
molecular junction. The BDT molecule embedded in the cen-
ter of the conductor is directly coupled to the Au�111� sur-
faces, thus the molecular orbital energy levels could be
strongly renormalized and orbital degeneracy may be lifted.
A convenient way to study the above effects of local chemi-
cal environment is to project the total DOS onto fragment
molecular orbital �FMO� which was proposed by
Hoffmann108 in the study of structural preferences of orga-
nometallic molecules. FMOs correspond to the eigenstates of
TB Hamiltonian in the subspace of the fragment molecule
M that one is interested in,

FMOm� = �
Ii�M

UIi,m
M QIi� , �50�

where UM is a square matrix diagonalizing the Hamiltonian
HM with overlap matrix OM,

FIG. 14. �Color online� Phase-encoded conductance eigenchan-
nels of �4,4� CNT with substitutional Si impurity at different energy
levels. Phase amplitude is indicated by color using the color map
shown in Fig. 7.

FIG. 15. �Color online� Atomic structure of Au�111�-BDT-
Au�111� molecular junction.
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HMUM = OMUM�M �51�

and it satisfies

�UM�†OMUM = I . �52�

�M is a diagonal matrix whose mth diagonal element �m
M is

the renormalized energy level of FMOm�. Their correspond-
ing projected DOS can be easily obtained by projecting the
eigenstates of the full Hamiltonian onto FMOs,

�m
M�E� = �

n

��nŜFMOm�2��E − �n� . �53�

Figure 18 shows six 	 and 	� FMOs which originate from
six px orbitals of the benzene molecule. The � and �� FMOs
are not shown here since we care more about the conduc-
tance close to the Fermi level where 	 and 	� FMOs are
dominant. Compared to benzene in gas phase, the corre-
sponding energy gap between FMO3 and FMO4 is reduced
by more than 0.5 eV. Moreover, due to two S-C valence
bonds the original doubly-degenerate HOMOs and LUMOs
are split by 0.4 eV and 0.5 eV, respectively. The projected
DOS of FMOs is presented in Fig. 19. We first notice that the
projected DOS of the first three FMOs is mostly located
below the Fermi level while the projected DOS of the other

three FMOs is mostly located above the Fermi level, mean-
ing that the fragment benzene molecule does not substan-
tially donate or withdraw electrons from the rest of the con-
ductor. Second, two sharp peaks are observed exactly at the
energy levels of FMO3 and FMO5, indicating the absence of
strong hybridization with sulfur atoms and Au�111� surfaces.
In contrast to FMO3 and FMO5, the other four FMOs exhibit
strong hybridization with sulfur atoms and Au�111� surfaces,
leading to multiple peaks for each FMO in a wide range of
energy centering around the energy level of the correspond-
ing FMO.

More interestingly, comparing the conductance curve of
Fig. 17 and projected DOS curve of Fig. 19, it seems there
exists a clear correspondence between the broad conductance
peaks and the projected DOS peaks, including �−6,−4.5�,
�−4,−2�, �−2,0�, and �2, 3� eV. To have an unambiguous
understanding of the role of FMO in the electron transport,
we have carried out the conductance eigenchannel analysis in
various peak regions, including five different energy levels,
−5.1, −3.0, −1.0, 0.0, and 2.7 eV, at the � point of the first
transverse Brillouin zone. We did not choose an energy level
near FMO6, simply because the energy threshold Eth
for QO construction is set to 5.0 eV beyond which
the electronic structure is not supposed to be accurately
reproduced. It turns out that there exists only one
dominating channel at the four higher energy levels, while at
the lowest −5.1 eV there are two major conductance
eigenchannels. Therefore, we plot in Fig. 20 the correspond-
ing six conductance eigenchannels. Their conductance values
are: G��−5.1 eV,1�=0.97 G0, G��−5.1 eV,2�=0.91 G0,
G��−3.0 eV�=0.52 G0, G��−1.0 eV�=0.91 G0, and
G��0.0 eV�=0.41 G0, G��2.7 eV�=0.16 G0. At −5.1 eV,
two eigenchannels are almost perfectly conducting. The first
one shown in Fig. 20�a� apparently exhibits � character due
to sp2 hybridization. Whereas, the other five eigenchannels

FIG. 16. �Color online� Quasiatomic orbitals in the Au�111�-
BDT-Au�111� molecular junction. s and dz2 for Au atom on the
surface; s and pz for S atom; and s and px for two C atoms.
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FIG. 17. Total electrical conductance of Au�111�-BDT-Au�111�
molecular junction.

(a)FMO1 (−5.45 eV) (b)FMO2 (−2.91 eV)

(c)FMO3 (−2.54 eV) (d)FMO4 (2.27 eV)

(e)FMO5 (2.77 eV) (f)FMO6 (7.72 eV)

FIG. 18. �Color online� Six FMOs of benzene molecule in the
Au�111�-BDT-Au�111� molecular junction at the � point of the first
transverse Brillouin zone.
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shown in Figs. 20�b�–20�f� clearly resemble the characteris-
tics of FMO1, FMO2, FMO4, FMO4, and FMO5 in Fig. 18,
respectively. The nearly perfect conductance eigenchannels
in Figs. 20�a�–20�d� and their associated strong phase oscil-
lations are the unambiguous evidence of resonant transport
in the molecular junction through the 	 FMOs of benzene
molecule. When energy moves away from the resonance,
more and more backward scattering is introduced. Thus, at
the Fermi level �EF=0.0 eV� we observe less phase-
oscillation in the left electrode and smaller transmitted elec-
tron probability density in the right electrode. In this case the
conductance through off-resonant tunneling is only 0.41 G0.

In addition, Fig. 20 directly presents detailed chemical
bonding information such as S-Au�111� and S-C6H4 in the
conductance eigenchannels. For example, at −3.0 eV, near
the left Au�111� surface px-QO on the sulfur atom and d-QOs
on its nearest gold atoms form bonding orbitals, which is
further antibonded with FMO2 of benzene molecule whereas
near the right surface FMO2 forms bonding orbital with the
sulfur atom’s px-QO which is antibonded with d-QOs on the
gold atoms. Such behavior changes when energy approaches
to −1.0 eV. On the left surface antibonding character be-
comes clear between d-QOs on the sulfur’s nearest gold at-
oms and px-QO on the sulfur atom while the latter one forms
bonding orbital with benzene’s FMO4 orbital. A similar situ-
ation is observed on the right-hand side.

In conclusion, the conductance eigenchannel analysis to-
gether with the FMO analysis evidently demonstrates that
single molecule can become perfectly conducting at appro-
priate energy levels via resonant tunneling through molecular
orbitals of single molecules.

V. SUMMARY

In summary, we have developed Green’s-function method
within the Landauer-Büttiker formalism for phase-coherent
quantum transport using recently developed ab initio QOs
and the corresponding ab initio TB Hamiltonian and overlap
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FIG. 19. �Color online� Projected DOS of benzene’s six FMOs
in the Au�111�-BDT-Au�111� molecular junction. The correspond-
ing energy levels of FMO1 to FMO6 are marked as vertical lines
from left to right below the projected DOS peaks.

(a)E = −5.1 eV, G = 0.97 G0

(b)E = −5.1 eV, G = 0.91 G0

(c)E = −3.0 eV, G = 0.52 G0

(d)E = −1.0 eV, G = 0.91 G0

(e)E = 0.0 eV, G = 0.41 G0

(f)E = 2.7 eV, G = 0.16 G0

FIG. 20. �Color online� Phase-encoded conductance eigenchan-
nels and their corresponding energy level and conductance in the
Au�111�-BDT-Au�111� molecular junction at the � point of the first
transverse Brillouin zone. Phase amplitude is indicated by color
using the color map shown in Fig. 7.
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matrices. QOs are efficiently and robustly constructed in the
spirit of LCAO by maximizing the total sum-of-square mea-
sure of pseudoatomic orbitals projected onto Kohn-Sham
eigenstates. Thanks to resolution of the identity, no explicit
high-lying eigenstates are required for QO construction,
which dramatically reduces computation load and memory
requirement. QOs, on one hand, preserve the original AO
characteristics and are highly localized around atoms, thus
can be easily identified and interpreted. On the other hand,
electronic structure, such as band structure, DOS, and Fermi
surface, can be accurately reproduced using the correspond-
ing TB Hamiltonian and overlap matrices. QOs, therefore,
can serve as ab initio minimal basis in Green’s-function
method for studying phase-coherent quantum transport,
which we have briefly formulated for two-terminal devices
within the Landauer-Büttiker formalism.

We have demonstrated both efficiency and robustness of
our approach by three studies of standard two-terminal de-
vices. In the case of Al�001�-C7-Al�001�, electrical conduc-
tance agrees very well with other calculations using localized
basis set while slight difference is observed near the Fermi
level and conductance edges. Our conductance eigenchannel
analysis has shown that the conductance near the Fermi level
is fully controlled by doubly-degenerate 	 channels through
carbon atomic chain, hybridized with surface states from the
left and right aluminum contacts. Perfect phase oscillation
was found at the conductance maximum of 2 G0 only, dis-
playing negligible back-scattering at the interface between
atomic chain and aluminum leads. Away from the energy
levels of conductance maximum, two gaps are found in the
conductance curves. We have shown that they arise from the
selection rule with the vanishing Hamiltonian and overlap
matrix elements between symmetry-incompatible eigenchan-
nels in the aluminum leads and carbon atomic chain and
quantum tunneling of the evanescent waves between two dis-
tant interfaces contribute negligible conductance. In the sec-
ond application, we studied phase-coherent transport in �4,4�
CNT with a substitutional silicon impurity. The conductance
close to the Fermi level is determined by two eigenchannels,
one of which is unaffected by the impurity, whereas in the
other one the incoming electrons are completely reflected at

E=0.6 eV. The complete suppression of transmission at 0.6
eV in one of the two conductance eigenchannels is attributed
to the destructive Fano antiresonance when the localized sili-
con impurity state couples with the continuum states of car-
bon nanotube. In the third application, we applied our ap-
proach to a more complicated system where a BDT molecule
is attached to the hollow sites of two Au�111� surfaces. In
this case, k-point sampling in the transverse Brillouin zone
was adopted. Combining fragment molecular orbital analysis
and conductance eigenchannel analysis, we have shown that
at certain energy levels the single-molecule BDT when at-
tached to Au�111� surfaces become perfectly conducting via
resonant tunneling transport through benzene’s � and 	 frag-
ment molecular orbitals. Our conductance curve is in excel-
lent agreement with the one obtained from Green’s-function
calculation in the MLWF basis.80 On the other hand, com-
pared to the conductance curve using localized basis sets,
slight difference is also observed including position and
width of conductance peaks. Therefore, although in general
NEGF in localized basis sets can provide accurate conduc-
tance curves, more attention has to be paid to choosing ap-
propriate localized basis sets in order to achieve both accu-
racy and efficiency. Relevant information of the program and
the above calculations is placed at a publicly accessible
website.83

Our studies demonstrate that conductance eigenchannel
analysis facilitates the understanding of microscopic trans-
port mechanism and could be important for designing future
molecular and nanoscale electronic devices. It is straightfor-
ward to extend the present approach to NEGF method in the
ab initio QO basis set in order to analyze devices in nonequi-
librium conditions and this work is currently under way.
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Wave functions obtained from plane-wave density-functional theory �DFT� calculations using norm-
conserving pseudopotential, ultrasoft pseudopotential, or projector augmented-wave method are efficiently and
robustly transformed into a set of spatially localized nonorthogonal quasiatomic orbitals �QOs� with pseudoan-
gular momentum quantum numbers. We demonstrate that these minimal-basis orbitals can exactly reproduce
all the electronic structure information below an energy threshold represented in the form of environment-
dependent tight-binding Hamiltonian and overlap matrices. Band structure, density of states, and the Fermi
surface are calculated from this real-space tight-binding representation for various extended systems �Si, SiC,
Fe, and Mo� and compared with plane-wave DFT results. The Mulliken charge and bond order analyses are
performed under QO basis set, which satisfy sum rules. The present work validates the general applicability of
Slater and Koster’s scheme of linear combinations of atomic orbitals and points to future ab initio tight-binding
parametrizations and linear-scaling DFT development.

DOI: 10.1103/PhysRevB.78.245112 PACS number�s�: 71.15.Ap, 71.18.�y, 71.20.�b

I. INTRODUCTION

Density-functional theory �DFT� �Refs. 1 and 2� has been
extensively developed in the past decades. For condensed-
matter systems, efficient supercell calculations using plane-
wave basis and ultrasoft pseudopotential �USPP� �Refs. 3–6�
or projector augmented wave �PAW� �Ref. 7� are now the
mainstream. Plane-wave basis is easy to implement. Its qual-
ity is continuously tunable and spatially homogeneous. The
drawback is that this “rich basis” can sometimes mask the
physical ingredients of a problem, making their detection and
distillation difficult. This becomes particularly clear when
one wants to develop a parametrized tight-binding �TB�
potential8–10 or classical empirical potential11 based on
plane-wave DFT results, often a crucial step in multiscale
modeling.12 For developing TB potentials, one usually fits to
the DFT total energy, forces, and quasiparticle energies ��n�
�band diagram�. However the plane-wave electronic-
structure information is still vastly underutilized in this TB
potential development process.

