
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Overview No. 150

Phase field modeling of defects and deformation

Yunzhi Wang a,*, Ju Li b

a Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210, USA
b Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, USA

Received 16 April 2009; received in revised form 4 October 2009; accepted 24 October 2009
Available online 16 December 2009

Abstract

New perspectives on the phase field approach in modeling deformation and fracture at the fundamental defect level are reviewed.
When applied at sub-angstrom length scales the phase field crystal (PFC) model is able to describe thermally averaged atomic configu-
rations of defects and defect processes on diffusional timescales. When applied at individual defect levels the microscopic phase field
(MPF) model is a superset of the Cahn–Hilliard description of chemical inhomogeneities and the Peierls (cohesive zone) description
of displacive inhomogeneities. A unique feature associated with the MPF model is its ability to predict fundamental properties of indi-
vidual defects such as size, formation energy, saddle point configuration and activation energy of defect nuclei, and the micromechanisms
of their mutual interactions, directly using ab initio calculations as model inputs. When applied at the mesoscopic level the coarse grained
phase field (CGPF) models have the ability to predict the evolution of microstructures consisting of a large assembly of both chemically
and mechanically interacting defects through coupled displacive and diffusional mechanisms. It is noted that the purpose of the MPF
model is fundamentally different from that of the CGPF models. The latter have been used primarily to study microstructural evolution
with user-supplied linear response rate laws, defect energies and mobilities. Combined phase field simulations hold great promise in mod-
eling deformation and fracture with complex microstructural and chemical interactions.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Whether to use discrete particles or continuum fields to
describe matter has been a long evolving theme in the
development of science. Hooke’s and Huygens’ wave the-
ory contrasted with Newton’s particle theory of light until
the establishment of quantum mechanics. In materials sci-
ence using continuum fields to describe defects [1,2] and
deformation [3] has been popular historically because it
was analytically tractable. With the advent of computers
continuum field approaches led naturally to numerical
incarnations such as the finite element method [4]. On the
other hand, computers also enabled discrete agent-based
“computer experiments”, such as atomistic simulations [5]
of ensembles of atoms and kinetic Monte Carlo simula-

tions of ensembles of defects. For instance, dislocation
dynamics (DD) simulations [6–13] track the motion of
many discrete dislocation segments to obtain information
about dislocation organization and plasticity. When mod-
eling materials behavior whether or not a field theoretic
approach is advantageous compared with a discrete agent
approach depends on the nature of the question asked
and the lengthscale and timescale of interest. It is not
always the case that the continuum approaches become less
advantageous as the lengthscale shrinks. While discrete
atom simulations are often appropriate to describe materi-
als behavior in the tens of nanometers and nanoseconds
range [14], if the lengthscale is further shrunk to the ang-
strom/sub-angstrom scale the continuum modeling
approach becomes prevalent again, e.g. the density func-
tional theory for electrons [15] is a continuum field theory.
In contrast, the entire Earth was represented as a particle
by Newton. For many problems an intimate coupling of
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the field theoretic and discrete agent approaches is neces-
sary [16–18]. For instance, DD simulations employ elemen-
tary continuum stress field solutions to treat dislocation
segment–segment [19] and segment–boundary [20] interac-
tions. The simulation results of DD may be better under-
stood and used in the broader context when cast in the
light of dislocation density-based continuum plasticity the-
ory [21–37]. Atomistic simulations and continuum model-
ing may be seamlessly linked to solve problems in defects
and deformation that would otherwise be difficult to solve
[38–45].

In this overview we examine the development of a par-
ticular continuum field approach to modeling material
defects and deformations, the phase field approach. The
word “phase” in “phase field simulation” has its historical
origin in “phase diagrams” and “phase transformations”.
Nowadays “phase” has, by consensus, a generalized mean-
ing of order parameters, characterizing any chemical and
structural non-uniformities such as chemical order, lattice
orientation, inelastic strain, atomic density wave, etc. A
modern view of inelastic deformation, i.e. a gross shape
change of the material with finite free energy dissipation,
is that it could be regarded as phase transition [46,47].
For example, shape memory and pseudoelasticity effects
[48,49] involve large gross shape changes and obviously
can be categorized as “deformation”, but the underlying
mechanism is martensitic transformation, a “phase trans-
formation”. Application of phase fields to modeling defor-
mation therefore seems reasonable. The key defect carriers
responsible for deformation, i.e. dislocations, have been
modeled by the phase field method [50–57]. With the abil-
itiy to describe elastic inhomogeneity [58–63], surfaces
[52,64–70] and voids [71–76], using phase fields to model
fracture seems natural as well [70,74,77–89].

However, it is worth noting that historically the practice
of phase field simulation grew largely out of modeling diffu-
sional phase transformations [90–98], such as solidification
and precipitation. Using the phase field method to model
deformation is relatively recent, beginning with modeling
of individual dislocations [50–57]. Rather than a weakness,
we believe this historical development imparts strength to
the phase field approach in modeling defects and deforma-
tion, especially in chemically and microstructurally complex
materials. It gives impetus to the community to work
towards developing a unified phase field methodology, under
which one could treat displacive and diffusional degrees of
freedom together in a seamless manner. Consider for
instance dislocation–precipitate interactions in Ni-based
superalloys [99,100]. On the one hand, the impedance of dis-
location motion by intermetallic precipitates (precipitation
hardening) is the dominant mechanism that imparts high
strength to superalloys. Diffusive processes such as chemical
reordering can couple strongly to dislocation shearing pro-
cesses in governing the rate of deformation [101,102]. On
the other hand, dislocation plasticity can also change the pre-
cipitate microstructure in the so-called rafting instability,
where the precipitate morphologies change from an initial

cuboidal shape to a plate or rod shape, which was recently
modeled with the phase field approach [103–107]. These mec-
hano-chemically or displacive-diffusionally coupled mecha-
nisms, where microstructural evolution (e.g. grain growth
[108–117], precipitate evolution [92,93,95,118–121], solute
segregation [57,122–128]) blends in with mechanical defor-
mation, would be quite difficult to model using a purely
mechanical approach, and such deformation processes are
by no means rare [129]. Because the phase field method is
already well entrenched in modeling microstructural evolu-
tion with direct linkages to free energy and mobility dat-
abases [119,130–145], it appears that integrating
deformation modeling into the same framework would be
quite valuable.

Because of this historical context, and because the gen-
eral phase field theory and its rapidly growing application
in microstructural modeling on the mesoscale have been
reviewed quite frequently in recent years [146–157], in this
overview we address some new perspectives on the method
in modeling deformation at individual defect levels, with a
special emphasis on the treatment of the displacive degrees
of freedom and coupled displacive–diffusional processes.
The fundamentals of phase field methods for microstruc-
ture representation and the description of microstructure
evolution at different length scales are first discussed in
contrast to sharp interface models (Section 2). Then recent
advances and quantitative aspects of microscopic phase
field (MPF) models in predicting defect size and energy
and thermally activated processes of defect nucleation, uti-
lizing ab initio information such as generalized stacking
fault (GSF) energy and multiplane generalized stacking
fault (MGSF) energy as model inputs, are reviewed. In Sec-
tion 3, the MPF model of dislocations is first compared
quantitatively with the Peierls–Nabarro (PN) model and
examples are presented to show its applications in the study
of dislocation core structure and energy, Peierls stress and
dislocation–precipitate interactions. Based on the kinship
among dislocations, deformation twins, martensites and
mode II and III cracks, the basic frameworks of using
MPF models to study fundamental properties (including
the saddle point configuration and activation energy) of
these defects are discussed in the context of utilizing ab ini-

tio calculations of MGSF energy and transformation path-
ways as model inputs (Sections 4 and 5). Finally, phase
field methods amenable to studies of coupled displacive–
diffusional processes on both the nanometer (coarse
grained phase field models) and sub-angstrom (i.e. phase
field crystal models) length scales are reviewed and demon-
strated (Sections 6 and 7). General concluding remarks are
given in Section 8.

2. Fundamentals of the phase field method

2.1. Sharp interface and diffuse interface models

The collection of a hierarchy of structural and chemical
non-uniformities (imperfections or defects) in solids consti-
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tutes the so-called microstructure that in turn determines
material properties. Well-known examples of these struc-
tural defects include dislocations, homophase and hetero-
phase interfaces, surfaces, cracks and voids; while typical
examples of chemical defects include concentration varia-
tions across heterophase interfaces and impurity segrega-
tion at various structural defects. Stacking faults, twin
boundaries, anti-phase domain boundaries, grain bound-
aries and ferromagnetic and ferroelectric domain walls all
belong to the category of homophase interfaces. In order
to understand the mechanisms of microstructural evolu-
tion, the fundamental properties of these individual defects,
which are the basic building blocks of a microstructure,
have to be addressed.

There are two ways to treat chemical and structural non-
uniformities associated with an interface in the thermody-
namics of heterogeneous systems, i.e. the sharp interface
model and diffuse interface model [158]. To avoid dealing
with chemical and structural variations across an interface,
which could be quite complex on the atomic scale [159],
Gibbs formulated a simple phenomenological approach
by introducing a hypothetical mathematical dividing sur-
face [160,161]. The adjacent phases are assumed to be
homogeneous right up to this dividing surface so that ther-
modynamics of homogeneous phases can be applied to
each phase and various thermodynamic properties of the
interface can be defined. In such a sharp interface model
the interfacial width is zero and the interfacial energy is
an input parameter rather than an output. Thus simula-
tions based on the sharp interface model provide no
insights into the nature of the interface. In contrast, the dif-
fuse interface model assumes a continuous variation of
composition, structure and other properties within the
interfacial regions. It is based on the so-called gradient
thermodynamics [162–164] where the total free energy of
an arbitrary heterogeneous system is formulated as a func-
tion of both local chemical and structural states and their
spatial variations (gradients). The gradient terms in the free
energy appear naturally in a limit transition to the contin-
uum of the discrete lattice models [165,166] and can be
derived from microscopic theories in statistical mechanics
[167,168], as well as from classical density functional theory
[169]. Minimization of the total free energy determines the
balances between the local free energy term, which prefers
an infinitely sharp interface, and the gradient energy term,
which prefers an infinitely wide interface and thus regular-
izes the interface width. In such a diffuse interface model,
which lays the theoretical foundation for the phase field
method, interfaces have finite equilibrium widths, unique
chemical and structural variations within them and the
associated interfacial energies. These fundamental proper-
ties of an interface are outputs of, rather than inputs to,
the model.

Application of the diffuse interface model in predicting
fundamental properties of extended defects was first dem-
onstrated by Cahn and Hilliard, who studied the equilib-
rium concentration variation across a coherent interface,

the width of the interface and the corresponding interfacial
energy [164], and the concentration profile and activation
energy of a critical nucleus [170]. As noted by Mullins
[171] in his introduction to these two seminal papers, all
these fundamental properties associated with an interface
and a critical nucleus are expressed in terms of the param-
eters in the free energy model and there is no need to intro-
duce the artificial dividing surface of Gibbs, nor to define a
separate interfacial energy, nor to model the nucleus as
homogeneous.

In parallel with the sharp interface and diffuse interface
treatments of interfaces, there are two approaches to dislo-
cation cores as well, i.e. the Volterra view [172] and the Pei-
erls model [1]. In the Volterra view the defect is treated as a
pure geometrical singularity in the continuum with zero
core width. The core energy is rather an input than output
of the model. In the Peierls model [1] the core has a finite
width regularized by the interplay between two competing
energy terms, the elastic energy term from materials outside
the slipped region on the glide plane described by linear
elasticity theory and the inelastic energy term from materi-
als residing inside the slipped region (a one atomic layer
thin plate) described by the generalized stacking fault
(GSF) energy [173–176], a non-linear and oscillatory func-
tion with multiple minima. The elastic energy term (which
depends on the gradient of the atomic displacement) pre-
fers an infinitely wide dislocation core while the inelastic
energy term (misfit energy, which depends on local dis-
placement only) prefers the Volterra core. A compromise
between the two yields the equilibrium core structure and
the associated core energy. A similar model was developed
for elastic relaxations in a misfitting epitaxial thin film on a
rigid substrate [177], where the interplay between the misfit
energy and the elastic energy determines the equilibrium
non-uniform displacements in the film. Essentially the same
treatment exists for inelastic tensile opening at the crack
tip, called the cohesive zone model, where the crack tip
stress solution is regularized by non-linear non-convex
traction displacement laws of the separating material
[178–186].

In the case of ferromagnetic and ferroelectric materials
the crystalline anisotropy energy and Landau–Ginzburg–
Devonshire free energy play the role of the misfit or crystal-
line energy; they depend on the local values of magnetiza-
tion and polarization, respectively, and prefer infinitely
sharp domain walls. The gradient energies depend on the
magnetization and polarization gradients and prefer infi-
nitely diffuse domain walls. The compromise between the
two regularizes the domain wall thickness and determines
the domain wall energy [152,163,187]. Of course, elastic,
electrostatic and magnetostatic interactions at the domain
walls also modify their structure and thickness.

These examples demonstrate that structural and chemi-
cal variations associated with an extended defect are regu-
larized by force balance and tend to be diffuse at their
natural length scales (i.e. nanometers). This is particularly
true at the elevated temperatures where microstructural
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evolution takes place. On these length scales the diffuse
interface model has a unique advantage over the sharp
interface model in predicting defect size, chemical and
structural variation within the defect, the associated defect
energy and defect nucleation and migration that have an
activation lengthscale usually between 1 and 100 nm.

2.2. Phase fields

In a diffuse interface model the chemical and structural
non-uniformities are characterized by two types of order
parameters: conserved and non-conserved order parame-
ters. Typical examples of the conserved order parameters
include atomic density and concentration of a chemical
species in a multi-component and/or multiphase system,
while typical examples of the non-conserved order param-
eters include long-range order parameters for chemical
ordering, magnetization and polarization for ferromagnetic
and ferroelectric transitions and inelastic displacement or
inelastic strain (eigenstrain or transformation strain) for
dislocations, martensitic particles and microcracks. These
order parameters are defined as continuous fields (func-
tions of position) and are referred to as phase fields in
phase field models. The total free energy of the system is
formulated as a function of these fields. The variational
derivatives of the free energy with respect to the fields drive
their evolution over time following the generalized diffu-
sion equation (Cahn–Hilliard equation [188]) for the con-
served order parameters and the time-dependent
Ginsburg–Landau equation [147] (also called the Allen–
Cahn equation [189]) for the non-conserved order parame-
ters. The discrete counterpart of the two equations is the
microscopic diffusion equation [190], as shown in Wang
[191]. The evolution over time of these order parameter
fields completely define an evolving microstructure in a
given materials system.

In order to take advantage of the unique ability of the
diffuse interface model to predict fundamental properties
of individual defects mentioned above it is essential to
choose well-defined physical quantities as the order param-
eters in a phase field model. This seems to be straightfor-
ward in certain cases (such as the examples mentioned
above), but could be quite challenging in some other cases,
such as solidification and grain growth [151,192,193] where
simple phenomenological order parameters were usually
introduced to distinguish liquid from solid [151] and grains
of one orientation from grains of other orientations [152].
Phase field models formulated with phenomenological
order parameters are generally regarded as numerical tech-
niques to avoid boundary tracking in describing evolving
microstructures of complex geometries. It remains a chal-
lenge to define physically rigorous but computationally
tractable order parameters in solidification and grain
growth so a physical rather than phenomenological free
energy model can be formulated and the fundamental
properties of the solid–liquid interfaces and grain bound-
aries can be predicted using the phase field method.

Recently, progress has been made in using amplitudes of
atomic density functions as the physical order parameters
to describe solidification and grain growth [169,194–196].
Alternatively, some of the order parameters introduced in
atomistic simulations to identify these interfaces [197,198]
could also be explored for such purposes.

2.3. Microscopic phase field model versus coarse grained

phase field model

From the above discussions one should note that the dif-
fuse interface model and phase field model were originally
developed and used for the study of fundamental proper-
ties of extended defects, such as an interface [164] and a
critical nucleus [170], whose size is comparable with the
interfacial or core width. The model was subsequently
applied to study spinodal decomposition [188] and spinod-
al ordering [189] where the entire system consists of inter-
faces at early stages. In all these applications the
chemical or structural non-uniformities occur at length
scales that are between 1 and 100 nm. At such length scales
interfaces and dislocations tend to be diffuse naturally and
the advantages of diffuse interface models over sharp inter-
face models become obvious. In this overview phase field
models being applied to individual defects at their natural
length scales and hence being able to predict defect struc-
ture, chemistry, geometry and energy are referred to as
microscopic phase field (MPF) models. In this regard, the
original Cahn–Hilliard equation [164,170] and their dis-
crete counterparts [165,199,200] are all MPF models. The
newly developed MPF model of dislocations [56] and its
relationship to the PN model will be discussed in Section 3,
while MPF models of martensitic transformations
[201,202] will be discussed in some detail in Section 4. As
will be seen later, a unique advantage of the MPF models
is their ability to directly incorporate ab initio calculations
such as GSF energy [173–176] and MGSF energy [176,203–
205] as their inputs to treat displacive processes (disloca-
tions, martensitic transformations, cracks, etc.) and possi-
ble coupling with diffusional processes (e.g. interactions
with solutes, precipitates and grain boundaries). The
microscopic phase field model is much more efficient than
full atomistic calculations, and more flexible, since it uses
ab initio inputs directly and does not depend on the avail-
ability or accuracy of an interatomic potential [206]. The
major assumption in the MPF model is that continuum
theory is still applicable down to atomic length scales.
The errors associated with such an assumption will be dis-
cussed in Section 3.