Modern TB approach assumes the existence of a minimal
basis of dimension qN, where N is the number of atoms and
q is a small prefactor �four for Si�, without explicitly stating
what these basis orbitals are. Under this minimal basis, the
electronic Hamiltonian is represented by a small matrix
HqN�qN

TB , which is parametrized13 and then explicitly diago-
nalized at runtime to get ��n

TB�. In contrast, under plane-wave
basis the basis-space dimension is pN, where p is a large
number, usually 102–103. The Kohn-Sham �KS� Hamil-
tonian represented under the plane-wave basis, HpN�pN

KS , is
often so large that it cannot be stored in computer memory.
So instead of direct diagonalization which yields the entire
eigenspectrum, matrix-free algorithms that only call upon
matrix-vector products are employed to find just a small por-
tion of the eigenspectrum ��n� at the low-energy end.14 This

is wise because the ground-state total energy and a great
majority of the system’s physical properties depend only on a
small portion of the electronic eigenstates with �n below or
near the Fermi energy �F.

Unlike many ab initio approaches that adopt explicit spa-
tially localized basis sets such as Slater-type orbitals �STOs�
and Gaussian-type orbitals �GTOs�,15 the defining character-
istic of the empirical TB approach is the unavailability of the
minimal-basis orbitals, which are declared to exist but never
shown explicitly. This leads to the following conundrum. In
constructing material-specific TB potentials,8–10 the HqN�qN

TB

matrix is parametrized but the qN�qN+1� /2 matrix elements
are not targets of fitting themselves because one does not
have access to their values since one never knows the
minimal-basis orbitals to start with. Instead, the fitting targets
are the eigenvalues of HqN�qN

TB and ��n
TB�, which are de-

manded to match the occupied eigenvalues ��n�occ of HpN�pN
KS

from plane-wave DFT calculation and perhaps a few unoc-
cupied ��n� as well. A transferable TB potential should have
the correct physical ingredients; but a great difficulty arises
here because ��n� in fact contain much less information than
the HqN�qN

TB matrix elements. From HqN�qN
TB matrix we can

get ��n
TB� but not vice versa. As fitting targets, not only are

the ��n
TB� much fewer in number than the matrix elements

�qN versus qN�qN+1� /2� but they are also much less physi-
cally transparent. The TB matrix elements must convey clear
spatial �both position and orientation� information, as is evi-
dent from the pp�, pd�, dd�, etc. analytic angular functions
in the original Slater-Koster linear combination of atomic
orbitals �LCAO� �Ref. 16� scheme. Physichemical effects
such as charge transfer, saturation, and screening8–10 should
manifest more directly in the matrix elements; but such in-
formation gets scrambled after diagonalization. For example,
if the fifth eigenvalue �n=5

TB at k= �111�� /3a in �-SiC crystal
is lower than that of plane-wave DFT by 0.2 eV, should one
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increase the screening term8–10 in the TB model to get a
better fit or not? The answer will not be at all obvious since
�a� the k-space result masks the real-space physics and �b�
the eigenvalue reflects nothing about the spatial features of
the eigenfunction �	nk�. The information necessary for an-
swering the question is hidden in the wave functions �	n�
�now expanded in plane waves� and the electronic Hamil-
tonian HpN�pN

KS �now a huge matrix�. But the clues are simply
not sufficiently embedded in ��n�, which do not contain any
spatial information.17 Thus, the present empirical TB ap-
proach is similar to “shooting in the dark.”

It is thus desirable to come up with a systematic and nu-
merically robust method to distill information from plane-
wave DFT calculation into a TB representation. Philosophi-
cally this is the same as the “downfolding” procedure of
Andersen and Saha-Dasgupta.18 Namely, can we construct
the minimal-basis functions from �	n� explicitly? Can we get
HqN�qN

TB from HpN�pN
KS ? This HpN�pN

KS →HqN�qN
TB mapping

would work similar to a computer file compression because
HpN�pN

KS is a huge matrix and HqN�qN
TB is small. Can then the

compression be lossless? That is, can we retain exactly the
occupied eigenspectrum ��n�occ of HpN�pN

KS and perhaps a few
unoccupied ��n� as well? For modeling the total energy of
the system, only the occupied bands are important. But if one
is interested in transport properties,19 the low-energy portion
of the unoccupied bands will be important as well.

In this paper we present an explicit ab initio TB matrix
construction scheme based on plane-wave DFT calculations.
The present scheme is significantly improved over our pre-
vious developments20–24 in efficiency and stability and now
extended to work with USPP/PAW formalisms and popular
DFT programs such as VASP �Refs. 6 and 25� and DACAPO.26

The improved scheme no longer requires the computation
and storage of the wave functions of hundreds of unoccupied
DFT bands, reducing disk, memory, and CPU time require-
ments by orders of magnitude. But one also obtains con-
verged quasiatomic orbitals �QOs� of the previous
scheme20–24 as if infinite number of unoccupied bands were
taken—the “infiniband” limit that eliminates the so-called
unoccupied bands truncation error �UBTE�. The source code
of our method and input conditions for all examples in this
paper are put on the web.27 We will demonstrate through a
large number of examples that an “atomic orbital �AO�-like”
minimal basis can generally be constructed and are suffi-
ciently localized for both insulators and metals. These
examples27 demonstrate the physical soundness underlying
the environment-dependent TB approach.8 While we stop
short of giving material-specific parametrizations for the
HqN�qN

TB matrix elements, their physical properties will be
discussed with a view toward explicit parametrizations8–10

later.
Our method follows the general approach of the Wannier

function �WF�,28–40 which combines Bloch eigenstates ob-
tained from periodic cell calculation in k space to achieve
good localization in real space. Other than chemical analysis,
linear-scaling �order-N� methods,41–44 transport,45–47 modern
theory of polarization17 and magnetization,48 LDA+U �Refs.
49–51� and self-interaction correction,52 etc., also rely on
high-quality localized basis set. The WF approach guarantees
exact reproducibility of the occupied subspace and exponen-

tial localization in the case of a single band53 and isolated
bands in insulators.54

There is some indeterminacy �“gauge” freedom55,56� in
the WF approach. One could multiply a smooth phase func-
tion on the Bloch band states, and they would still be smooth
Bloch bands. One could also mix different band branches
and still maintain unitarity of the WF transform. Marzari and
Vanderbilt32 proposed the concept of maximally localized
Wannier functions �MLWFs� for an isolated group of bands
using the quadratic spread localization measure originally
proposed by Foster and Boys57 for molecular systems. Later
Souza et al.34 extended this scheme for entangled bands by
optimizing a subspace from a larger Hilbert space within a
certain energy window. Choosing the MLWF gauge for a
given energy window removes most indeterminacy in the
WF transform. Unfortunately, there is no closed-form solu-
tion for MLWF; so iterative numerical procedures must be
adopted, associated with which is the problem of finding
global minima. Despite the tremendous success of the
MLWF approach,32,34 there are still something to be desired
of in the way of a robust and physically transparent algo-
rithm, resulting in a great deal of recent activities.20–24,35–40

Here we take a different strategy.20–24 While maximal lo-
calization is a worthy goal, if there is no analytical solution
its attainment is sometimes uncertain. The question is, does
one really need maximal localization? May one be satisfied if
a set of WF orbitals can be constructed robustly, and they are
“localized enough”? The quasiatomic minimal-basis orbitals
�QUAMBOs� �Refs. 20–24� are constructed based on the
projection operation where one demands maximal similarity
between the minimal-basis orbitals with preselected atomic
orbitals with angular momentum quantum numbers. Since
“maximal similarity” is a quadratic problem, it has exact
solution and the numerical procedure is noniterative and
relatively straightforward. On the other hand, whether these
maximally similar WF orbitals are localized enough for the
practical purpose of ab initio TB analysis and constructing
ab initio TB potentials needs to be demonstrated, through a
large number of examples. Early results are encouraging. We
note that philosophically these minimal-basis orbitals “maxi-
mally similar” to atomic orbitals are probably closest to the
original idea of Slater and Koster16 of linear combinations of
atomic orbitals since using true atomic orbitals as minimal
basis leads to very poor accuracy compared to present-day
empirical TB potentials.8

This paper is organized as follows. In Sec. II we review
USPP and PAW formalisms required for properly defining
projection. In Sec. III nonorthogonal QOs within USPP and
PAW formalisms are derived for extended systems. In Sec.
IV ab initio tight-binding Hamiltonian and overlap matrices
are derived under the QO basis set. The Mulliken charge and
bond order �BO� analyses are also formulated for QO. To
demonstrate the efficiency and robustness of this method, in
Sec. V band structure, total density of states �DOS�, QO-
projected band structure, QO-projected density of states
�PDOS�, and the Fermi surface are calculated and compared
with plane-wave DFT results for various extended systems
�Si, �-SiC, Fe, and Mo�. In Sec. VI we discuss the similarity
and difference between QO and other localized orbitals. In
Sec. VII we summarize our work and discuss some future
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applications of quasiatomic orbitals. Finally, in the Appendix
we mathematically prove that QO is equivalent to the infinite
band limit of the quasiatomic minimal-basis orbital by Lu
and co-workers.20–24

II. PROJECTION OPERATION IN USPP/PAW

The computational cost of plane-wave DFT calculations is
strongly dependent on the selected type of pseudopotentials.
Compared to more traditional norm-conserving pseudopoten-
tials �NCPPs�, Vanderbilt’s USPP,3–5 and Blöchl’s PAW
method7 achieve dramatic savings for 2p and 3d elements
with minimal loss of accuracy. In this paper we implement
QO method with NCPP, USPP, and PAW method, which are
used in popular DFT codes such as VASP,6,25 DACAPO,26

PWSCF,58 CPMD,59 CP-PAW,60 and ABINIT.61 Currently we have
implemented interfaces to VASP and DACAPO.27 The formal-
isms of USPP/PAW method were reviewed in Ref. 19. Here
we just highlight the part important to quasiatomic orbitals,

which is the metric operator Ŝ.
The key idea behind USPP and PAW method is a mapping

of the true valence electron wave function 	̃�x� to a pseudo

wave function 	�x� : 	̃↔	, just as in any pseudopotential
scheme. However, by discarding the requirement that 	�x�
must be norm conserved �		 �	�=1� while matching 	̃�x�
outside the pseudopotential cutoff, a greater smoothness of
	�x� in the core region can be achieved; and therefore less
plane waves are required to represent 	�x�. In order for the
physics to still work, in USPP and PAW schemes one must
define augmentation charges in the core region and solve a
generalized eigenvalue problem,

Ĥ�	n� = �nŜ�	n� , �1�

where Ŝ is a Hermitian and positive definite operator. Ŝ de-
fines the fundamental metric of the linear Hilbert space of
pseudo wave functions. Since in USPP and PAW methods the
pseudo wave functions do not satisfy the norm-conserving
property, the inner product �	 ,	�� between two pseudo wave

functions is always 		�Ŝ�	�� instead of 		 �	��. The Ŝ opera-
tor is given by

Ŝ = 1 + 

i,j,I

qij
I ��i

I�	� j
I� , �2�

where i��
lm�� and I labels the ions. 
 and lm are the
orbital radial and angular quantum numbers.4 � is the spin.
In this paper, all “orbitals” are meant to be spin orbitals
although in the case of spin-unpolarized calculations, there is
a degeneracy of 2 in the orbital wave function and eigenen-
ergy. In above, the projector wave function �i

I�x��	x� ��i
I�

of atom I’s channel i is

�i
I�x� = �i�x − XI� , �3�

where XI is the ion position, and �i�x� vanishes outside the
pseudopotential cutoff.

Just like Ĥ, Ŝ contains contributions from all ions. Con-
sider a parallelepiped computational supercell of volume �,

with N ions inside. One usually performs L1�L2�L3 k sam-
pling in the supercell’s first Brillouin zone. For the sake of
clarity, let us define a Born–von Kármán �Bv� universe,
which is an L1�L2�L3 replica of the computational super-
cell, periodically wrapped around. So the Bv universe has
finite volume L1L2L3�, with a total of L1L2L3N ions. Using
Bloch’s theorem, it is easy to show that all the eigenstates in
the Bv universe can be labeled by L1L2L3 k’s of the
Monkhorst-Pack k mesh.62 The basic metric of function
length and inner product should be defined in the Bv uni-
verse,

�	,	�� � 		�Ŝ�	�� = �����
Bv

d3x	��x��Ŝ�	����x� . �4�

Ŝ above contains contributions from all L1L2L3N ions. With
the inner product defined in Eq. �4�, the projection of any
state ��� on �	� is straightforward;

P̂	��� �
�	,��
�	,	�

�	� =
		�Ŝ���

		�Ŝ�	�
�	� . �5�

Note that all functions discussed in this paper must be nomi-
nally periodic in the Bv universe. ��� could be AO-like. Even
though real AOs are represented in infinite space, this is not
a problem numerically so long as the AO extent is much
smaller than the size of the Bv universe. �The AO extent
does not need to be smaller than the computational supercell
�.�

It is easy to show that if

	�x − a� = 	�x�e−ik·a, 	��x − a� = 	��x�e−ik�·a, �6�

where k ,k��L1�L2�L3 k mesh and a= l1a1+ l2a2+ l3a3 is
an arbitrary integer combination of supercell edge vectors a1,
a2, and a3, then 	 and 	� will be orthogonal in the sense of
Eq. �4� unless k=k�. Consequently we can label 	 by k, e.g.,
	k�x� and 	k�

� �x�. 	k�x� can be expressed as the product of a
phase modulation eik·x and a periodic function uk�x� within
�. It is always advantageous to “think” in the Bv universe;
but employing Bloch’s theorem we often only need to “com-
pute” in the � supercell.