Over the past several decades phase field models on var-
ious coarse grained length scales have been developed to
study collective behaviors of large microstructural ensem-
bles such as dendritic solidification, grain growth and
domain coarsening, dislocation network formation and
coarsening and various phase transformations (for recent
reviews see [70,149–157,207]). These coarse grained phase
field (CGPF) models retain their advantages over the sharp
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interface models in treating complicated geometrical and
topological changes of defects during their microstructural
evolution. Their applications have offered many valuable
insights into the sequence of microstructural evolution
and mechanisms of pattern formation in many materials
systems during various materials processes. However, the
interfacial thickness and dislocation core width resolved
in the CGPF models far exceed their natural values and
the models lose the intrinsic ability of a diffuse interface
model to predict the fundamental properties of these
defects. Moreover, CGPF models may provide quantitative
rate information only in the so-called sharp interface limit
[208], where the model parameters and additional terms in
the equations governing the phase field are derived from
the standard free boundary problem through sharp inter-
face asymptotic analyses [151]. Such quantitative phase
field simulations on the coarse grained level impose a seri-
ous constraint on the numerical grid density and, hence,
computational efficiency. A new thin interface asymptotic
analysis [208–212] has recently been developed to relax
the restriction on the interface thickness. Some simple tech-
niques [213,214] based on physical arguments of equivalent
driving forces were also developed to increase the length
scales of quantitative CGPF simulations. In the meantime,
a multiphase field model [144,215] was proposed to com-
pletely decouple boundary width from boundary energy
in the diffuse interface approach, so that the phase field
method can be coarse grained to any arbitrary lengthscale
without encountering unrealistically high interfacial ener-
gies. A thermodynamically consistent formulation of the
model was derived by Kim et al. [216], now known as the
KKS model. In addition, adaptive numerical algorithms
[217–222] and new data structures [223,224] have also been
developed to increase the computational efficiency of quan-
titative phase field simulations.

Although both MPF and CGPF models can be quanti-
tative, the purpose of the MPF models is fundamentally
different from that of the CGPF models. The CGPF mod-
els have been used to study microstructural evolution with
linear response rate laws and user-supplied defect energy
and mobility constants, while the MPF models have been
used to calculate the equilibrium configurations of
extended defects and their energies [54] using ab initio cal-
culations as model inputs and to probe the total energy
landscape using the nudged elastic band (NEB) technique,
searching for saddle point configurations and activation
energies of defect nuclei [202,225]. The outputs of MPF
modeling serve as inputs of CGPF simulations.

3. Microscopic phase field model of dislocations

3.1. Field description of dislocations and order parameter

A dislocation in a crystal can be defined as the boundary
between a slipped and an unslipped region or between two
differently slipped regions (Fig. 1). The same description
has been adopted in the phase field model of dislocations

[50], in which a slipped region is characterized by analogy
to a martensitic platelet embedded in a parent phase
matrix, with the thickness of the platelet being the interpla-
nar spacing of the glide planes. In these cases the order
parameters or phase fields describe inelastic strains of the
defects, e.g. the transformation strain for a martensitic
platelet and the eigenstrain for a dislocation loop enclosing
the slipped region. In the latter the values of the phase
fields, g(a, ma, r), represent the amount of inelastic shear
with respect to a perfect crystal in the unit b/d at position
r caused by sweeping of dislocations of b(a, ma), where a
and ma represent the slip plane and slip direction, respec-
tively, b is the Burgers vector and d is the interplanar dis-
tance of the glide planes. The spatial distribution of the
inelastic strain associated with an arbitrary dislocation
configuration consisting of dislocations from different slip
systems can then be described through the phase fields as:

e0
ijðrÞ ¼

X
a;ma

e0
ijða;maÞgða;ma; rÞ ð1Þ

where e0
ijða;maÞ is the eigenstrain of a dislocation loop. The

phase fields, g(a, ma, r), serve as shape functions of the
slipped regions.

3.2. Total energy functional and variational method

Starting from arbitrary values of the phase fields, g(a,
ma, r), representing an arbitrary initial non-equilibrium
microstructure, their equilibrium values or their evolutions
towards equilibrium are obtained by total energy minimi-
zation. This is achieved by first formulating the total energy
as a functional of the phase fields and then deriving the
kinetics along the steepest descent path of the total energy
using the time-dependent Ginsburg–Landau equation
[147,189]. The total energy of a crystal with dislocations
in the phase field model consists of three parts, the crystal-
line energy Ecryst, the elastic strain energy Eelast and the gra-
dient energy Egrad, i.e.

b1
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b3

b3
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η=0
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Fig. 1. Field representation of dislocations in the phase field method. The
phase fields, g(a, ma), represent the amount of shear with respect to a
perfect crystal in the unit b/d caused by sweeping of dislocations of b(a,
ma), where a and ma represent the slip plane and slip direction,
respectively, b is the Burgers vector and d is the interplanar distance of
the glide planes.
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E ¼ Ecryst þ Eelast þ Egrad ð2Þ
The crystalline energy describes the potential energy in a

crystal subjected to a general shear produced by arbitrary
linear combinations of localized simple shears (slips) asso-
ciated with all possible slip systems characterized by the
phase fields, g(a, ma, r) [54]:

Ecryst ¼
Z

dr/ðe0ðrÞÞ ð3Þ

where e0ðrÞ is the general inelastic strain tensor given by
Eq. (1). The crystalline energy is a periodic function reflect-
ing the symmetry of the crystal. It replaces the Landau free
energy in the phase field theory of martensitic transfor-
mations. For a particular slip plane the crystalline energy
can be related [56] directly to the GSF energy (c-surface)
[173–176].

The elastic energy is associated with the elastic strains or
elastic displacements of the crystal lattice caused by dislo-
cations. In the microelasticity theory of Khachaturyan
and Shatalov [226–228] (KS microelasticity theory hereaf-
ter), formulated on the framework of Eshelby [229,230],
the elastic strain is expressed as the difference between
the total strain and the inelastic strain. Then the elastic
strain is relaxed instantaneously by minimizing the elastic
energy with respect to the elastic displacement under a
given inelastic strain through Green’s function solution.
This allows the elastic energy to be expressed as a function
of the inelastic strain only in a closedform:

Eel ¼ 1

2

X
a;ma

X
b;mb

Z
--Bða;ma; b;mb; gÞ~gða;ma; gÞ~g�ðb;mb; gÞ

� dg

ð2pÞ3
� rappl

ij

Z X
ða;maÞ

e0
ijða;maÞgða;ma; rÞdr

� V
2

Sijklr
appl
ij rappl

kl ð4Þ

where

Bða;ma; b;mb; gÞ ¼ cijkle
0
ijða;maÞe0

klðb;mbÞ
� nir

0
ijða;maÞXjkðnÞr0

klðb;mbÞnl

Cijkl is the elastic modulus tensor, r0
ij ¼ Cijkle0

kl; g is a vec-
tor in the reciprocal space and n ¼ g=g; ½X�1ðnÞ�ik �
Cijklnjnl is the inverse of Green’s function in the reciprocal
space, ~gðgÞ is the Fourier transform of gðrÞ and ~g�ðgÞ is the
complex conjugate of ~gðgÞ.

R
-- represents a principle value of

the integral that excludes a small volume in the reciprocal
space ð2pÞ3=V at g ¼ 0, where V is the total volume of
the system. Sijkl is the elastic compliance tensor and rappl

ij

is the applied stress.
The elastic energy in Eq. (4) is a closed form function of

exactly the same variables (i.e. the phase fields) as for the
crystalline energy. Then minimization of the total energy
with respect to the inelastic strain fields (i.e. phase fields)
is carried out numerically [231] by solving the time-depen-
dent Ginzburg–Landau equations. It is therefore much
more efficient than a full numerical minimization of the free

energy with respect to the displacement because the
Green’s function solution eliminates the major part of the
numerical minimization process.

According to gradient thermodynamics, the free energy
of a heterogeneous system depends not only on local values
of the order parameters but also on their special variations
(i.e. gradients). Since structural non-uniformity (disconti-
nuity) exists only within the core region of a dislocation,
the gradient term has been formulated in such a way that
it vanishes outside the core, i.e.

Egrad ¼ 1

2

Z
dr

X
a;ma

X
b;mb

nða;ma;b;mbÞ
bða;maÞ � bðb;mbÞ
bða;maÞbða;mbÞ

8<
:

� nðaÞrgða;ma; rÞ½ � � ½nðbÞ � rðb;mb; rÞ�
)

ð5Þ

where nða;ma; b;mbÞ is a parameter associated with the slip
systems and n(a) is the normal of the slip plane a. This form
is obtained [54] from a general consideration of the total
Burgers vector dependence of the line energy and thus pro-
duces results consistent with Frank’s rule in cases of dislo-
cation reactions, such as dislocation annihilation and
dissociation.

Since the order parameter in the phase field model of
dislocations is strain rather than displacement, which is
proportional to the gradient of the displacement, the gradi-
ent energy actually accounts for contributions from high
order derivatives of the displacement. It offers an indepen-
dent degree of freedom to modify the Burgers vector distri-
bution profile in the core region as compared with the PN
model. As has been shown recently [56], the gradient
energy term, although having little influence on the split-
ting distance of a dissociated core structure, affects the
shapes (diffuseness) of the partial peaks. Furthermore, the
gradient term is required for CGPF simulations of pattern
formation associated with dislocation–dislocation and dis-
location–precipitate interactions over length scales much
coarser than the dislocation core size. It allows the genera-
tion of ‘numerically’ smooth core profiles on such length
scales (e.g. several grid sizes wide, irrespective of the actual
grid size) to ensure a mesh-independent evolution kinetics.

Through Eqs. (3)–(5) all the energy terms become sole
functionals of the phase fields, g(a, ma, r). It is thus possible
to compute the total driving forces as a combination of the
crystalline, elastic and gradient energy

dðEcryst þ Eelast þ EgradÞ
dgða;ma; rÞ

ð6Þ

which are the variational derivatives of the total energy
with respect to the same set of phase fields g(a, ma, r).

3.3. Comparison with the PN model

3.3.1. Similarities

Even though the phase field method for dislocations was
first introduced [50] in the context of analogy to phase field
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descriptions of martensitic transformations, it is essentially
a three-dimensional generalization of the PN model [1,232].
In the Peierls picture of a crystal containing a dislocation
(Fig. 2) the total energy of the system is assumed to be
composed of two parts, an elastic energy term that comes
from the strain energy of materials outside the one atomic
layer slip plane region (region II in Fig. 2) (referred to as
the non-Hookean slab [233] or shear shocks [14]) and is
described by linear elasticity theory, and a misfit energy
term residing inside the non-Hookean slab and is described
by the GSF potential. Even though not specified in the PN
model, the non-Hookean slab should have a thickness
equal to the interplanar distance of the glide planes, since
it was implied in the formulation of the misfit energy. In
the phase field model such a partition is realized automat-
ically through the phase field description of a dislocation,
e.g. g(a, ma, r) vanishes outside the non-Hookean slab.

Rather than a purely mathematical scheme, the partition
of the two energy terms and regularization of defect cores
in the Peierls model and the phase field model are physi-
cally inspired, and asymptotically exact within the limits
of wide cores due to the short-range nature of interatomic
potential. There are indeed two kinds of atoms in a crystal
containing dislocations created by shear: those which are
displaced so much that they change neighbors and those
which are displaced but not enough to alter the local neigh-
boring order. The first kind of relative displacement is non-
perturbative and irreversible – it is the microscopic carrier
of inelastic strain, which is localized in the sheared regions
[14] – and the resulting energy (misfit or crystalline energy)
can only be described by GSF energy, a non-linear and
oscillatory function with multiple minima. The second kind
of relative displacement is reversible (still in the same local
potential energy basin as before) and a perturbative treat-
ment such as linear elasticity may give some, but not cata-
strophic error, in modeling the elastic energy. The two
energy terms compete in the total energy: the elastic energy
prefers an infinitely wide dislocation core, but the misfit
energy prefers a Volterra core, so the compromise is a finite
core width in the continuum [1,232,234–236].

In the phase field model both the crystalline energy and
the elastic energy are formulated in three-dimensions. For
example, the crystalline energy in the phase field model
describes the periodic potential of a crystal with respect to
a general inelastic strain produced by arbitrary linear com-
binations of localized simple shears (slips) associated with
all possible slip systems in a crystal [50,54]. It reduces to
the GSF energy (c-surface) when projected onto a particular
slip plane. The KS microelasticity formulation [227,228] is a
superset of the Peirels model. The total elastic energy E[g(a,
ma, r)] is based on linear elasticity and implemented using
the exact three-dimensional continuum Green’s function
to describe the long-range elastic interaction between
rg(a, ma, r) volume elements [95,118,228,237]. The volume
element to volume element interaction kernel of 1/r type is
more general than what has been employed in past Peierls–
Nabarro type models [1,232,234–236,238–241] for disloca-
tions, which used a dislocation density [in essence rg(a,
ma, r)] infinite ribbon to infinite ribbon interaction kernel
of log(r) type. In the degenerate case of straight dislocations
these two integrals give exactly the same elastic energy. Yet
when the symmetry is broken in the dislocation line direc-
tion, the log(r) kernel is no longer applicable, but the phase
field energy function continues to work, as demonstrated
[50,56]. In addition, elastic anisotropy is accounted for nat-
urally in the phase field model [228]. Recently the phase field
model has been extended to handle moduli inhomogeneities
[62,63,242], such as cracks and voids [70,73–76,79,81,83,89],
making it even more versatile. Because of the field descrip-
tion of defects, the complexity of computation is indepen-
dent of the complexity of the defect configurations and
morphologies. Essentially, the treatment is identical for
defects of arbitrary types, shapes and spatial distributions
(e.g. straight or curved, co-planar or non-co-planar disloca-
tions). The phase field numerical machinery based on fast
Fourier transformation (FFT) on real and reciprocal space
regular grids gives this method outstanding numerical effi-
ciency and stability, similar to planewave density functional
theory (DFT) codes [243].

3.3.2. Differences

Nevertheless, there are several significant differences
between the phase field and the PN models [56]. For exam-
ple, gradient terms are introduced in the phase field model
based on the gradient thermodynamics, which are absent in
the PN model. In the elastic energy calculation the volume
of the non-Hookean slab is excluded in the PN model,
while it is included in the conventional phase field model.
Burgers vector distribution in the PN model is confined
within the non-Hookean slab, while the conventional phase
field model does not impose such a constraint and inelastic
strain relaxation is allowed outside the slip plane. Below we
address these differences in some detail.

3.3.2.1. Role of the gradient term. The physical origin of the
gradient energy term is associated with changes in atomic
bonding from one location to neighboring locations. As
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Fig. 2. Peierls partition of a crystal containing a dislocation. Regions I
and III are assumed to be pure elastic while region II is treated as a non-
Hookean slab having a thickness D which is the d spacing of the glide
planes. u is the displacement.
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mentioned earlier, the gradient term appears naturally in a
limit transition to the continuum of the discrete counter-
parts [165,166] of the gradient thermodynamics and can
be derived from microscopic theories of statistical mechan-
ics (see, for example, [167,168]) and from classical density
function theory [169]. By comparing the continuum model
against its discrete counterpart, Lee and Aaronson [166]
showed that the interfacial energy predicted by the
Cahn–Hilliard model [164] starts to deviate from the dis-
crete model at low temperatures where the interfacial
energy becomes anisotropic [e.g. (1 1 1), (1 1 0) and
(1 0 0) interfaces have different energies]. This could be
caused by the fact that the Cahn–Hilliard model neglects
the higher order terms in the Taylor expansion of the free
energy with respect to the concentration gradient. In the
phase field model of dislocations the order parameter rep-
resents the inelastic strain and its gradient becomes a sec-
ond order derivative of the inelastic displacement. Thus
the gradient term in the phase field model is physical rather
than phenomenological and improves the accuracy of pre-
dicting dislocation core structures as compared with the
PN model, as has been shown recently by a comparison
between the continuum PN model and its discrete counter-
part derived using the lattice Green’s function method
[245]. It has been shown that the dislocation core width
predicted by the Peierls theory is too narrow when com-
pared with experimental measurements [245] and the gradi-
ent term has been shown to smooth and widen the core
[56,244].

3.3.2.2. Elastic and inelastic energy calculations inside and

outside the non-Hookean slab. For a given potential energy
surface (PES) such as the GSF energy there are convex and
non-convex parts. During deformation strains or displace-
ments that sample the non-convex parts of the PES are
called inelastic strains or inelastic displacements, while
strains or displacements that sample the convex parts of
the PES are called elastic strains or elastic displacements
[203]. As mentioned earlier, one of the unique features of
the PN model is its partition of a crystal containing dislo-
cations into two parts: Hookean (regions I and III in
Fig. 2) and non-Hookean (region II in Fig. 2). In regions
I and III the deformation is assumed to be purely elastic
and the energy is described by linear elasticity theory. In
contrast, there are both elastic and inelastic deformations
in region II and the energy is described by the misfit or
GSF energy.

In phase field models of dislocations the degrees of free-
dom in the crystalline and elastic energy are the eigenstrain
characterized by the phase field, g(a, ma, r), which is an
inelastic strain. In conventional formulations the elastic
energy calculation is performed for the entire crystal using
linear elasticity theory, including region II, and the crystal-
line energy is calculated in the entire crystal as well, includ-
ing regions I and III. Thus the energy in region II in the
conventional phase field model contains two contributions:
one from the linear elasticity equation and one from the

crystalline energy. Similarly, the inelastic strain, with val-
ues represented by the phase fields, g(a, ma, r), is allowed
to relaxed in the entire crystal rather than being confined
to region II. If g(a, ma, r) is not strictly zero outside region
II, for example a dislocation core may spread outside the
slip plane, then the energy in regions I and III also contains
two contributions: one from the linear elasticity equation
and one from the crystalline energy.

In a recent effort [246] to make a quantitative compari-
son between the phase field model and the PN model a new
microscopic phase field (MPF) model was developed, in
which the crystalline energy was replaced by the GSF
energy with its calculation confined to region II and the
gradient term was dropped. As can be seen from Fig. 3,
as the thickness of the non-Hookean slab decreases in the
elastic energy calculation the MPF model prediction
asymptotically approaches the prediction of the PN model.
Thus, to make the phase field model completely equivalent
to the PN model the elastic energy calculation has to be
excluded from the non-Hookean slab and the crystalline
energy calculation has to be confined to the non-Hookean
slab.