III. QUASIATOMIC ORBITAL CONSTRUCTION

From a plane-wave calculation using USPP or PAW
method, we obtain Bloch eigenstates labeled by supercell k
and band index n �occupied� or n̄ �unoccupied; we use index
with bar on top to label unoccupied states�. n labels both the
wave function and spin of the eigenstates although there is
often an energy degeneracy of 2. These supercell Bloch
states �	nk�, �	n̄k� are often delocalized making them hard to
visualize and interpret. An alternative representation of elec-
tronic wave function and bonding is often needed in the fla-
vor of the LCAO �Ref. 16� or tight-binding8–10 approach.
Ideally, this representation should have features such as
exponential localization of the basis orbitals,53 should be
“AO-like,” and should retain all the information of the origi-
nal Bloch eigenstates expressed in plane waves, at least of all
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the occupied Bloch states �	nk� so they can be losslessly
reconstructed.

QO is a projection-based noniterative approach. It
was first implemented by Lu and co-workers,20–24 called
QUAMBO, after the work of Ruedenberg et al.63 on molecu-
lar systems. The basic idea is illustrated in Fig. 1. The ob-
jective is to seek an optimized subspace Q containing the
occupied �	nk� in its entirety plus a limited set of combined
unoccupied �cmk� wave functions to be determined, such that
the atomic orbitals have maximal sum of their projection
squares onto this subspace. The dimension of this “optimized
Bloch subspace” is constrained to be that of the minimal
�tight-binding� basis, and �	nk� and �cmk� form an orthonor-
mal basis for it. But the “shadows” of the AOs projected onto
this subspace, which are the QOs, can represent the subspace
equally well, forming a nonorthogonal but also complete ba-
sis for the subspace. Furthermore, since the QOs are maxi-
mally similar to the AOs �under the constraint that they con-
tain �	nk� exactly�, their localization properties should be
“good.”

It is important to realize that here we are doing dimension
reduction, and the optimized subspace is but a small part of
the entire function space, which is infinite dimensional.
Since each AO makes one shadow and we use all shadows
collected on the plane as nonorthogonal complete basis for
the subspace, the total dimension of the subspace has to be
qL1L2L3N, where q is the average number of AOs per atom.
With the minimal-basis scheme, q should be eight for Si and
C, and the AOs are �s↑ , px↑ , py↑ , pz↑ ;s↓ , px↓ , py↓ , pz↓�. If
we take the smallest supercell admissible for diamond cubic
Si, for instance, then N=2 and the dimension of the opti-
mized subspace has to be 16L1L2L3, which is equal to the

total number of AOs in the Bv universe. Since we have
L1L2L3 k points, this comes down to 16 	nk ,cmk’s per k.
Because there are eight occupied 	nk’s at each k point �dou-
bly degenerate in wave function and energy though�, we
need to choose eight complementary cmk’s per k. These eight
cmk’s will be chosen from the unoccupied �	n̄k� subspace,
which is infinite dimensional. The whole process can be vi-
sualized as rotating the plane around the 	nk axis in Fig. 1
and seeking the orientation where the longest shadows fall
onto the plane �subspace Q�.

Two remarks are in order. First, the label occupied can be
replaced by “desired” Bloch wave functions in Fig. 1. While
many problems such as fitting TB potentials are mainly con-
cerned with reproducing the occupied bands and the total
energy using a minimal basis, problems such as excited-state
calculations require more bands to be reproduced. Then, one
just needs to generalize the meaning of band index n in Fig.
1 from occupied to desired bands. To be able to do this and
still retain AO-like characters, the size of the subspace may
necessarily be expanded, for example, from �3s ,3p� �q=8�
to �3s ,3p ,4s ,3d� �q=20� for Si, and then the “minimal ba-
sis” is taken to mean the minimal set of AO-like orbitals to
reproduce the desired bands, whatever they may be, instead
of just the occupied bands. Indeed, a utility of the present
QO scheme is to quantitatively guide the user in deciding �a�
when to expand, �b� how to expand, and �c� the effectiveness
of representing the desired part of the electronic structure in
AO-like orbitals with pseudoangular momentum quantum
numbers. Formally, denote the subspace we want to repro-
duce at each k by R�k���	nk�. Then, the wave functions we
do not desire to reproduce at each k form a complementary
subspace R�k���	n̄k�, which is infinite dimensional. We
note that 	dim R�k��=rN, but dim R�k� or R�k� generally
may not be a continuous function of k. For instance in met-
als, the Fermi energy �F cuts across continuous bands, and
the set of occupied bands is not a continuous function of k.
We shall call any mathematical or numerical feature caused
by a discontinuity in the to-be-reproduced R�k� as being
caused by “type-I” discontinuity.

Second, note that the subspace Q we seek in Fig. 1 in the
Bv universe can be decomposed into smaller subspaces la-
beled by the Bloch k’s that are mutually orthogonal;

Q = Q�k1� � Q�k2� � ¯ � Q�kL1L2L3
� . �7�

Therefore, the length squared of an AO’s shadow in Q is
exactly the sum of the projected length squared onto every
smaller plane Q�k�. If without any other considerations, the
choice of the best rotation can be made independently for
each k;

Q�k� = R�k� � C�k�, C�k� � R�k� , �8�

with

dim Q�k� = qN ,

dim C�k� = qN − dim R�k� ,

n� k mc k

1AO

2AO

1QO
2QO

optimized combinations
of unoccupied Bloch

wavefunctions CC

occupied Bloch
wavefunctions RR

optimized subspace QQ

FIG. 1. �Color online� Illustration of QO construction. We seek
a reduced optimized subspace Q spanned by the desired Bloch
wave functions �	nk� plus a limited number of �cmk� wave functions
to be determined, such that the AOs have maximal sum of their
projection squares onto the subspace Q. Once this optimized sub-
space is determined, the QOs, which are the shadows �projections�
of the AOs onto the subspace, form a nonorthogonal but complete
basis for subspace Q. The QOs can then be used to reconstruct all
the desired Bloch wave functions �	nk� without loss. This means
that in a variational calculation using the QO basis for this particu-
lar configuration would achieve the same total energy minimum as
the full plane-wave basis. Furthermore since the QOs are maximally
similar to the AOs, they inherit most of the AO characters.
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	dim R�k�� = rN .

Note that all Q�k� planes are of equal dimension qN. For
each AO, one picks up a distinct shadow �QO�k��
= P̂Q�k��AO� on each Q�k� plane, then simply adds these
�QO�k��’s together to get the corresponding QO.

C�k���cmk� is the choice of 	n̄k combinations,

cmk = 

n̄

Cmn̄�k�	n̄k. �9�

Here, C�k���Cmn̄�k�� is theoretically a dim C�k�� ma-
trix. We note that in Eq. �8�, only the total function content
belonging to subspace C�k� is important so any unitary trans-
formation UC�k� is equivalent to the original choice C�k�,
where U is dim C�k��dim C�k� matrix and U†U=I. Also,
even if R�k� and R�k� are continuous, C�k� does not have to
be continuous in k, in the same way that the minimum ei-
genvalue of a continuous matrix function A�k� may not be
continuous in k due to eigenvalue crossings. We call such
discontinuity in function content of Q�k� �not its dimension�,
which is not caused by discontinuity in R�k�, “type-II” dis-
continuity. Both type-I and type-II discontinuities could
negatively influence the localization properties of QOs, in
the same way that the Fourier transform of a step function or
functions containing higher-order discontinuities causes al-
gebraic tails in the transformed function.53 Algebraic decay,
however, is not necessarily a show stopper.

In our previous development,20–24 the “rotation” in Fig. 1
was formulated as a matrix problem with explicit �	n̄k� wave
functions as the basis. While formally exact, in practice it
requires the computation and storage of a large number of
	n̄k’s, which are then loaded into the postprocessing program
to be taken in the inner product with the AOs. The disk space
required to store the 	n̄k’s can run up to tens of gigabytes.
Still, one has finite UBTE, which can severely impact the
stability of the program. For instance, it was found that when
�s , p ,d� AOs �q=18� are used for each Mo atom in bcc Mo,
the condition number of the constructed QO overlap matrix
is so bad that the numerically calculated TB bands turn sin-
gular at some k points unless exorbitant numbers of unoccu-
pied bands are kept. The bad condition number problem can
be somewhat alleviated if �s ,d� AOs �q=12� are used instead
of �s , p ,d�.24 But such solutions are fundamentally unsatis-
factory because it is the user’s prerogative to decide what is
the proper “minimal” basis for the physics one wants to rep-
resent and be able to use a richer QO basis if one desires.

It was found recently that a great majority of the bad
condition number problems of the previous scheme20–24 were
associated with UBTE. In this work, by resorting to the
resolution-of-identity property of the unoccupied subspace
R�k�, we avoid Eq. �9� representation all together. This not
only eliminates the requirement to save a large number of
	n̄k’s, reducing disk, memory, and memory time require-
ments by orders of magnitude but also eliminates UBTE as a
source of bad condition number. This allows one to construct
arbitrarily rich QO basis for bcc Mo such as �s ,d� and
�s , p ,d� within reasonable computational cost without suffer-
ing the UBTE problem �shown in Sec. V D�.

Before we move onto the algorithmic details, it is instruc-
tive to define qualitatively what we expect at the end. Let us
use

	x��AIi� = AIi�x� = Ai�x − XI� �10�

to denote the AOs, where I labels the ion and i��
lm� is the
radial and angular quantum numbers. The AO themselves
�e.g., s, px, py, and pz� are highly distinct from each other.
Indeed, if there were just one isolated atom in a big super-
cell, AOs of different angular momentum are orthogonal to
each other. When there are multiple atoms in the supercell

and the metric Ŝ contains projectors from all ion centers, this
orthogonality between AO pseudo wave functions on the
same site is no longer rigorously true since two orbitals both
centered at XI could still overlap in regions covered by other
projectors ��i

I�	� j
I�. �The AO pseudo wave functions are

spherical harmonics representing full rotation group, whereas

Ŝ has crystal group symmetry.� Nonetheless, AOs of different
angular momentum should be nearly orthogonal and should
be highly distinguishable from each other. The same can be
said for two AOs, Ai�x−XI� and Aj�x−XJ�, centered on two
different ions. While this is obviously not true if �XJ−XI�
→0, in most systems XI and XJ are well separated by 1 Å or
more between nonhydrogen elements.64 The full rankness of
the AO basis in Bv universe guarantees the well behaving
�not the same as accuracy� of the numerical LCAO energy
bands in the entire Brillouin zone. If this is not the case, in
particular if the AO overlap matrix is rank deficient when
projected onto some k point, then the band eigenvalues can-
not be obtained in a well-posed manner, and it would mani-
fest as numerical singularities at the k point in the LCAO
energy-band diagram due to bad condition number.

Corresponding to each AO, there is a shadow in the opti-
mized subspace, the QO,

	x��QIi� = QIi�x� . �11�

Even though QIi�x� is no longer rigorously spherical har-
monic, in the spirit of LCAO �QIi� should inherit the main
characters of �AIi�, and therefore should also be highly dis-
tinct. In other words, when presented with three-dimensional
�3D� rendering of the QO orbitals, one should be able to
recognize instantly that this is a “px-like” QO on atom I, that
this is a “dx2−y2-like” QO on atom J, etc. If this is impossible,
the results would not be considered satisfactory even if these
orbitals are localized. Also, since the AOs have identical or
similar lengths, their shadows on Q should do too. It is not
good news if one shadow is too short, as in the extreme limit
of a zero-length shadow if one of the AOs is perpendicular to
Q in Fig. 1. In fact, this needs to hold true for each subplane
Q�k�: if for whatever reason, a particular AO is nearly per-
pendicular to Q�k�, it inevitably spells numerical trouble
around that k.

Mathematically the above translates to the following. If
�	nk ,cmk� are individually normalized �they are orthogonal
by construction�, then the linear transformation matrix �k
connecting �QIi,k� to �	nk ,cmk� must have a reasonable con-
dition number �, defined here as the ratio of the maximal to
minimal eigenvalues of �k

†�k. The following pathology

QUASIATOMIC ORBITALS FOR AB INITIO… PHYSICAL REVIEW B 78, 245112 �2008�

245112-5



can be identified by a large �, which is that one QO�k�
orbital can be expressed as or well approximated by a linear
combination of other QO�k� orbitals. The QO�k�’s are sup-
posedly highly distinct from each other and linearly indepen-
dent and have reasonable norms �the AO�k�’s are, otherwise
there will not be well posed, let alone accurate, LCAO
bands16 near that k if the AOs are literally inserted into real-
space DFT codes such as FIREBALL �Ref. 65� or SIESTA �Ref.
43��. A large condition number would mean this is close to
becoming false. This pathology happened in reality, for ex-
ample, when we attempted to use �s , p ,d� AOs for each Mo
atom �q=18� in extracting QOs for bcc Mo with the previous
scheme.24 The bad condition number �due to UBTE� corre-
sponds to nearly linearly dependent QO orbitals when pro-
jected onto some k point, which means that some of the
QO�k�’s have lost their distinct character or have become
very small.