3.4. Applications of the MPF model of dislocations

From the above discussion one can see that the MPF
model of dislocations is a superset of many previous
(semi-)continuum models [1,232,234–236,238–240,247–
252] based on the Peierls and Nabarro [1,232,234–236] con-
cepts. As mentioned earlier, the KS microelasticity theory
was recently extended to treat inhomogeneous (position-
dependent) elastic moduli [58,60–62], which further extends
its application to include cracks and voids [70,73,75], free

Fig. 3. Quantitative comparison between the microscopic phase field
(MPF) model and Peierls–Nabarro (PN) model for predictions of Burgers
vector distribution within the core of an edge dislocation in a simple cubic
crystal using the same set of input parameters (i.e. sear modulus, Poisson’s
ratio and misfit energy function). When the thickness d of the non-
Hookean slab used in the elastic energy calculation of the MPF model
decreased the MPF model prediction asymptotically approached the PN
model prediction. a0 is the lattice parameter.
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surfaces [63,68,70,253] and elastically inhomogeneous
inclusions [59–62,105,254]. Separation of the material-spe-
cific part and the defect configuration-dependent part in
the final elastic energy equation (see, for example, Eq.
(4)) makes the treatments identical for different types of
defects, such as dislocations, impurities, precipitates, sur-
faces, cracks and voids, and their interactions. Thus, the
phase fields contributing to the inelastic strain in general
can be any crystalline defects, with their mutual elastic
interactions accounted for through the following coupling
among their contributions to the inelastic strain field:

eT
ijðrÞ ¼

X
p

eT
ijð/pðrÞÞ ð7Þ

which is a linear combination of individual phase fields /,
labeled with subscript p, that represents different types of
extended defects contributing to the inelastic strain in the
system. This treatment provides phase field models with
the ability to self-consistently handle the evolution of an
arbitrary solid-state microstructure consisting of various
stress-carrying defects (see, for example, reviews
[154,207]). In the following examples the MPF model is
first compared quantitatively with the PN model for pre-

diction of core structures of a straight dislocation in Ni3Al,
using identical GSF energy from ab initio calculations as
input. Then the ability of the MPF model to treat arbitrary
dislocation configurations and dislocation–precipitate
interactions is demonstrated.

3.4.1. Dislocation core structure in Ni3Al

Recently a quantitative comparison between the MPF
model and the PN model [246] was carried out for their
predictions of the core structure of a h110if1 11g type
straight super-dislocations in Ni3Al (c0). Identical model
inputs, i.e. the GSF energy and the anisotropic elastic con-
stants from Schoeck, Kohlhammer, and Fähnle [255], were
used in the calculations. Fig. 4 shows a comparison
between the results obtained using the two models. In the
MPF calculations the elastic energy calculation is excluded
from the non-Hookean slab (region II in Fig. 2), the inelas-
tic relaxation was confined to the non-Hookean slab and
the gradient term was ignored. As can be seen from
Fig. 4, complete agreement between the MPF model pre-
diction and the PN model prediction was achieved. The
dislocation core in equilibrium exhibited a fourfold
extended structure, for both the edge and screw types,

Fig. 4. Core structures of h1 1 0i{1 1 1} edge and screw dislocations in Ni3Al and comparison with solutions from Peierls model (courtesy of professor
Gunther Schoeck). Both calculations used the same input GSF energy and elastic moduli. b = a0/2, with a0 being the lattice parameter [247].
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consisting of two complex stacking faults (CSFs) and one
anti-phase boundary (APB), as shown in the inset in Fig. 4.

3.4.2. Structure of a (1 1 1) twist boundary in Al

The above example showed that in the degenerate case
of straight dislocations the MPF and PN models predict
exactly the same core structures using indentical model
inputs. When curved dislocation lines are considered, how-
ever, the log(r) type kernel in the PN model is no longer
applicable, but the phase field energy function is. To show
that the phase field model is a three-dimensional general-
ization of the PN model, the MPF model was recently
applied to study the structure and energy of a complex dis-
location assembly–dislocation network formed in a (1 1 1)
pure twist boundary in Al [246]. The GSF energy and elas-
tic constants of Al are from Lu et al.[256]. Fig. 5 shows the
equilibrium structure of the twist boundary. The shades of
gray (color online) represent the misfit or crystalline energy
density. The alternative contracted and extended notes and
the hexagonal network agree well with the experimental
observations [257]. Extension of the model to heterophase
interfaces should be straightforward.

3.4.3. Shearing of the c0-particle in Ni–Al

One advantage of the phase field method in treating dis-
location–precipitate interactions is its ability to handle
arbitrary configurations of both dislocation and precipitate
microstructures, non-singular dislocation cores, dislocation

dissociation and stacking fault formation and anisotropic
elasticity. Incorporation of ab initio c-surface data into
the MPF model has made it possible to quantitatively
study dislocation dissociation and formation of various
planar faults in complicated c/c0 two-phase microstructures
in Ni-based superalloys. Fig. 6 shows an example of MPF
simulations of decorrelated motion of a 1=2h110i screw
dislocation through a typical bimodal c/c0 microstructure
in a Ni-based superalloy (Fig. 6a) and its comparison with
experimental observations at an early stage in a creep test
in a recent study on alloy ME3/Rene104 (Fig. 6b)
[102,225,258]. The simulation cell contains a periodic array
of coarse (secondary) c0-particles (300 nm) separated by c-
channels (75 nm), randomly dispersed fine (tertiary) c0-par-
ticles (�10 nm) and a 1=2h1 10i screw dislocation, initially
placed on the left. A parametric simulation study has doc-
umented critical microstructure features, deformation con-
ditions and fault energies that favor the decorrelation,
which ultimately leads to microtwinning, versus various
faulting modes of deformation. For example, decorrelation
of the 1=2h1 10i dislocation into Shockley partials at the
entrance of the c-channel shown in Fig. 6a is driven by
the direction of the applied stress, which differentiates the
resolved shear stress on the two Shockley partial Burgers
vectors, and facilitated by the relatively low intrinsic stack-
ing fault (ISF) energy of the c phase (10 mJ m�2). The
width of the c-channel in the meantime acts as a threshold
that determines whether both partials or only one of them
can pass through under a particular applied stress magni-
tude. The presence of the tertiary particles offers an addi-
tional impediment to dislocation motion as CSFs and
APBs, respectively, are created in the wake of the leading
and trailing Shockley partial dislocations.

3.4.4. Peierls stress for dislocation and boundary migration

In its current formulation the phase field method does not
describe lattice friction (the Peierls stress) because all energy
terms are expressed in integral forms. For this reason only
the equilibrium configurations have been considered so far.
However, the Peierls stress has been included in the frame-
work of the PN model by considering lattice discreteness in
calculation of the misfit energy [232–236,238,240]. The cor-
responding modification of the MPF model and calculations
of the Peierls stress for dislocations and grain boundaries
(such as that shown in Fig. 5) should be straightforward.

It is worth noting that application of the MPF models in
the above examples is fundamentally different from the use
of the CGPF model of dislocations. The MPF models
directly utilize ab initio calculations of GSF energies and
hence are able to make predictions of dislocation core
structure and energy and complicated dislocation configu-
rations without any a priori assumptions. Over the past
decade the CGPF model of dislocations has enjoyed an
ability to self-consistently handle the complicated geometry
of dislocations, their topological changes and their interac-
tions with other extended defects, such as precipitates,
grain boundaries and surfaces in three-dimensional elasti-

Fig. 5. Structure (misfit energy plot) of a (1 1 1) pure screw twist
boundary (h = 2�) in Al predicted by the microscopic phase field model
using the ab initio GSF energy as the model input. The inset is an enlarged
view of the extended and constricted nodes [247]. (For interpretation to
colours in this figure, the reader is referred to the web version of this
paper.)
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cally anisotropic media (for recent reviews, see [70,207]). At
such length scales, however, the CGPF model suffers from
the same problem as other continuum CGPF models, i.e.
loosing the intrinsic ability of a diffuse interface model to
predict the fundamental properties of the defects, such as
core size and energy, critical nucleus configuration and
activation energy of dislocations. Quantitative phase field
modeling of dislocation dynamics on the coarse grained
level will require similar scrutiny as the other CGPF mod-
els discussed earlier in Section 2.3.

4. Microscopic phase field models of deformation twinning

and structural transformations

Based on the kinship among dislocation loops, deforma-
tion twins and martensitic platelets, attempts are being
made [201,202,246] to formulate microscopic phase field
(MPF) models of deformation twining and martensitic
transformations on an equal footing with the MPF model
of dislocations in order to utilize recent ab initio calculations
of twinning and transformation pathways [176,203–
205,259–262].

4.1. MGSF energy landscape for deformation twinning

The MGSF energy landscapes along the deformation
twinning energy path in fcc and bcc metals have been probed
by ab initio calculations [203], which causes twinning shear
of the unit cell in a primarily layer-by-layer fashion. Tadmor
et al. introduced a new material concept called twinnability
[252], which is the ratio of cus, the unstable stacking fault
energy (0 ? 1 barrier in Fig. 7a and b), to cut, the unstable
twinning energy (1 ? 2 barrier in Fig. 7a and b), and have
evaluated it for fcc metals [263]. DFT calculation of the
(1 1 2)h1 1 1i twinning MGSF energy of bcc Mo [203]
showed dramatically different features (Fig. 7c and d). The
thinnest metastable twin was two layers. Three and four
layer twin embryos were unstable. This means that if one

looks at nucleation of deformation twins in bcc Mo the first
critical event must be simultaneous emission of two partials
together (group A). The next critical event must be simulta-
neous emission of an additional three partials (group B), on
top of A. Only then can the twin assume layer-by-layer
growth. This is clearly a very different process from fcc
deformation twinning [264–266] and must lead to different
minimum energy paths (MEP) [203]. At present no inter-
atomic potential can give long-range MGSF behavior such
as Fig. 7d, so using MPF with ab initio inputs provides a via-
ble option if one wants to calculate the MEPs [203] of heter-
ogeneous twin nucleation [252,264] in bcc metals.

Not only nucleation, but also the growth processes of
deformation twins in bcc Mo are intriguing. DFT results
[203] indicated that the twin boundary migration energy
of Mo is extremely small (40 mJ m–2), which is only one-
third of that of Al, while Mo has five times the affine shear
modulus of Al. According to the PN model, twin partial
dislocations in Mo must have very wide cores and high
mobility. The stress to homogeneously nucleate [119] a
twin partial loop on the face of a thick enough twin is only
1.4 GPa, which is really small with reference to the bulk
flow critical resolved shear stress of Mo of 750 MPa
[267]. This calls into question the necessity of classic defor-
mation twin growth mechanisms like the Cottrell–Bilby
and double cross-slip [268,269] mechanisms for bcc Mo,
since only a small stress concentrator or perhaps thermal
fluctuation is needed to induce homogeneous nucleation
[14] of a partial loop on a “thick enough” twin, which
was estimated to be five layers. Clearly, this treasure trove
of ab initio information could be incorporated in properly
formulated MPF calculations. The nucleation and mobility
of conventional dislocations have been subjected to intense
scrutiny at both the atomistic and field theoretic levels
[14,225]. The same cannot be said for deformation twin-
ning and martensitic transformations, although a close kin-
ship among twinning, martensitic transformations and
conventional dislocation plasticity is well acknowledged.
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4.2. MEP-MGSF landscape for martensitic transformations

In the theory of martensitic transformations the chemi-
cal free energy, which is the counterpart of the crystalline
energy in the theory of dislocations, is usually approxi-
mated by Landau free energy polynomials [270,271], which
are power series expansions with respect to a chosen set of
order parameters. The form of the polynomials is dictated
by free energy invariance under symmetry operations and
the nature of the transformations (such as first order versus
higher orders and proper versus improper, etc.). The Lan-
dau polynomial typically takes the form 2-3-4 for proper
martensitic transformations and the form 2-4-6 for impro-
per martensitic transformations. The primary order param-
eter is an affine strain (homogeneous lattice strain) in the
former and a long-range order parameter characterizing
atomic displacement within a unit cell (i.e. shuffle) in the
latter. A typical example of the order parameters for a
proper martensitic transformation is the pure tetragonal
strain (Bain strain) associated with the fcc ? bcc transfor-
mation [272,273]. Its values represent homogeneous lattice
distortions of finite volume elements of the fcc phase to the
bcc phase along the Bain path. A typical example of the

order parameters for an improper martensitic transforma-
tion is the amplitudes of “soft” optical modes that result
in the mutual displacement of atoms within a unit cell of
the parent phase, as in partially stabilized zirconium.

The Landau theory of phase transitions and Landau
expansion polynomials [270,271] have been widely used in
phase field simulations of martensitic transformations
(for a recent review, see [201] and references therein) and
other structural transformations. A great advantage of
the Landau theory is its amenability to qualitative para-
metric studies, because it uses as input only low-dimen-
sional energy functions (i.e. the Landau expansion
polynomials) of a predetermined set of order parameters,
instead of the full potential energy surface in the entire con-
figuration space. To make the theory quantitative, how-
ever, one needs first to validate that the transformation
path defined by the predetermined order parameters (such
as the “proportional strain” and “sequential shear” paths
and load–path bifurcations discussed in [274]) actually cor-
responds to the MEP, then to formulate a Landau polyno-
mial with appropriate order parameters and, finally, to
parameterize the expansion coefficients, all by ab initio

calculations. The Bain path in fcc ? bcc martensitic
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transformations has been shown by atomistic calculations
using empirical potentials [275] to correspond closely to
the MEP that connects the two local minima (correspond-
ing to the fcc and bcc structures) on the potential energy
surface and many ab initio calculations were limited to the
Bain path (see, for example, [261] and references therein).
However, recent ab initio calculations [204,205,259] have
shown general non-linear paths in the strain space. Since
the accuracy of the potential energy hump along the MEP
between the parent and product phases determines the accu-
racy of the interfacial energy and the path itself determines
the elastic strain relaxation, both of which are critical in
determining the activation energy for nucleation [276], it
is critical for any model not to have any a priori constraint
about the transformation path.

As shown in the preceeding section, the extension of
GSF energy to MGSF energy has allowed studies of defor-
mation twinning via ab initio calculations. Since deforma-
tion twinning can be regarded as a special case of
martensitic transformation [264], further extension of the
MGSF energy to include shuffle and possible dilatational
strains would allow one to quantitatively describe martens-
itic transformations and other shear-dominated processes
using MPF models with ab initio calculations as inputs.

Different from dislocations and deformation twinning,
additional internal displacements (shuffling) will accom-
pany the affine deformation of each unit cell in martensitic
transformations. The shuffling degrees of freedom and the
affine strain degrees of freedom, plus possible coupling
between different layers [176,203] (sometimes called “syn-
chroshear” [277–279]), constitute a high-dimensional
energy landscape for which an explicit representation is
often not possible. For instance, the general strain space
is six-dimensional; suppose that there are three extra shuf-
fling degrees of freedom, then the microscopic energy land-
scape of such a general martensitic transformation will be
at least nine-dimensional (if different transforming layers
are decoupled [176,203]). Clearly, this brute force approach
would be untenable for general problems. The so-called
reaction coordinate (n) representation of MGSF will
reduce the nine-dimensional energy landscape to a one-
dimensional function, by sampling the lowest saddle energy
path (minimum energy path, MEP) in the nine-dimensional
space [204,205,259] that connects the initial metastable
state (parent lattice) with the final metastable state (prod-
uct lattice). In essence, the MEP on the MGSF energy sur-
face (MEP-MGSF) is an optimal one-dimensional
sampling of the nine-dimensional energy landscape, which
the martensitic transformation is likely to follow micro-
scopically at the unit cell level. This path will in general
not be straight in the nine-dimensional space and in fact
can be quite curved or even kinked [204,205,259]. The
proper utilization of such a MEP-MGSF in the context
of MPF simulations is called the reaction coordinate the-
ory of martensitic transformations [246]. The ab initio cal-
culation of MEP-MGSF has been implemented in the
planewave density functional theory program VASP

[176,203,243], where the MEP of the MGSF is searched
using the NEB technique in the general space where unit
cell shape and internal coordinates are treated on an equal
footing mathematically and can vary simultaneously with
no constraints, unlike the other existing approaches
[204,205,259]. In a chemically non-uniform system, caused
by the presence of either antisite atoms or impurities, the
MEP-MGSF energy will be a function of the local defect
concentration [235,259].

4.3. Critical nucleus configuration and activation energy

Since microstructural features developed during solid-
state reactions (e.g. phase transformations, plastic defor-
mation, fracture, etc.) are often influenced by long-range
elastic strain fields that are in general functions of size,
shape, spatial orientation and mutual arrangement of all
stress-carrying defects (dislocations, precipitates, cracks,
etc.) [228], a rigorous treatment of nucleation in solids
requires a self-consistent description of interactions
between a nucleus and pre-existing microstructural constit-
uents without any a priori assumptions. Since the phase
field method has been shown to be a superset of the
Cahn–Hilliard description of chemical inhomogeneities
[164] and the Peierls (cohesive zone) description of displa-
cive inhomogeneities [247], the phase field total free energy
function is able to describe nucleation of various types of
extended defects produced by both diffusional and displa-
cive [170,228,248,274,280–292] processes that produce,
respectively, chemical and structural non-uniformities. It
has been demonstrated [170,283] that within the limits of
little supersaturation or a low driving force the non-classi-
cal theory reproduces all the features predicted by classical
nucleation theory. However, the difficulty of this approach
is locating the exact saddle point in a configuration space
of very high dimensions. Analytical or semi-analytical solu-
tions are available only in a much reduced configuration
space (e.g. one-dimensional problems) [170,228,274,283]
or in the asymptotic limit of vanishing metastability of
the parent phase [289], and numerical solutions [293,294]
are generally expensive and less stable because the saddle
point is an unstable stationary point. For the same reason,
the Langevin dynamic equations [146–148,237,293,295–297]
are incapable of obtaining the exact solutions [202].