This good condition number criterion provides a quanti-
tative measure of what constitutes a good minimal basis for
solid-state systems. While it has not been proved that AO-
like minimal basis can be found for all molecular63 and solid-
state systems, experiences with QO show that for the vast
majority of systems, a very satisfactory minimal basis can be
found �good condition number and good localization�. In-
deed, by changing the AOs “as little as possible” while main-
taining the �	nk� band structure, we believe QO fulfills the
true spirit of LCAO.16

A. Optimized combination subspace

From a plane-wave calculation we obtain the occupied or
the to-be-reproduced Bloch eigenstates,

Ĥ�	nk� = �nkŜ�	nk�, n = 1,2, . . . ,Rk, �12�

as well as some other Bloch eigenstates that belong to the
infinite-dimensional subspace R�k�;

Ĥ�	n̄k� = �n̄kŜ�	n̄k� . �13�

When averaged over the Brillouin zone, we have 	Rk�=Nr,
but Rk can vary with k. Different Bloch states are orthogonal
to each other. Let us choose normalization

	nk2 � �	nk,	nk� = 		nk�Ŝ�	nk� = 1, �14�

	n̄k2 � �	n̄k,	n̄k� = 		n̄k�Ŝ�	n̄k� = 1. �15�

We seek an optimized combination subspace C�k��R�k�,
consisting of mutually orthonormal states �cmk�, m
=1,2 , . . . ,Ck, to maximize the “sum-over-square” similarity
measure L or the total sum of AO projection squares onto the
subspace defined by �	nk� and �cmk�,

max L � max 

Ii
��


nk
P̂	nk

+ 

mk

P̂cmk��AIi��2
. �16�

The cmk themselves are linear combinations of 	n̄k. Ck=qN
−Rk. One may raise two questions. First, why shall we
choose �cmk� to be orthonormal? Actually one could choose a
set of nonorthonormal states �c̄mk� as long as they span the

same subspace as �cmk�. Correspondingly, the projection op-

erator, P̂�cmk��
mkP̂cmk
, for orthonormal states �cmk� in Eq.

�16� should be replaced by the generalized projection opera-
tor for nonorthonormal states �c̄mk�, which is defined as

P̂�c̄mk� � 

ll�,k

�c̄lk��Ok
−1�ll�	c̄lk� , �17�

where Ok is the overlap matrix between c̄lk’s. Here,

�Ok�ll� = 	c̄lk�Ŝ�c̄l�k� . �18�

However, one could easily show that the projection operators
for both cases are exactly equivalent to each other,

P̂�cmk� = P̂�c̄mk�. �19�

This is because both length and direction of the projection of
any vector onto a hyperplane �or a subspace� do not depend
on how we choose the relative angle and length of basis
vectors to represent this hyperplane. Therefore, purely for
later convenience we would like to choose a set of orthonor-
mal states �cmk�. The second question is: why shall we sepa-

rate 
nkP̂	nk
from 
mkP̂cmk

? That is because our main goal is
to preserve the subspace �	nk� and then choose �cmk� to
maximize the sum-over-square projection. From the discus-
sion on the first question we can see that once the occupied
Bloch subspace �	nk� is chosen, the total sum-over-square

projection, 
Ii
nkP̂	nk
�AIi�2, of all the AOs onto the occu-

pied Bloch subspace defined in Eq. �16� is fixed. One then
only needs to focus on how to choose the hyperplane �or
subspace� defined by �cmk� from the unoccupied Bloch sub-
space R�k� to maximize the total sum of projection squares
of AOs on this hyperplane.

The QUAMBO construction of Lu and co-workers20–24

obtains �cmk� by explicitly rotating a number of 	n̄k’s. This
scheme often suffers from bad condition number problem
numerically due to UBTE. It is often worse in metals and
confined systems, where the AO’s corresponding antibonding
Bloch states, especially at � point, exist at very high ener-
gies. Therefore the original QUAMBO construction often re-
quires obtaining hundreds of 	n̄k’s at each k point to include
the antibonding states and be able to form the bonding-
antibonding closure;37 otherwise bad condition number
would result. A simple example is to consider a hydrogen
molecule far away from a metallic substrate with no physical
interaction between them. The bonding state �s1�+ �s2� be-
longs to the 	nk’s. The antibonding state �s1�− �s2� belongs to
the 	n̄k’s, but it could be higher in energy than many metallic
	n̄k states and may not be selected as basis for rotation. �s1�
is AO1 and �s2� is AO2. We can see from Fig. 1 that if �s1�
− �s2� is not included in the explicit 	n̄k basis in which the
plane could rotate in, then both AO1 and AO2 will always
have the same “shadow” ��s1�+ �s2�� on the plane no matter
how the plane rotates. This then results in bad condition
number. UBTE-caused closure failure can also happen in
MLWF construction. However, in the case of MLWF, one
may get bond-centered instead of atom-centered MLWFs af-
ter localization extremization. But QUAMBO similarity
maximization would just fail numerically.
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A closer inspection of Fig. 1 reveals that a better method
may be found. First, we note that the combination subspace
C�k� we seek is a subspace of R�k�. R�k� itself is infinite
dimensional, but much of R�k� has no overlap with the des-
ignated AOs since there is only a finite number of these AOs.
Those parts of R�k� with no overlap to the AOs would not
improve similarity with the designated AOs even if included.
And thus they can be excluded from the basis for rotation. In
other words, R�k� can be further decomposed as

R�k� = A�k� � N�k� , �20�

where A�k� has overlap with the AOs but N�k� has none.
The assertion here is that choosing C�k��A�k��R�k� will
just give identical result �same similarity measure and
shadow wave functions� as C�k��R�k�. Because A�k� is
supposedly finite dimensional �in fact dim A�k�=qN�, one
just needs to find basis functions for A�k� and perform rota-
tion in this finite subspace rather than finding the infinite
�	n̄k� basis functions for R�k� and rotating in R�k�.

To proceed, let us first define

AIi,k�x� � 

L=1

L1L2L3

AIi�x − XL�eik·XL, �21�

which is a linear superposition of translated AOs in the Bv
universe with Bloch phase factors. XL= l1a1+ l2a2+ l3a3 is an
integer combination of supercell edge vectors. AIi,k�x� is
clearly a Bloch state,

AIi,k�x − a� = AIi,k�x�e−ik·a, �22�

and is just the projection �un-normalized� of �AIi� onto Bloch
subspace B�k��R�k��R�k�. Because of this, �AIi,k� can be
further decomposed into a component that belongs to R�k�
and a component that belongs to R�k�;

�AIi,k� = �AIi,k
 � + �AIi,k

� � , �23�

where

�AIi,k
 � � 


n

P̂	nk
�AIi,k� � R�k� , �24�

and

�AIi,k
� � = �AIi,k� − 


n

P̂	nk
�AIi,k� � R�k� . �25�

�AIi,k
 � and �AIi,k

� � can be calculated straightforwardly in plane-
wave basis according to Eqs. �21�, �24�, and �25� without
knowing the �	n̄k�’s explicitly. Similarly we can decompose
QOs which are the projections of AOs into parallel and per-
pendicular part,

�QIi,k� = �QIi,k
 � + �QIi,k

� � , �26�

�QIi,k
 � = 


n

P̂	nk
�AIi,k� , �27�

�QIi,k
� � = 


m

P̂cmk
�AIi,k� . �28�

It is clearly �QIi,k
 �= �AIi,k

 �. Therefore, the sum-over-square
similarity measure L which we want to maximize in Eq. �16�
can be simply rewritten as

L = 

Ii
��


k
�QIi,k

 ��2
+ �


k
�QIi,k

� ��2� . �29�

This can be seen clearly in Fig. 1 from geometrical view,
where the L measure is the sum of AO projection squares or
the sum of length squares of QOs on the subspace Q formed
by occupied Bloch subspace R and the combination sub-
space C. QOs as the shadow of AOs have different lengths
and directions if different C is chosen. Therefore, one is try-
ing to “hold” �preserve� subspace R and “rotate” �search� C
in unoccupied Bloch subspace R to maximize the sum of
QO length squares.

Furthermore, any Bloch state �bk��B�k� orthogonal to
�AIi,k

 � and �AIi,k
� � must be orthogonal to �AIi,k� and vice versa.

Including such �bk� in the basis for Q�k� optimization in Fig.
1 will not improve similarity with this AO and thus can be
excluded. So we only need to optimize Q�k� within �AIi,k

 �
and �AIi,k

� �. Because �AIi,k
 ��R�k� and R�k� will anyhow be

included in Q�k�=R�k��C�k�, it is thus only necessary to
optimize C�k� within the subspace �AIi,k

� �, which we identify
to be A�k�. Clearly, dim A�k�=qN. All we need to do then is
to find a Ck=qN−Rk dimensional optimized combination
subspace Ck�A�k�.

The QO approach proposed here is similar to the pro-
jected atomic orbitals �PAO� approach of Sæbø and
Pulay66–68 for molecular systems. By combining Eqs.
�23�–�25� and �29� we have

max L = 

Ii

�

k

�QIi,k
 ��2

+ max 

Ii
�


mk
P̂cmk

�AIi,k��2

= 

Ii

�

k

�QIi,k
 ��2

+ max 

Ii
�


mk
P̂cmk

�AIi,k
� ��2

.

�30�

In the above equation we have used the fact that P̂cmk
�AIi,k

 �
=0 due to the orthogonality between 	nk and cmk. Moreover,
as we have argued above, optimized combination subspace
Ck formed by �cmk� is a subset of A�k� formed by �AIi,k

� �.
This means that we are seeking a transformation matrix Vk
such that

�cmk� = 

Ii

�Vk�Ii,m�AIi,k
� � . �31�

As we have mentioned earlier, due to Eq. �19� we can force
ourselves to search a set of orthonormal states for the sake of
convenience. Thus combined with Eq. �31�, it immediately
leads to

	cmk�Ŝ�cm�k� = 

Ii,Jj

�Vk�Ii,m
� �Vk�Jj,m�	AIi,k

� �Ŝ�AJj,k
� � = �mm�.

�32�
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We denote the overlap matrix between �AIi,k
� � as Wk,

�Wk�Ii,Jj � �AIi,k
� ,AJj,k

� � = 	AIi,k
� �Ŝ�AJj,k

� � . �33�

Then the orthonormal condition of �cmk� in Eq. �32� basically
states that

Vk
†WkVk = ICk�Ck

. �34�

We notice that the overlap matrix Wk is a Gramian matrix
which is positive semidefinite as we show in the Appendix.
Meanwhile, it can be diagonalized by a unitary matrix Vk
such that Wk=VkYkVk

†, where VkVk
† =IqN�qN, and the diag-

onal matrix Yk contains all the non-negative real eigenval-
ues. Therefore, Eq. �32� suggests Vk

†VkYkVk
†Vk=ICk�Ck

.
The solution for Vk is

�Vk�Ii,m = �Vk�Ii,m�Yk�mm
−1/2, �35�

where Ii=1,2 , . . . ,qN. Obviously any Ck positive eigenval-
ues �Yk�mm of Wk matrix �as we have mentioned above, all
the eigenvalues of Wk matrix are non-negative real values�
and their corresponding eigenvectors �Vk�Ii,m will give a
proper Vk matrix which satisfies the orthonormal condition
for �cmk� in Eq. �32�. We then come back to the problem of
maximizing the sum of projection squares L by choosing the
“best” set of �Yk�mm and their eigenvectors. From Eq. �30�
we only need to maximize the sum of projection squares on
the subspace �cmk� since the sum of projection squares on
�	nk� is fixed. Therefore, using Eqs. �30�–�33� and �35� we
have

max 

Ii
�


mk
P̂cmk

�AIi,k
� ��2

= max 

Ii



mk

	AIi,k
� �Ŝ�cmk�	cmk�Ŝ�AIi,k

� �

= max 

Ii,mk



Jj,J�j�

�Wk�Ii,Jj�Vk�Jj,m�Vk�J�j�,m
† �Wk�J�j�,Ii

= max 

k

Tr�WkVkVk
†Wk� , �36�

where “Tr” means the trace. Thus, Eq. �16� for maximizing
the total sum of projection squares is rewritten in the follow-
ing simple form:

max L = 

Ii

�

k

�QIi,k
 ��2

+ max 

k

Tr�WkVkVk
†Wk�

�37�

=

Ii

�

k

�QIi,k
 ��2

+ max 

mk

�Yk�mm, �38�

where 
m�Yk�mm basically sums all the Ck eigenvalues arbi-
trarily chosen from the total qN non-negative real eigenval-
ues of Wk matrix. Therefore, the equation above suggests
that by choosing the largest Ck eigenvalues and their corre-
sponding eigenvectors we will maximize the total sum of
projection squares L. Consequently �cmk� are obtained from
Eqs. �31� and �35�.

To use �	nk� and �cmk� in band-structure and Fermi-
surface calculations we have to construct Hamiltonian matrix

�k between any two functions in �	nk ,cmk�. Since �	nk� are
eigenfunctions of the Kohn-Sham Hamiltonian,

��k�n,n� � 		nk�Ĥ�	n�k� = �nk�nn�, �39�

with n ,n�=1,2 , . . . ,Rk. It is also obvious that the matrix

element of Ĥ between 	nk and cmk is always zero since they
are from two different Bloch eigensubspaces,

��k�n,m+Rk
� 		nk�Ĥ�cmk� = 0,

��k�m+Rk,n � 	cmk�Ĥ�	nk� = 0, �40�

where n=1,2 , . . . ,Rk and m=1,2 , . . . ,Ck. Although �cmk�
comes from diagonalization of Wk, it is not an eigenfunction
of the Kohn-Sham Hamiltonian. Thus the matrix elements of
�k between two different cmk’s at the same k may not be zero

and we have to use the Kohn-Sham Hamiltonian Ĥ to calcu-
late this part of �k explicitly,

��k�m+Rk,m�+Rk
� 	cmk�Ĥ�cm�k� , �41�

with m ,m�=1,2 , . . . ,Ck. In the end, the matrix �k consists of
a diagonal submatrix for the occupied Bloch subspace R�k�,
a nondiagonal square submatrix for the optimized combina-
tion subspace C�k�, and two rectangular zero matrices be-
tween R�k� and C�k�.