Taking advantages of the generality of the phase field
total free energy function (in particular its ability to
describe arbitrary non-uniformities in the presence of
long-range interactions and anisotropies), several new
approaches [202,298,299] were recently developed to accu-
rately determine the critical nucleus configuration of a ther-
mally activated process by combining phase field energetics
with saddle point search algorithms. Of particular interest
[202] is the combination of the free end nudged elastic band
(FE-NEB) method [300] that allows an efficient saddle
point search along MEPs and the Langevin force approach
that provides the free end configuration for the FE-NEB
method. The NEB [301] calculations require only the total
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free energy and its first order derivatives (variations), which
are straightforward and inexpensive to obtain from a phase
field model. This approach has been previously imple-
mented for dislocation level plasticity studies [225]. Appli-
cation [202] of the new approach to a generic
cubic ? tetragonal structural transformation showed
immediately non-trivial results (Fig. 8): an interesting crit-
ical nucleus configuration akin to neither the parent phase
nor the fully grown product phase was observed (Fig. 8b).
The result was produced using a compromise between the
interfacial energy and the elastic strain energy of the critical
nucleus. The method is applicable to thermally activated
processes involving both chemical and structural non-uni-
formities, such as nucleation of stacking faults and disloca-
tion loops [225], voids and microcracks and ferroelectric
and ferromagnetic domains. It is able to treat heteroge-
neous nucleation near arbitrary pre-existing defects.

5. Phase field models of fracture

The concept of a crack defect in linear elastic fracture
mechanics [302] is similar to a Volterra dislocation, i.e. it
is an infinitely narrow line singularity. From a continuum
mechanics perspective, mode II/III cracks differ from
edge/screw dislocations only in the sense that after the line
singularity has swept past a material area, in the case of
dislocation there is 100% recovery of traction across the

area, since the reconstructed material is still a perfect crys-
tal after a shift by a perfect Burgers vector, whereas in the
case of a crack there is 0% recovery of the traction force, as
a traction-free boundary condition is imposed on the newly
created surfaces. Thus, the difference between a dislocation
and a crack is essentially only in the non-linear portion of
the traction–displacement relation. In the former case, a
r�1 type stress singularity develops as one approaches the
line defect. In the latter case, a r�1/2 type stress singularity
develops, whose amplitude is proportional to the external
driving force (a crack is usually much “larger” than a dis-
location because its existence is predicated upon external
loading, otherwise the crack would heal). Stress in real
materials can be very high, but not infinite [303]. The reg-
ularization of the crack tip stress field proceeds in a similar
fashion to Peierls’ treatment of the dislocation core: a cer-
tain kind of non-linear, non-convex response must be
imposed in the high stress regions, coupled with a majority
of elastically stressed material. In order to achieve traction-
free boundary conditions physically, some kind of mode I
separation displacement may exist in the material at the
microscopic level, even for mostly mode II and III cracks.
The so-called cohesive zone model was developed conceptu-
ally [178–180] and numerically [181–186] to accomplish this
effective “cohesive separation” response. Note that plasticity
may play an important role in the cohesive zone, illustrated
by the Hutchinson–Rice–Rosengren crack tip solution

Fig. 8. Transition of the critical nucleus from a single variant to a two-variant configuration with increasing elastic energy contribution or decreasing
chemical driving force: (a) n ¼ le2

0=Df0 ¼ 0:5, (b) n = 0.8 and (c) n = 1.0, where l is the shear modulus, e0 is the typical value of misfit strain and Df0 is the
chemical driving force for the transformation. The corresponding nucleation barriers are shown in (d) [202].
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[304,305] for power law hardening materials. Even a nomi-
nally brittle material may manifest flow and ductility on
the nanoscale [306,307]. Thus, the lengthscale of the effective
cohesive separation may be significantly larger than the
interatomic spacing [308]: imagine nanoscale ligaments pull-
ing on the crack surfaces trying to close the crack.

Similar to Nabarro’s treatment of lattice trapping of dis-
locations by discrete atom sampling [232], there is also lat-
tice trapping of brittle crack movement [309,310]. Also,
coupling between crack tip stress and plasticity is a subject
of considerable interest in the study of fractures. Nucleation
of a single dislocation from a crack tip was first studied by
Rice et al. using a Peierls like model [247–249], followed
by numerical simulations by Xu et al. [250,251]. All these
treatments have strong similarities with the MPF approach
to dislocations described previously. One technical chal-
lenge was the incorporation of traction-free boundary con-
ditions, since it implies the embedding of a zero modulus
region, in contrast to a 100% traction recovery response
for dislocations, where one can use the inhomogeneous
transformation strain with a homogeneous modulus
approach [50,54]. However, this difficulty has been removed
by using an iterative algorithm to model elastic inhomoge-
neity [60–62,242] exactly in the phase field method. The
interactions of dislocations and martensites with free sur-
faces, voids and cracks have been demonstrated to work
robustly in the phase field [63,68,70,73–75,253]. Thus, fun-
damentally there is no great obstacle to modeling cracks
and fractures on an equal footing to dislocations, martens-
ites and plasticity. The treatment of bulk diffusion and sur-
face diffusion with moving boundaries are less of a
computational challenge in phase field modeling, because
it is not a boundary tracking method [77,85–87,311,312].

Crack nucleation in two-dimensions has been modeled
using a continuum field approach similar to the Peierls
model with a saddle point search [284]. Crack path selec-
tion, crack branching and the energy dissipation rate in
crack propagation have been investigated in detail by the
phase field method, taking into account elastic and surface
energy anisotropies [79,81–83,88,89]. Dynamic crack prop-
agation [313] has been modeled, incorporating elastody-
namic inertia effects [84]. Chemical interactions such as
hydrogen diffusion and hydrogen-induced decohesion have
been modeled, where the crack tip stress field plays a criti-
cal role in biasing diffusion [85,86]. The coupling of crack
tip stress to other order parameters, such as ferroelectric
domain switching and transformation toughening, have
also been modeled [314,315]. Fracture is generally a very
complex phenomenon. The versatility of the phase field
approach in treating the plethora of microstructural and
chemical interactions [70,74,77–89] make it a powerful tool
for future modeling of fractures.

6. Modeling coupled displacive–diffusional deformations

Phase transformations are generally classified into diffu-
sional and displacive transformations and hybridization of

the two [316], such as the austenite ? bainite transforma-
tion. Deformation mechanisms are similarly classified
[317]. Well-known examples of diffusion-aided deformation
include Nabarro–Herring [318] and Coble [319] creep,
power law creep involving dislocation climb [320], sintering
[321], Asaro–Tiller–Grinfeld instability [77,87,311,322–
324], electromigration [71–73,75,76], etc. Other processes,
such as solute drag on dislocation motion [325] and
dynamic strain aging [326] and hydrogen embrittlement
[327,328], also involve coupled chemical and displacive
characteristics. All these processes are amenable to both
MPF and CGPF simulations. The following examples
demonstrate such phase field simulations for dislocation-
induced c0 rafting and creep deformation in Ni-based
superalloys.

Dislocation filling in c-channels and c0 rafting (direc-
tional coarsening) are the major microscopic processes tak-
ing place during high temperature creep deformation of
single crystal Ni-based superalloys [99,100], which control
the lifetime of the blades in jet engines. These two processes
are dynamically linked, providing a typical example of dis-
placive–diffusionally coupled processes. Under a given
external load dislocations preferably enter certain c-chan-
nels and alter the coherency state and energy of c/c0 inter-
faces and local stress fields, creating chemical potential
gradients among different c-channels that drive diffusive
flow and morphological changes in the c/c0 microstructure.
In turn, changes in particle shape and the coherency state
of the interface alter the local stress state and thereby the
Peach–Koehler force exerted on dislocations. Many previ-
ous models have treated these two processes separately,
without capturing the dynamic coupling. The phase field
models [103–107] offer an opportunity to treat them simul-
taneously in a common framework. The recent works by
Zhou et. al. [103,105–107] considered a pseudo-binary
Ni–Al single crystal at two different length scales, with
one tracking inelastic strain fields of individual dislocations
on discrete slip planes and the other tracking continuously
distributed plastic strain fields created by dislocations from
different active slip systems.