We can now merge the basis functions for R�k� and C�k�,

��nk� = �	nk� � �cmk� , �42�

where ��nk� then constitutes a qN-dimensional basis for
Q�k�, which is orthonormal,

	�nk�Ŝ��n�k� = �nn�, n,n� = 1, . . . ,qN , �43�

in the sense of the Bv universe �Eq. �4��. According to Fig. 1,
the QO is just

�QIi� = 

nk

P̂�nk
�AIi� = 


nk
��k�n,Ii��nk� , �44�

where n=1, . . . ,qN, k runs over 1 , . . . ,L1L2L3 Monkhorst-
Pack grid, and

��k�n,Ii � 	�nk�Ŝ�AIi� �45�

is a qN�qN matrix. Actually one could further rescale �QIi�
by a constant such that QIi satisfies the normalization condi-

tion, 	QIi�Ŝ�QIi�=1, while this simple rescaling procedure
will not affect the Mulliken charge and bond order analysis.
Furthermore, one could perform Löwdin transformation to
obtain a set of orthonormal QOs. Both transformations will
not affect the band-structure calculations.

QO procedures �21�–�45� maximize the overall similarity
measure �Eq. �16�� and in fact give identical results as the
original QUAMBO scheme20–24 in the infinite band limit.
The proof is given in the Appendix.

B. Choosing reproduced subspace R(k)

QO procedures �21�–�45� rely on a preselection of to-be-
reproduced Bloch subspace R�k�. It is necessary to give the
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user this freedom because it is up to the user to define which
parts of the electronic structure are important and need to be
preserved. For properties related to ground-state total ener-
gies, obviously the occupied bands are important. Therefore
a quasiparticle energy-based selection criterion can be
adopted, where all eigenstates whose energies are below a
threshold energy �th several eV above the Fermi energy �F

are included in R�k�. On the other hand, a particular energy
window of the unoccupied bands may be important for opti-
cal absorption at certain frequency or electronic transport at a
certain bias voltage,19,45–47 and they may need to be included
in R�k�. One may even choose to include in R�k� a certain
continuous band at all k points irrespective of its eigenener-
gies if that band is deemed important for transport or chemi-
cal properties.

In the present QO scheme, say with an energy-based se-
lection criterion, the distinction between selected and unse-
lected is “sharp.” That is, a Bloch eigenfunction is either
chosen �1� or not chosen �0� to be in R�k�. There is no
grayscale in between, and depending on 1 or 0 the eigenfunc-
tion will be treated differently in the algorithm. A certain 	nk
may be in R�k�, but with just infinitesimal change in k and
wave function character, and could be excluded in R�k
+dk�. Such sharp type-I discontinuities in the Brillouin zone
always lead to “long-ranged” interactions in real space
�meaning algebraic instead of exponential decay with
distance53�. For example, in metals sharp type-I discontinui-
ties in the occupation number at low temperature give rise to
physical effects such as the Kohn anomaly �long-ranged in-
teratomic force constants leading to weak singularities in the
phonon-dispersion relation�69 that can be measured by neu-
tron scattering.70

Therefore type-I discontinuity is not just a numerical
and/or algorithmic problem specific to QO but is also a
physical and quite inherent issue in metals. Numerical tech-
niques such as Fermi-Dirac smearing or Methfessel-Paxton
smearing71 with artificially chosen smearing widths have
been used to regularize type-I discontinuity in total-energy
calculations. In fact, without such artificial smearing it is
quite challenging to obtain well-behaving �smooth� total en-
ergy and forces numerically in traditional DFT calculations.
One thus wonders whether a similar approach can be applied
to R�k� selection. We think this can be done by assigning
weighting function f��nk� to Eqs. �24� and �25� projections
that smoothly varies from 1 to 0 around �th. In such case,
�AIi,k

 � and �AIi,k
� � will no longer be rigorously orthogonal,

and a weighted joint 2qN�2qN overlap matrix will be set up
and diagonalized. This “grayscale QO” method can be
shown to be identical to the present “sharp QO” method in
the limit when f��nk� is a sharp step function but remove
type-I discontinuities when f��nk� is not sharp. We will post-
pone full evaluation of this grayscale QO method to a later
paper.

C. Choosing atomic orbitals

Another freedom the user has is choosing the atomic or-
bitals AIi�x�. While it is operationally straightforward to just

use the pseudoatomic orbitals AIi�x� of an isolated atom that
come with the pseudopotential, we find that the pseudo-
atomic orbitals of some elements have very long tails, ex-
tending to 10 Å away from the ion. Then to use these long-
tailed orbitals as similarity objects in Fig. 1 is not very good
for localization. Also, it is not fundamentally obvious that the
eigenorbitals of isolated atoms with unfilled electronic shells
maximally reflect the electronic structure of bonded systems
with filled shells. Although Slater and Koster16 named their
method linear combinations of atomic orbitals, which gave
rise to the empirical tight-binding method, the term “atomic
orbitals” may be taken with a grain of salt. The Slater-Koster
paper16 tabulated the angular interactions, implying that the
atomic orbitals have Ylm angular dependencies, but the radial
functions were not specified.

Indeed, Slater64 himself later defined the so-called em-
pirial atomic radius R for many elements by regressing to an
experimental database of 1200 bond lengths in crystals and
molecules and demanding that the bond length �A−B�
�R�A�+R�B� between elements A and B. He found that
these 1200 bond lengths can be regressed to an average error
of 0.12 Å using empirial atomic radii. So the concept of
Slater64 of atomic radius and atomic orbital may be tied more
to natural bonding environments than isolated atoms. It is
also known that if one insists on using pseudoatomic orbitals
AIi�x� as the literal minimal basis in a local-basis DFT
calculation,43,65 one gets accuracy far worse than what em-
pirical tight-binding methods can do nowadays without ex-
plicit statement of the radial functions.

The considerations above suggest a heuristic approach for
choosing the radial part of the AOs. One simple strategy is to
rescale the pseudoatomic radial function by multiplying an
exponentially decaying function,

AIi�x� = �iAIi�x�e−�i�x�, �46�

where �i is a positive real number and �i is the normalization

factor to make 	AIi�Ŝ�AIi�=1. The rationale behind Eq. �46�
squeezing could be a screening effect8 since the pseudo-
atomic orbitals now need to penetrate neighboring electron
clouds, and a more localized AO may be a better descriptor
of the electronic structure and chemistry.

We find that Eq. �46� indeed improves localization of QOs
and subsequently that of the TB Hamiltonian. While �i needs
to be empirially chosen or even optimized systematically, we
believe that this is not work in vain but is actually phys-
ichemically illuminating. In fact, it may eventually lead to
generalization of the empirial atomic radius concept of
Slater64 to construction of empirial atomic orbitals. We envi-
sion a database of thousands of bonded molecules and solids,
and one is constrained to choose just one �i value for each
element that will give the best overall QO description �local-
ization and similarity� for a multitude of bonding environ-
ments. The hypothesis is that empirical atomic orbitals in-
deed exist for each element that robustly describe electronic
structure in a wide range of molecular and solid bonding
environments via the QO approach.
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IV. AB INITIO TIGHT-BINDING ANALYSIS

Ab initio tight-binding approach differs from empirial
tight-binding approach in explicitly specifying the minimal-
basis functions used. Once the QOs are obtained via Eqs.
�21�–�45�, we can evaluate—and later parametrize—the
tight-binding Hamiltonian H and overlap matrix O, which
are small matrices with real-space indices in contrast to the
Kohn-Sham Hamiltonian in plane-wave basis that nonethe-
less reproduce all electronic structure information in R�k�.
In fact, if R�k� includes the occupied bands, the QOs can be
used as literal basis to perform total-energy calculation in
real-space DFT codes such as FIREBALL �Ref. 65� or
SIESTA,43 which will yield the same total-energy variational
minimum as using full plane-wave basis.

Once the TB H and O matrices are constructed, they can
be easily applied to calculate band structure, density of
states, QO-projected band structure and density of states, the
high-resolution Fermi surface, and Mulliken charge and bond
order that satisfy exact sum rules. These calculations are
much more efficient than direct plane-wave DFT calculations
due to the small size of TB matrices and furthermore will
carry valuable real-space information.

A. Tight-binding representation

Under QO basis, TB Hamiltonian HIi,Jj�XL� between QIi
0

and QJj
L in two supercells is defined as

HIi,Jj�XL� � 	QIi
0 �Ĥ�QJj

L � ,

where XL= l1a1+ l2a2+ l3a3 is an integer combination of su-
percell edge vectors. However we do not need to evaluate the
above matrix element explicitly since we can obtain the
Hamiltonian submatrices �Eqs. �39�–�41�� between opti-
mized Bloch states ��mk� and transformation matrix �k from
QO to ��mk�. From Eq. �44�, we have the expression of QO
of atom J in supercell XL,

QJj
L �x� = QJj�x − XL�

= 

mk

��k�m,Jj�mk�x − XL�

= 

mk

��k�m,Jje
−ik·XL�mk�x� ,

then the above real-space TB Hamiltonian HIi,Jj�XL� is

HIi,Jj�XL� = 

m,m�,k

e−ik·XL��k�m,Ii
� ��k�mm���k�m�,Jj .

Following the same procedure we can easily calculate the
real-space TB overlap matrix OIi,Jj�XL�,

OIi,Jj�XL� = 	QIi
0 �Ŝ�QJj

L � = 

mk

e−ik·XL��k�m,Ii
� ��k�m,Jj .

Clearly HIi,Jj�XL� and OIi,Jj�XL� should decay to zero as XL
→ and have similar localization property as the QOs. Us-
ing them, we can efficiently compute the eigenvalues at an
arbitrary k point �not necessarily one of the L1L2L3 k points�
by forming

HIi,Jj�k� = 

�XL��Rcut

eik·XLHIi,Jj�XL� ,

OIi,Jj�k� = 

�XL��Rcut

eik·XLOIi,Jj�XL� , �47�

where XL runs over shells of neighboring supercells with
significant HIi,Jj�XL� and OIi,Jj�XL�. Typically we determine a
radial cutoff distance Rcut and sum only those L’s with �XL�
�Rcut in Eq. �47�. Then, by solving the generalized eigen-
value matrix problem

H�k���k� = O�k���k�E�k� , �48�

we obtain total m=1, . . . ,qN eigenenergies emk from the di-
agonal matrix E�k� at each k point, with qN=Rk+Ck. It is
expected that all the Rk energies lower than �th are the same
as the eigenenergies from DFT calculation: enk=�nk, with n
=1, . . . ,Rk. The remaining Ck eigenenergies belong to the
optimized combination Bloch states �cmk�. The physical in-
terpretation of emk, m=1, . . . ,qN is that it is the variational
minimum of Rayleigh quotient,

emk = min
�mk

	�mk�Ĥ��mk�

	�mk�Ŝ��mk�
, �49�

subject to the constraint that ��mk�� �Rk�Ck��B�k� and is
furthermore orthonormal to ��m�k�’s with m��m;

	�mk�Ŝ��m�k� = �mm�. �50�

It is clear that ��mk� is a linear combination of �QIi� through
the above transformation matrix ��k� at k point;

��mk� = 

Ii

�Ii,mk�QIi,k� , �51�

where �QIi,k� is defined as the Bloch sum of �QIi�,

QIi,k�x� � 

L

eik·XLQIi�x − XL� = L1L2L3

m

�mk�x���k�m,Ii.

�52�

By replacing ��mk� in the normalization condition shown in
Eq. �50� with its expression in Eq. �52�, we immediately
obtain the following normalization condition for �Ii,mk:



Ii,Jj

�Ii,mk
� OIi,Jj�k��Jj,m�k =

�mm�

L1L2L3
, �53�

or in the matrix form

�†�k�O�k���k� =
I

L1L2L3
, �54�

where I is a qN�qN identity matrix.

B. Mulliken charge and bond order

The Mulliken charge72 is one popular definition of elec-
tronic charge associated with each atom. Here we give a
derivation of the Mulliken charge analysis using the density-
matrix formalism. We know that the trace of density operator
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�̂ defined under the basis of orthonormal Bloch states ��mk�
is equal to the total number of valence electrons since �nk
=�nk�	nk for n=1, . . . ,Rk. In addition, ��mk� can be ex-
pressed as linear combinations of QOs �QIi,k� as shown in
Eq. �51�. Thus the trace of density matrix can be represented
in QO basis if the basis set is complete for the occupied
Bloch subspace. If R�k� contains the occupied Bloch sub-
space and since R�k��Q�k�, this requirement is fulfilled.
Therefore, by simply representing �̂ in QO basis, we obtain
atom-specific charge decomposition that satisfies the exact
sum rule. Taking PAW formulation as an example, the den-
sity operator is defined as

�̂ � 

mk

fmk��̃mk�	�̃mk� , �55�

where fmk is electron occupation number in the correspond-
ing Bloch state ��̃mk� that is either 1 or 0 when m includes
both band and spin index. In the PAW formalism,7 true Bloch
wave function ��̃mk� and pseudo-Bloch wave function ��mk�
are related through transformation operator T̂,

��̃mk� = T̂��mk� ,

while Ŝ and T̂ are related by Ŝ= T̂†T̂. Then

�̂ = 

mk

fmkT̂��mk�	�mk�T̂†. �56�

Clearly,

Tr��̂� = L1L2L3Ne, �57�

where Ne=rN is the number of valence electrons within one
supercell. There is also an idempotent property,

�̂2 = �̂ . �58�

To split charge onto different orbitals on each atom, we rep-
resent the density operator �̂ in Eq. �56� in terms of QO using
Eq. �51�,

�̂ = 

mk

fmk

Jj,Ii

�Jj,mk�Ii,mk
� T̂�QJj,k�	QIi,k�T̂†. �59�

Then

Tr��̂� = 

�
� d3x	x��̂�x�

= 

mk

fmk

Jj,Ii

�Jj,mk�Ii,mk
� 	QIi,k�T̂†T̂�QJj,k�

= 

Jj,Ii



mk

fmk�Jj,mk�Ii,mk
� � 


L,L�

eik·�XL−XL��	QIi
L��Ŝ�QJj

L �

= 

Jj,Ii



mk

fmk�Jj,mk�Ii,mk
� � L1L2L3


L

eik·XL	QIi
0 �Ŝ�QJj

L �

= L1L2L3

k



Jj,Ii

DJj,Ii�k�OIi,Jj�k� , �60�

where D�k� and O�k� matrices are defined as the following:

DJj,Ii�k� � 

m

fmk�Jj,mk�Ii,mk
� , �61�

OIi,Jj�k� � 

L

eik·XL	QIi
0 �Ŝ�QJj

L � . �62�

Clearly DJj,Ii�k� represents the element of density matrix
D�k� between �QIi,k� and �QJj,k�, while OIi,Jj�k� represents
the element of overlap matrix O�k� between two QOs at the
same k point. Both D�k� and O�k� are the Hermitian matri-
ces.

Thus we can straightforwardly define the Mulliken charge
on a particular QO as

�Ii � 

k



I�i�

DIi,I�i��k�OI�i�,Ii�k� , �63�

and the Mulliken charge on atom I as

�I � 

i

�Ii, �64�

resulting in a simple sum rule from Eqs. �57� and �60�;



I

�I = Ne. �65�

Similarly, bond order between any two atoms can be derived
using �̂2. We note from Eqs. �59� and �61� that

�̂ = 

k,Jj,Ii

DJj,Ii�k��Q̃Jj,k�	Q̃Ii,k� , �66�

where �Q̃Ii,k�� T̂�QIi,k� so

�̂2 = 
k,Jj,Ii,I�i�,J�j�
DJj,Ii�k�DI�i�,J�j��k��Q̃Jj,k�	Q̃Ii,k�Q̃I�i�,k�

�	Q̃J�j�,k� ,

and

Tr��̂2� = 
k,Jj,Ii,I�i�,J�j�
DJj,Ii�k�DI�i�,J�j��k�	Q̃Ii,k�Q̃I�i�,k�

�	Q̃J�j�,k�Q̃Jj,k� .

We note from Eq. �62� that

	Q̃Ii,k�Q̃I�i�,k� = L1L2L3OIi,I�i��k� . �67�

So we get

Tr��̂2� = �L1L2L3�2

k

Tr�D�k�O�k�D�k�O�k�� , �68�

where Tr� � is the matrix trace. Indeed the derivations above
can be easily generalized into

Tr��̂n� = �L1L2L3�n

k

Tr��D�k�O�k��n�, n = 1, . . . , .

Let us define P�k��D�k�O�k�, with

PIi,Jj�k� � 

I�i�

DIi,I�i��k�OI�i�,Jj�k� . �69�

The discrete Fourier transform of PIi,Jj�k� is

PIi,Jj�XL� � 

k

PIi,Jj�k�eik·XL, �70�

and
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PIi,Jj�k� =
1

L1L2L3


L

PIi,Jj�XL�e−ik·XL. �71�

It can then be easily shown that

Tr��̂n� = L1L2L3
X1,X2,..,Xn−1
Tr�P�X1�P�X2� ¯ P�Xn−1�P�

− X1 − X2 − ¯ − Xn−1�� . �72�

Thus the real-space matrix P�XL� in Eq. �70� completely
characterizes bonding in the system.

So we may define a pair-specific quantity between Ii in
supercell 0 and Jj in supercell XL as

BIi,Jj
L � PIi,Jj�XL�PJj,Ii�− XL� �73�

and that between atom I in supercell 0 and atom J in super-
cell XL as

BI,J
L � 


ij

BIi,Jj
L , �74�

which satisfy the sum rule



I,J,L

BI,J
L =

1

L1L2L3
Tr��̂2� = Ne. �75�

According to convention, H–H is a single bond and should
have bond order 1, while C=C is a double bond and should
have bond order 2. Let us calibrate against this convention
for hydrogen molecule. Suppose we have the bonding states
��s1�+ �s2��↑ /�2 and ��s1�+ �s2��↓ /�2, and the antibonding
states ��s1�− �s2��↑ /�2 and ��s1�− �s2��↓ /�2, where for sim-
plicity we assume �s1� and �s2� are orthogonal to each other.
Then the overlap matrix O is a 4�4 identity matrix, and the
density matrix D has two block 2�2 submatrices with all
submatrix elements equal to 0.5. The population matrix P
=DO=D. Then from Eq. �73� we obtain BIi,Jj

0 as having two
2�2 submatrices with all submatrix elements equal to 0.25.
By summing over all matrix elements we have 
Ii,JjBIi,Jj

0

=Ne=2. Thus we have B1,2
0 =B1,2

0 �↑�+B1,2
0 �↓�=0.5, and we

see that the bond order defined in literature is twice as much
as BI,J

0 . We will therefore always use 2BI,J
L or 2
ijBIi,Jj

L for
bond order between two atoms in real systems, as shown in
Table III.

Note that in sum rule �75�, there are contributions from
terms such as

BIi,Ii
0 = �PIi,Ii�XL = 0��2, �76�

as well as

BIi,Ij
0 = PIi,Ij�XL = 0�PIj,Ii�XL = 0� . �77�

According to Eq. �70�,

PIi,Ii�XL = 0� = 

k

PIi,Ii�k� = �Ii. �78�

So the Mulliken charge squared �Ii
2 and same-site-different-

orbital couplings PIi,Ij�XL=0�PIj,Ii�XL=0� appear in sum rule
�75�, which means the sum of different site BI,J

L ’s should be
less than the total number of electrons Ne. This is consistent
with the practice of using 2BI,J

L to denote bond order. Note

also that there can be lone pairs in the system and not all
electrons need to be engaged in bonding. Indeed, as we sepa-
rate H–H to distance infinity, we see that it is not reasonable
to demand the bond order to stay at integer 1.

The definition above assumes all Ne electrons reside in
bonding states. The more general definition of bond order in
chemical literature is bond order
��number of bonding electrons
−number of antibonding electrons� /2. The subtraction oc-
curs when some eigenstates ��mk� are occupied but are
deemed antibonding, for instance with eigenenergies above
an internal gap that varies sensitively with atomic distance.
In such a case, the total density operator needs to be split into
bond and antibonding parts;

�̂bond � 

mk

fmk
bond��̃mk�	�̃mk� , �79�

�̂anti � 

mk

fmk
anti��̃mk�	�̃mk� , �80�

where fmk
bond=1 for occupied bonding states and 0 otherwise

and fmk
anti=1 for occupied antibonding states and 0 otherwise

with fmk
bondfmk

anti=0. The following sum rules hold:

Tr��̂bond� = Nbond, Tr��̂anti� = Nanti, �81�

where Nbond is the total number of bonding electrons and
Nanti is the total number of antibonding electrons. All deriva-
tions of Eqs. �58�–�75� apply to �̂bond and �̂anti individually.
We can therefore compute BI,J

bondL and BI,J
antiL individually and

then subtract

BI,J
L � BI,J

bondL − BI,J
antiL �82�

to get the net bond order. QO analysis would work so long as
R�k� includes both the deemed bonding and antibonding
eigenstates.

C. Projected density of states

Projected density of states �PDOS� is a powerful tool for
analyzing energy- and site-resolved electronic structure. Let
us define the total density of states �DOS� of our ab initio
tight-binding system to be

���� �
1

L1L2L3


mk

��� − emk� , �83�

where emk has the interpretation of constrained variational
Rayleigh quotient �Eq. �49��. ���� clearly satisfies the total
sum rules,

�
−

�F

d����� = Ne = rN , �84�

and

�
−



d����� = qN . �85�

In real numerical calculations, ���−emk� is often replaced by
normalized Gaussian centered around emk.
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Our goal is to decompose ���� into a sum of site, angular
momentum, and spin-specific PDOS functions;

���� = 

Ii

�Ii��� . �86�

Because the QOs are nonorthogonal, the decomposition can-
not be done by a simple projection.73

The solution is very simple. Replacing fmk by ���
−emk� / �L1L2L3� in Eq. �55�, we can define energy-resolved
density operator,

�̂��� �
1

L1L2L3


mk

��� − emk���̃mk�	�̃mk� . �87�

Clearly

Tr��̂���� = ���� . �88�

Thus, if we just replace fmk by ���−emk� / �L1L2L3� every-
where in Eqs. �55�–�65�, the entire decomposition scheme
would work for ����. We will have energy-resolved density
matrix,

DJj,Ii�k,�� � 

m

��� − emk��Jj,mk�Ii,mk
� �89�

and

���� = Tr��̂���� = 

k



Jj,Ii

DJj,Ii�k,��OIi,Jj�k� . �90�

All we need to do is therefore to define the projected density
of states as

�Jj��� � 

k



Ii

DJj,Ii�k,��OIi,Jj�k� , �91�

and the PDOS sum rule �Eq. �86�� would be satisfied for
every �. A rigorous connection between �Ii��� and the QO-
based Mulliken charge,

�
−

�F

d��Ii��� = �Ii, �92�

exists, with �Ii was defined in Eq. �63�. Thus �Ii��� can be
regarded as the energy-resolved Mulliken charge.

Following the same procedure, we can define energy-
resolved bond order 2BIi,Jj

L ��� and its integral,

2BIi,Jj
L ��1,�2� � 2�

�1

�2

d�BIi,Jj
L ��� . �93�

For example, it is valid to say that among the total 1.2 bond
order between atom I in supercell 0 and atom J in supercell
L, energy bands in ��F−5, �F−2� contribute 0.7.

V. QO APPLICATIONS

We have constructed QO for various materials, including
semiconductors, simple metals, ferromagnetic materials,
transition metals and their oxides, high-temperature super-
conductors, and quasi-one-dimensional materials such as car-
bon nanotubes. These QOs are then used for ab initio tight-
binding calculations, including band structure, density of
states, QO-projected band structure and density of states, and
the high-resolution Fermi surface. We have also combined
QO with the Green’s function method to efficiently calculate
electrical conductance of molecular and nanoscale junctions
using the Landauer formalism.74 Currently we have imple-
mented QO interfaces27 to VASP and DACAPO; the source
codes of our method and input conditions for all examples in
this section are put on the web.27

In this paper, the ground-state electronic configurations
are calculated using DACAPO DFT package26,75,76 with
Vanderbilt USPP �Refs. 3–5� and PW91 generalized gradient
approximation �GGA� of the exchange-correlation
functional.77 Parameters for the DFT calculations are in-
cluded in Table I. Due to page limitation, we demonstrate
only four materials in detail: diamond cubic silicon, �-silicon
carbide, bcc ferromagnetic iron, and bcc molybdenum.

TABLE I. Parameters used in plane-wave DFT calculation and QO construction for various systems. �th is the energy threshold for R�k�
selection �the Fermi energy �F is set to 0�. Rcut is the radial cutoff of tight-binding Hamiltonian and overlap matrices in Eq. �47�.

Material No. of atoms Structure
a0 and c0

�Å�
Ecut

�eV�
No. of

k points No. of bands XC
Rcut

�Å�
�th

�eV�

CH4 5 1.1 350 � point 60 PW91 8.0 0

SiH4 5 1.48 350 � point 40 PW91 8.0 0

Si 2 Diamond 5.430 300 7�7�7 60 PW91 12.0 0

�-SiC 2 fcc 4.32 350 7�7�7 40 PW91 12.0 0

Al 1 fcc 4.030 300 9�9�9 60 PW91 8.0 1.0

Fea 1 bcc 2.843 400 9�9�9 40 PW91 10.0 3.0

Mo 1 bcc 3.183 400 13�13�13 20 PW91 10.0 0.0/8.0b

MgB2 3 hcp 3.067, 3.515 300 7�7�7 40 PW91 10.0 3.0

aFerromagnetic.
bWe use �th=0 eV for �s ,d� basis and 8.0 eV for �s , p ,d� basis.
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A. Semiconductor: Diamond cubic Si crystal

The diamond cubic Si crystal has an indirect band gap of
1.17 eV at 0 K. In Fig. 2 we show two of total eight QOs:
s-like and pz-like QOs. Since in this case we use the unpo-
larized spin configuration, we have the same s-like and
p-like QOs for both spins. As shown in the figure these QOs
are slightly deformed due to the interaction with nearest-
neighbor atoms, but the overall shape of s and pz is largely
maintained. Figure 3 compares the band structure between
plane-wave DFT and ab initio TB calculations. It is seen that
among the total eight TB bands, four valence bands below �F
are exactly reproduced with each band doubly occupied.

The indirect band gap from DFT calculation is about 0.7
eV, smaller than 1.17 eV from experiments, which is a com-
mon problem of DFT due to the ground-state nature of DFT
and inaccurate exchange-correlation functional. However
QO-based TB calculation gives a band gap of around 2.0 eV.
In general the conduction bands from ab initio TB calcula-
tion using QO basis set are higher than those from plane-
wave DFT calculation due to the constrained variation inter-
pretation of the TB eigenvalues �Eq. �49��. They are higher
because the optimized combination Bloch states �cmk� are
manually constructed and they are not true unoccupied low-
lying Bloch eigenstates. In other words, these optimized
combination states in C�k� can be represented by a linear
combination of the infinite true unoccupied Bloch states in

R�k�. Therefore the eigenenergies �Rayleigh quotients�
above the energy threshold �th ��th=�F in this case� from
QO-based TB calculation are always higher than the Kohn-
Sham eigenenergies. DOS in Fig. 4 also shows this energy
shift in the conduction bands, while DOS below �F is exactly
reproduced.

B. Covalent compound: �-SiC crystal

Silicon carbide is a typical covalent compound and it has
two well-known polymorphs: �-SiC and �-SiC. The former
is an intrinsic semiconductor in hexagonal structures and the
latter has an indirect band gap of 2.2 eV in zinc-blende-type
structure. From DFT calculation of �-SiC, a band gap of
around 1.0 eV is found, while from our ab initio TB calcu-
lation it is around 3.0 eV. Band structure �Fig. 5� and density
of states �Fig. 6� in conduction bands from TB calculation
change a lot and shift up due to the same reason as in the Si
crystal case. It is seen from Fig. 7 that both s-like and pz-like
QOs of Si atom are relatively more delocalized than those of

FIG. 2. �Color online� QO in Si crystal. �a� s-like and �b�
pz-like. �Absolute isosurface value: 0.03 Å−3/2. Yellow or light gray
for positive values and blue or dark gray for negative values. The
same color scheme is used in all the other isosurface plots of QOs
in this paper. They are plotted with XCRYSDEN �Refs. 78–80�.�

FIG. 3. Band structure of Si crystal. �Circle dot: plane-wave
DFT calculation; solid line: TB calculation based on eight QOs; and
dashed line: Fermi energy.�

FIG. 4. �Color online� Density of states of Si crystal. �Circle-dot
line: plane-wave DFT calculation; solid line: TB calculation; and
dashed line: Fermi energy.�

FIG. 5. Band structure of �-SiC. �Circle dot: plane-wave DFT
calculation; solid line: TB calculation based on eight QOs; and
dashed line: Fermi energy.�
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C atom, which suggests Si has less ability to attract electron
than C in �-SiC crystal. This intuition is confirmed by the
QO-projected density of states plot in Fig. 8 where the total
density of states on C atom below �F is much more than that
on Si atom and it further indicates that more charges are
localized at C atom. The total area of Fig. 8 below �F for
each atom is exactly equal to the total Mulliken charge asso-
ciated with each atom. Note that the sum of QO-projected
density of states �Eq. �91�� is exactly equal to the total den-
sity of states, while this is not true for standard atomic-
orbital-projected density of states widely used in analyzing
plane-wave DFT results.

Compared to Fig. 3 in the Si crystal case, there is a large
splitting between two bottom bands along the X-W line in
Fig. 5 in the SiC crystal. Four higher peaks of DOS, shown
in Fig. 8, are useful for explaining this splitting. Two peaks
around −12.0 eV �C’s s peak in the bottom panel and Si’s p
peak in the top panel� and another two peaks around
−8.0 eV �C’s p peak in the bottom panel and Si’s s peak in

the top panel� lead to two nonsymmetric types of s-p bond-
ing. One is the bond between Si’s s-like QO and C’s p-like
QOs and the other is the bond between C’s s-like QO and
Si’s p-like QOs. In Si crystal the above two types are degen-
erate bonds, which give two degenerate bands at the bottom
of band structure between X and W. This splitting is much
more clearly reflected in QO-projected band structure shown
in Fig. 9, where the bonding between silicon’s s-like QO and
carbon’s three p-like QOs is dominant in the higher-energy
band while the bonding between carbon’s s-like QO and sili-
con’s three p-like QOs is dominant in the lower-energy band.

To further study electron transfer we investigate the Mul-
liken charges in three different compounds shown in Table II,
including methane �CH4�, silane �SiH4�, and �-SiC. It is seen
that the capability of three different elements to attract elec-
trons is in the following order: C�H�Si. Table III shows
bond order between atoms and their first-nearest and second-
nearest neighbors in various systems. It is not surprising that
in covalent systems bond order between the atom and its
second-nearest neighbor is almost zero and it is much less
than the bond order between the atom and its first-nearest
neighbor. However, unlike covalent systems, fcc aluminum,
bcc molybdenum, and bcc iron have smaller bond orders for

FIG. 6. �Color online� Density of states of �-SiC. �Circle-dot
line: plane-wave DFT calculation; solid line: TB calculation; and
dashed line: Fermi energy.�

FIG. 7. �Color online� QO in �-SiC crystal. �a� Si: s-like; �b� Si:
pz-like; �c� C: s-like; and �d� C: pz-like. �Absolute isosurface value:
0.03 Å−3/2.�

FIG. 8. �Color online� QO-projected density of states of �-SiC.
�Top panel: Si; bottom panel: C; and dashed line: Fermi energy.�

FIG. 9. �Color online� QO-projected band structure of SiC crys-
tal with red �dark gray� for Si s and C p and green �light gray� for
C s and Si p.
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both the first-nearest and second-nearest neighbors as shown
in the table, indicating metallic bonding. In the case of MgB2
crystal, it shows strong covalent bonding on the boron plane
and relative large bond order between boron and magnesium
but very small bond order between magnesium atoms. The
latter is due to large distance between magnesium atomic
layers and the ionic nature of magnesium in MgB2 crystal. It
should be emphasized that the QO-based Mulliken charge
and bond order satisfy the sum rules very well, which is not
the case for the traditional charge analysis, widely used for
analyzing plane-wave DFT calculations, by setting a radial
cutoff and integrating electron density within that radius
around each atom.

C. Ferromagnetic bcc Fe crystal

Ferromagnetic bcc iron is investigated, in which we ex-
pect some differences between the QOs with majority spin
and those with minority spin. Here the energy threshold is 3
eV above �F to keep electronic structure near the Fermi en-
ergy to be exact. Pseudoatomic orbitals 3d, 4s, and 4p are
rescaled by e−��x�, with �=1.0 Å−1 and then renormalized.

Figure 10 displays 10 of the total 18 QOs. The QOs with
majority spin and minority spin, on the left and middle col-
umns, respectively, look quite similar. Their differences are
shown in the right column, having the same symmetry as the
corresponding QOs. Figures 11 and 12 present two different
band structures with majority spin and minority spin, respec-
tively. Similar to the above two band structures, DOS plotted

in Fig. 13 displays the dramatic difference of electronic
structure information between majority spin and minority
spin in bcc Fe. As expected, Figs. 11–13 demonstrate that all
the electronic structure below the energy threshold is well
reproduced by QO.

TABLE II. The Mulliken charges for CH4, SiH4, and �-SiC.

Material Mulliken Charge Total charge

CH4 C: 5.160 H: 0.710 8.0

SiH4 Si: 3.300 H: 1.175 8.0

�-SiC Si: 2.729 C: 5.271 8.0

TABLE III. Bond orders for various systems.

Material Bond order �2
ijBIi,Jj
L � Total BO/sum rule

CH4 C–H: 0.882 H–H: 0.012 8.0/8.0

SiH4 Si–H: 0.866 H–H: 0.033 8.0/8.0

�-SiC Si–C: 0.823 Si–Si: 0.009 8.0/8.0

C–C: 0.015

Si-cubic 1st: 0.874a 2nd: 0.009 8.0/8.0

Al-fcc 1st: 0.213 2nd: 0.015 2.898/2.896

Fe-bcc �↑� b 1st: 0.184 2nd: 0.070 4.967/4.967

Fe-bcc �↓� 1st: 0.328 2nd: 0.114 2.842/2.843

Mo-bccc 1st: 0.589 2nd: 0.193 5.876/5.876

MgB2 B–B: 0.698 Mg–B: 0.206 13.868/13.868

Mg–Mg: 0.085

a“1st” and “2nd” stand for the first-nearest and second-nearest
neighbors.
b↑ for majority spin; ↓ for minority spin.
cThe calculation is based on �s , p ,d�-QO basis with �th=8.0 eV.

FIG. 10. �Color online� QO in bcc Fe crystal. From top to bot-
tom they are s-like, pz-like, dz2-like, dyz-like, and dx2−y2-like QOs.
Left column: QO with majority spin �absolute isosurface value:
0.03 Å−3/2�. Middle column: QO with minority spin �absolute iso-
surface value: 0.03 Å−3/2�. Right column: difference between QO
with majority spin and QO with minority spin �absolute isosurface
value: 0.003 Å−3/2�.

FIG. 11. Band structure of bcc Fe with majority spin. �Circle
dot: plane-wave DFT calculation; solid line: TB calculation based
on nine QOs for majority spin; dashed line: Fermi energy; and
dash-dot line: energy threshold with �th=3 eV.�
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Figures 14�a� and 14�b� present two Fermi surfaces in the
first Brillouin zone for the majority spin and minority spin,
respectively. In the majority-spin case, the closed surface
around � point holds electrons while the open surfaces on
the zone faces and another two types of small surfaces
around H enclose holes. These open surfaces are connected
to other surfaces of the same type in the second Brillouin
zone forming open orbits across Brillouin zones. In the case
of minority spin, the large surfaces around H and those
around N near the zone faces form hole pockets, while one
octahedral closed surface around � and six small spheres
inside the Brillouin zone form electron pockets. The compu-
tation of the high-resolution Fermi surface in reciprocal
space requires thousands of Hamiltonian diagonalization on
a very fine grid, which is expensive for plane-wave DFT
calculations even if the symmetry property of the Brillouin
zone is taken into account. However, QO-based TB method
makes the calculation very efficient since we can easily di-
agonalize the small TB Hamiltonian and overlap matrices.
So these high-resolution Fermi surfaces again demonstrate
the utility of QO analysis for solids.

D. Minimal basis for bcc Mo crystal

In a previous paper24 we applied the original QUAMBO
method to one of the transition metals, bcc Mo, and obtained
�s ,d� QUAMBOs as the minimal basis. Most of the
QUAMBO-based tight-binding band structure �Fig. 3 of Ref.
24� agrees very well with the DFT results; however it shows
some deviations around high-symmetry point N. In particu-
lar, the �-N and P-N bands crossing the Fermi energy have
several strong wiggles even below �F. The original explana-
tion of such deviations is related to the coarse k-point sam-
pling which will affect the slope of the band structures near
Fermi energy. However, the Monkhorst-Pack grid of 16
�16�16 used in Ref. 24 is already quite dense. Therefore,
there is more important physical reason responsible for the
large deviations around N point below �F.

To solve the above puzzle, we have constructed two sets
of QO basis, �s ,d� and �s , p ,d� with �th=0 and 8 eV, respec-
tively. Pseudoatomic orbitals s, p, and d are rescaled by
e−��x�, with �=1.0, 1.5, and 0.5 Å−1, respectively, and then

FIG. 13. �Color online� Electronic density of states in bcc Fe.
Top panel: majority spin; bottom: minority spin. �Circle dot line:
plane-wave DFT calculation; solid line: TB calculation; dashed
line: Fermi energy; and dash-dot line: energy threshold with �th

=3 eV.�

FIG. 12. Band structure of bcc Fe with minority spin. �Circle
dot: plane-wave DFT calculation; solid line: TB calculation based
on nine QOs for minority spin; dashed line: Fermi energy; and
dash-dot line: energy threshold with �th=3 eV.�

(a) (b)

FIG. 14. �Color online� The Fermi surface of bcc Fe with �a� majority spin and �b� minority spin. �Plotted using XCRYSDEN �Refs.
78–80�.�
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renormalized. The corresponding tight-binding band struc-
tures are presented in Figs. 15 and 16. Although the band
structure using the �s ,d� QO basis is very smooth as shown
in Fig. 15, we still observe a strong deviation around N be-
low �F. But in Fig. 16 the band structure with �s , p ,d� QO
basis agrees with the DFT result very well, especially for
those problematic bands around point N. This indicates that
the p component may play an important role around N.

We then use VASP to perform AO-projected band-structure
analysis as shown in the color-encoded plot, Fig. 17�a�,

where the specific color is from the linear weight of d, s, and
p components corresponding to red, green, and blue, respec-
tively, as shown in the color triangle of Fig. 17�c�. We can
immediately see that around point N those Kohn-Sham bands
crossing the Fermi energy �F have strong blue and red com-
ponents corresponding to the p and d characters. In contrast
we do not find clear s component in these bands. This is very
crucial since we were expecting the �s ,d� QOs as the
minimal-basis set for bcc Mo; however due to this strong p
component around N the �s ,d� QOs are not enough to pre-

FIG. 15. Band structure of bcc Mo with �s ,d� QO basis. �Circle
dot: plane-wave DFT calculation; solid line: TB calculation based
on six QOs; dashed line: Fermi energy; energy threshold with �th

=0 eV.�

FIG. 16. Band structure of bcc Mo with �s , p ,d� QO basis.
�Circle dot: plane-wave DFT calculation; solid line: TB calculation
based on nine QOs; dashed line: Fermi energy; and dash-dot line:
energy threshold with �th=8 eV.�

(a) (b)

(c)

FIG. 17. �Color online� �a� AO-projected band structure of bcc Mo with �s , p ,d� QO basis; �b� QO-projected tight-binding band structure
of bcc Mo with �s , p ,d� QO basis; �c� color triangle: red for d orbitals, green for s orbital, and blue for p orbitals.
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serve the full DFT band structure below the energy threshold
accurately, thus give rise to the strong deviations in both Fig.
3 of Ref. 24 and Fig. 15. Figure 17�b� shows the color-
encoded QO-projected tight-binding band structure with
�s , p ,d� QO basis set and it preserves the general distribution
of AO components in the band structure. Therefore, the mini-
mal basis for bcc Mo should be the �s , p ,d� QOs.

With this �s , p ,d� QO basis set we have calculated the
high-resolution Fermi surface of bcc Mo using a dense 32
�32�32 grid. Here in Fig. 18 we show the Fermi-velocity-
encoded Fermi surface where the magnitude of velocity �vF�
is represented by different colors defined in the color bar.
Fermi velocity is calculated from vF=dE�k� /�dk. It should
be mentioned that Fig. 18 displays the Fermi surface in re-
ciprocal cell, instead of the first Brillouin zone. Thus high-
symmetry points �, H, N, and P are located at the corner, the
center of the cell, the middle of surfaces and edges, and the
center of equilateral triangles on the surfaces, respectively.
From our calculation the minimal and maximal magnitudes
of Fermi velocity of bcc Mo are 3.36 and 15.02 Å / fs. Ob-
viously the magnitude of Fermi velocity is very different on
different sheets of the Fermi surface. The central octahedral
surface around point H encloses holes which have higher
velocity than the electrons or holes on the other sheets. This
is also clearly reflected by the large slope of the Kohn-Sham
bands crossing �F at both P-H and H-N in Fig. 17�b�. In
contrast Fermi electrons in the other bands at �-H, �-N, and
�-P have smaller velocity showing blue color in Fig. 18.

VI. COMPARISON BETWEEN QO AND OTHER
LOCALIZED ORBITALS

A. Comparison between QO and MLWF

MLWF developed by Marzari and Vanderbilt32 is the most
localized orthogonal Wannier function, and it could achieve
even better localization if the orthogonality condition is re-
laxed, which is an advantage compared to QO. In general
both the center and shape of MLWF are unknown before the
construction is fully finished. It could be atomic-orbital- or
bonding-orbital-like, which is determined by the information
included in the selected Bloch subspace. In contrast, the cen-

ter and pseudoangular momentum of QO are known before
the construction. Algorithmically, QO is a noniterative
projection-based scheme, whereas MLWF is based on non-
linear optimization and needs to search for the global mini-
mum iteratively. Due to the nonlinear nature of the MLWF
scheme, the selection of Bloch subspace is of utmost impor-
tance, whereas the present QO scheme represents infinite
band result cheaply, and therefore might be simpler to use.
The maximal similarity and pseudoangular momentum of
QO also allow for easier labeling and interpretation. From
another point of view, QO method may �a� give an upper
bound of the energy of the highest unoccupied Bloch states
one need to include in the MLWF scheme in order to obtain
a set of atomic-orbital-like MLWFs, �b� provide a simple
way to disentangle the Bloch wave functions in solids, and
�c� perform as a good initial guess for MLWFs as well.

B. Comparison between QO and QUAMBO

The original QUAMBO method20–24 selects the optimized
combination subspace C�k� from the large unoccupied Bloch
subspace R�k�. This method is also implemented in our
code.27 In the Appendix we rigorously prove that QO is
equivalent to QUAMBO in the infinite band limit. However,
practically with QUAMBO method one needs to include
enough Kohn-Sham bands to capture all bonding and anti-
bonding Bloch states for construction of the corresponding
quasiatomic orbitals. It is difficult to predict where the cor-
responding highest antibonding Bloch state is. Even if it is
predictable, those antibonding states, unfortunately, are often
pushed to very high energies. There could be hundreds of
Bloch states between the bonding and antibonding Bloch
states, which are irrelevant to the construction of QUAMBO.
In conventional DFT calculations it is very inefficient to cal-
culate and very memory consuming to store a large number
of bands. In the QUAMBO method most of time could be
wasted on calculating atomic projections on these irrelevant
bands. The alternative QO construction is totally independent
of unoccupied Bloch eigenstates since one directly constructs
the optimized combination Bloch states and the only addi-
tional cost is non-self-consistent evaluation of Hamiltonian
matrix elements between them.

The theoretical basis for QO and QUAMBO method is
the idea of Slater and Koster16 of linear combination of
atomic orbitals �LCAO�, thus the localization of QO and
QUAMBO depends on whether the specific material can be
well described by the LCAO idea for the low-energy chem-
istry. As long as the idea of LCAO works for the materials
one is interested in, the low-energy bands should be domi-
nated by quantum numbers of atomic orbitals �antibonding
Bloch states are usually smeared out among the unoccupied
Bloch subspace, but they are not far from Fermi level�.
Meanwhile, by definition QO is maximally similar to AO;
therefore the quasiangular quantum numbers should be still
preserved while the radial part and the detailed local shape of
QO largely depend on the bonding nature of QO with other
orbitals on its neighboring atoms. Practically speaking, the
pseudoatomic orbitals from pseudopotential generators have
already provided us the clue about the relevant angular quan-

FIG. 18. �Color online� The Fermi-velocity-encoded Fermi sur-
face of bcc Mo with �s , p ,d� QO basis in the reciprocal cell. The
velocity is in the unit of Å / fs.
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tum numbers. As long as density-functional theory with these
pseudopotentials can describe the specific material well, we
can always obtain localized QOs which can accurately de-
scribe the electronic structure below a few eV above the
Fermi energy by forming the bonding-antibonding closure.
For higher energy regions, we may have to include additional
radial quantum numbers for s-state, p-states, etc. And cer-
tainly, it would be difficult for QO to describe unbound elec-
tron states.

C. Comparison between QO and PAO

The construction of optimized combination subspace from
atomic-orbital Bloch subspace in QO scheme is similar to the
PAO scheme of Sæbø and Pulay,66–68 which has been widely
used in quantum chemistry. However our QO scheme is ap-
plicable to molecules, surfaces, and solids within one pro-
gram, enabling the construction of transferable local basis
functions and comparison of bonding chemistry from mol-
ecules to surfaces to solids. It can be embedded in or inter-
faced to any DFT package using plane-wave, Gaussian, or
mixed bases. As we have shown in the various applications
above, QO can be constructed not only for insulators and
semiconductors but also for metallic systems. Another differ-
ence is that we use the pseudized atomic orbitals as the simi-
larity objects with less nodes in their wave functions. More-
over without considering the core wave functions we have
much less number of basis orbitals to construct and diago-
nalize in ab initio TB calculations. QO is a true minimal
basis scheme, and consequently we can efficiently perform
TB analysis and parametrizations.

VII. SUMMARY

Quasiatomic orbital is derived and implemented for dif-
ferent types of materials. The accuracy, efficiency, and ro-
bustness of QO for ab initio tight-binding analysis are dem-
onstrated through band structure, density of states, QO-
projected density of states, the Fermi surface, the Mulliken
charge, and bond order analysis. We have shown that QO is
equivalent to the infinite band limit of QUAMBO without
the need to explicitly compute and store a large number of
unoccupied Bloch wave functions. Furthermore, the most
important property of QO is that it retains all electronic
structure information below a certain energy threshold while
possessing both quasiangular momentum quantum number
and reasonably good localization, which fulfills the true spirit
of the LCAO of Slater and Koster.16 Therefore, QO may be
used as a transferable local basis for the calculations of total
energy, electrical conductance, and the development of
linear-scaling DFT. For ease of checking, all source codes
and relevant data used in this paper are put at a permanent
website.27
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APPENDIX: MATRIX ALGEBRA PROOF
OF QO EQUIVALENCE TO QUAMBO

IN THE INFINITE BAND LIMIT

To prove the equivalence between QO and QUAMBO in
the infinite band limit, we first expand matrix element
�Wk�Ii,Jj in Eq. �33� as the following:

�Wk�Ii,Jj = 	AIi��

n̄

P̂	n̄k

† �Ŝ�

m̄

P̂	m̄k��AJj�

= 	AIi�Ŝ�

n̄

P̂	n̄k��AJj�

= 

n̄

	AIi�Ŝ�	n̄k�		n̄k�Ŝ�AJj� . �A1�

We use �Mk�n̄,Jj to represent the matrix element 		n̄k�Ŝ�AJj�.
Then we will have the simple form of Wk for QO,

Wk = Mk
†Mk, �A2�

where the size of Wk and Mk is qN�qN and dim R�k�
�qN �or �qN�, respectively. However, in the original
QUAMBO method of Lu et al.22 in the limit of infinite bands

the overlap matrix W̃k is defined as

W̃k = MkMk
† , �A3�

where the size of W̃k is �. Wk and W̃k are the so-called
Gramian matrix. We then perform singular value decompo-
sition �SVD� of matrix Mk,

Mk = Uk�kVk
† , �A4�

where Uk and Vk are the unitary transformation matrices
with the sizes of � and qN�qN, respectively, and they
satisfy Uk

†Uk=I and Vk
†Vk=I. Matrix �k with the size of

�qN contains the singular values, and it has NM nonzero
values, where NM �min�qN ,�=qN. Thus, Wk

=Vk�k
†�kVk

† and W̃k=Uk�k�k
†Uk

†. Let Yk=�k
†�k and Ỹk

=�k�k
†. Both Yk and Ỹk are the diagonal matrices with the

sizes of qN�qN and �, respectively; however they con-
tain exactly the same NM positive eigenvalues. It immedi-

ately leads to three conclusions: �a� Wk and W̃k have the

same rank as Mk; �b� Wk and W̃k share the same eigenval-
ues; and �c� Vk and Uk contain the corresponding eigenvec-

tors of Wk and W̃k, respectively. We then have

W̃kMkVk = MkWkVk = MkVkYk, �A5�

which means corresponding to the ith positive eigenvalue,

the ith eigenvector �Uk�i of W̃k is the ith vector �MkVk�i
multiplied by a factor ��k�ii,
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�Uk�i = ��k�ii�MkVk�i. �A6�

�k is a diagonal matrix with the size of qN�qN. Since Uk is
a unitary matrix,

IqN�qN = �Uk
†Uk�qN�qN = �k

†�k
†�k�k, �A7�

which leads to ��k�ii= ��k
†�k�ii

−1/2= �Yk�ii
−1/2 and thus �Uk�i

= ��k�ii�MkVk�i corresponding to the ith positive eigenvalue
�Yk�ii. Finally, in the original QUAMBO method22 the Ck
eigenvectors associated with the largest Ck eigenvalues of

W̃k are selected to form the optimized combination subspace
C�k�. Therefore, the optimized combination state �c̃mk� can
be expanded as the following:

�c̃mk� = 

n̄

�Uk�n̄,m�	n̄k�

= 

n̄,Ii

��k�mm�Mk�n̄,Ii�Vk�Ii,m�	n̄k�

= 

n̄,Ii

��k�mm�Vk�Ii,m�	n̄k�		n̄k�Ŝ�AIi�

= 

Ii

��k�mm�Vk�Ii,m�Îk − 

n

P̂	n̄k
��AIi�

= 

Ii

��k�mm�Vk�Ii,m�AIi,k
� � = �cmk� . �A8�

Therefore, in the end we have �c̃mk�= �cmk�. This means that
the selected Ck eigenvectors associated with the largest Ck

eigenvalues of W̃k in the QUAMBO method in the limit of
infinite bands are exactly the same as those associated with
the largest Ck eigenvalues of Wk in the QO method. The

above proof shows that although Wk and W̃k defined for QO
and QUAMBO are different, in the infinite band limit both
matrices have exactly the same positive eigenvalues, leading
to the same optimized combination subspace C�k�. More im-
portantly, by using the definition of identity operator we only
need the finite occupied Bloch subspace R�k� for the con-
struction of QO, while the construction of QUAMBO re-
quires infinite unoccupied Bloch subspace R�k� to reach the
same result as QO. As shown in Eq. �41�, the only additional
but little cost is to evaluate Hamiltonian matrix elements
between any two of the directly constructed finite �cmk�.

In practical implementations “infinite bands” refer to full
occupied and unoccupied Bloch space defined on particular
basis. For example, in plane-wave DFT calculations we use
large but finite plane waves as the basis. Therefore, at each k
point the dimension of full Bloch space or infinite bands is
the total number of plane waves. In practice when using the
original QUAMBO scheme we have to truncate unoccupied
Bloch space due to the limited computational power and
memory, which leads to different eigenvalues and different
optimized combination subspace C�k� compared to the QO
method. The above truncation could give rise to the finite
UBTE problem discussed in the beginning of this work. The
situation will be even worse when we apply the QUAMBO
method in strongly confined systems where particular anti-
bonding Bloch bands will be pushed up to very high energy
and cannot be captured in finite unoccupied Bloch subspace.
Then the rank of Uk will be smaller than qN−Rk, leading to
the incomplete optimized combination subspace �c̃mk� and
consequently the singularity of TB Hamiltonian under the
QUAMBO basis set. The QO method does not suffer from
this UBTE.
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