6.1. Dislocation–c0 interaction and c0 rafting

Since the lengthscale relevant to coarsening is associated
with the typical diffusion field and the size of precipitates
(�400 nm), the microscopic details such as dislocation core
structure need to be ‘coarse grained’ out by using the gra-
dient term of the phase fields as in the conventional phase
field models. The choice of the gradient term coefficient is
determined by making the dislocation core numerically
smooth on the mesoscale computational grid. In the exam-
ple considered in Zhou et al. [103] the effective core width is
about 20 nm, with a grid size of 6.6 nm. In the simulations
equilibrium dislocation configurations corresponding to
the initial c/c0 microstructure under a given applied load
and lattice misfit between the c and c0 phases were first
established, by evolving only the order parameters for
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dislocations following the time-dependent Ginsburg–Lan-
dau equation [147,189]. Then the dislocation cores were
restored to sharp cores and the stress fields associated with
the dislocations were calculated. The c/c0 microstructure
was then evolved using the Cahn–Hilliard equation [188]
under the stress fields from both lattice misfit between the
c and c0 phases and channel dislocations. Upon the change
in the c/c0 microstructure the channel dislocation configu-
rations were evolved instantaneously.

The elastic interaction between the c/c0 microstructure
and the channel dislocations was considered through cou-
pling between the inelastic strains associated with the two
types of defects:

e0
ijðrÞ ¼

2ðac0 � acÞ
ðac0 þ acÞðceq

c0 � ceq
c Þ

cðrÞ � ceq
c

h i
dij

þ
X

q

b0ðqÞ 	 nðqÞ þ nðqÞ 	 b0ðqÞ
2dðqÞ gqðrÞ ð8Þ

The first term on the right-hand side of Eq. (8) is from
the lattice misfit between c(ac) and c0 ac0

� �
phases. dij is the

Kronecker delta and represents a dilatational strain tensor.
ceq

c and ceq
c0 are, respectively, the equilibrium compositions

of the c and c0 phases. The second term represents the
inelastic strains from individual dislocations (characterized
by gq) from slip systems defined by the Burgers vector b0(q)
(in a form of a=2h110i, with a being the lattice parameter)
and slip plane normal n(q). It should be noted that the two
inelastic strain terms in Eq. (8) account for not only the
elastic interaction between the respective defects (i.e.

precipitate–precipitate and dislocation–dislocation), but
also their mutual interactions through the total elastic
energy.

Under 152 MPa [107] uniaxial load among the 12 pri-
mary 1=2h1 10if111gslip systems only eight have non-zero
resolved stress components. Additionally, the coherency
stress of the c/c0 microstructure further differentiates the
activities of the eight slip systems into three types of
h110i oriented c-channels (see, for example, Fig. 9). As a
consequence, the chemical potentials in different c-channels
are different, driving diffusional fluxes that cause some of
the c-channels to close up and others to open up. Eventu-
ally, plate-type (N-type) and rod-type (P-type) rafted c0

microstructures were developed (Fig. 9).

6.2. c0 rafting and creep deformation

To account for statistical variations in size, shape and
spatial distribution of c0 precipitates the model of disloca-
tion–microstructure interaction in the above example was
extended to a larger lengthscale close to experimental
observations of rafted c0 microstructures. Major modifica-
tions were made to both the dislocation and the c/c0 micro-
structure models [107]. First, the phase fields, which were
originally defined to characterize inelastic strain fields of
individual dislocations on discrete slip planes, were
replaced by new phase fields that describe plastic strain
fields distributed continuously in space (Fig. 10). The crys-
talline energy that originally carried the periodic inter-
atomic potential with respect to inelastic displacement (or

Fig. 9. Formation of an N-type raft at: (a) 3.6 h and (b) 10.7 h in an alloy with �0.3% lattice misfit and a P-type raft at (c) 3.6 h and (d) 7.2 h with +0.3%
lattice misfit, under 152 MPa tensile stress along the [0 0 1] direction [103].
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disregistry) was, by coarse graining, converted to a con-
stant averaged potential energy that only renormalizes
the total energy. Second, the c/c0 microstructure evolution

incorporated the model of Kim et al. [216] to allow for the
treatment of solute diffusion at an increased lengthscale
without artificially altering the driving forces for precipi-
tate growth and coarsening. Accordingly, the chemical free
energy for c/c0 phases was chosen in the form of four phe-
nomenological order parameters to characterize the c and
c0 phases and the four types of anti-phase domain in c0.
While the individual free energies of the c and c0 phase
could have been imported from the CALPHAD database
for specific alloys, only fitted parabolic polynomials were
used in this study as the simulated microstructure is in a
coarsening stage, where solute concentration variations in
c and c0 are around the equilibrium compositions of the
two phases.

Fig. 11 shows the simulated rafting microstructures with
positive and negative lattice misfits. The simulation cell lin-
ear dimension is 5 lm, with a grid size of 20 nm. The initial
microstructure (Fig. 11a) was generated by phase field sim-
ulation of the aging process of an alloy having a �0.3% lat-
tice misfit at 1300 K for 4.7 h without external load.
Besides the development of similar N-type and P-type raf-
ting morphologies under uniaxial load conditions, as in the
previous example, the microstructures (Fig. 11b and c)

Fig. 10. Discrete dislocations and a continuum field of inelastic (plastic)
strain field (dotted and shadowed regions) that yields the same plastic
deformation on the coarse grained lengthscale (much greater than the
dislocation core size).

Fig. 11. (a) Simulated c/c0 microstructures with ±0.3% lattice misfit and no external load, aged at 1300 K for 4.7 h. Rafted microstructures developed
from: (a) after an additional 5.6 h ageing under 152 MPa tensile stress along [0 0 1] by assuming the lattice misfit of (b) to be �0.3% and (c) +0.3% [102].
The inset shows the Fourier transform (diffraction pattern) of the corresponding microstructure. The images on the right are from experimental
observations under similar conditions [331].
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simulated at such lengthscale show a remarkable resem-
blance to those (images on the right in Fig. 11) observed
in experiments [329] regarding both microstructure mor-
phologies and timescale. The rafting kinetics, precipitate–
matrix inversion process and the corresponding creep
deformation have been characterized with respect to
parameters such as applied stress and lattice misfit.

Even though phase field simulations at such length scales
are amenable to parametric studies exploring the effect of
alloy chemistry and processing and service conditions on c0

rafting kinetics and the corresponding creep deformation,
mechanistic studies of many other coupled displacive–diffu-
sional processes require modeling capabilities at atomistic
length scales but diffusional timescales. A typical example
is the shearing of c0 particles by coupled displacive–diffu-
sional (reordering) processes, including microtwinning,
superlattice extrinsic stacking fault shearing and stacking
fault ribbon formation, recently discovered in Ni-based
superalloys [101,102]. Many other examples exist of displa-
cive–diffusional dual mode structural transformations (such
as interface migration by ledge mechanisms) [316]. In this
regard, the recently developed phase field crystal (PFC)
method offers a unique opportunity.

7. Phase field crystal method

The PFC method was developed by Elder et al. [330,331]
to model solid transformations at diffusive timescales, but at
a spatial resolution comparable to atomistic simulations [5],
incorporating elastic and plastic deformation effects. A sim-
ilar formulation based on the atomic density field theory gen-
eralized from the concentration wave approach to atomic
ordering [332–334] was proposed by Jin and Khachaturyan
[335]. The PFC method utilizes one particle density

qðx; tÞ �
XN

i¼1

dðx� xiðtÞÞ
* +

ð9Þ

as the order parameter field, where N is the number of par-
ticles and {xi(t)} are discrete particle positions at time t.
Prior to PFC there was a long history of using single par-
ticle density and higher order density correlation functions
in the study of simple fluids [336,337]. It can be shown that,
parallel to the DFT for electrons [15,338], that the free en-
ergy of a classical discrete particles system at thermal equi-
librium is a function of its single particle density [339–346].
Van der Waals first formulated a theory of liquid–gas sur-
face tension based on q value and density gradient rq
[162,337,344,347]. For solids, Kirkwood and Monroe initi-
ated the study of solid–liquid interfaces based on a contin-
uous density field [348,349]. Ramakrishnan and Yussouff
solved this at freezing temperatures by formulating the
problem as a grand canonical ensemble and assuming the
direct correlation functions in the crystal and liquid phases
to be equal at equal temperature and chemical potential
[350] (instead of at equal average density, as assumed by
Kirkwood and Monroe [348,349]). Following Ramakrish-

nan and Yussouff’s breakthrough, important work was
done along the line of DFT for solids by Haymet and Ox-
toby [351–354] and Curtin and Ashcroft [355,356].

The connection between PFC and atomistic simulations
was illustrated by Tupper and Grant [357]. Clearly, some
kind of ensemble or time averaging is necessary on the
right-hand side of Eq. (9), denoted by h�i, so it can limit
towards a spatially smooth field by overlaying snapshots
of d functions, similarly to Born’s “probability wave” inter-
pretation of quantum mechanical wave functions.

With time averaging of atomistic trajectories the outcome
of Eq. (9) clearly depends on the time averaging (coarse
graining) window Dt. In simple monatomic metallic liquids
at the melting temperature the self-diffusivity
Ds 
 10�8 m2 s�1: assuming a nearest neighbor distance of
r0 = 2 Å, it will take about tD = r0

2/Ds 
 4 ps for an atom
to diffuse past its original nearest neighbor position. On
the other hand, the bond stretch “vibrational period” is esti-
mated to be tV 
 2p(mr0

2/EB)1/2, where m is particle
mass 
 100 amu and EB is the binding energy due to the
interatomic potential �1 eV, in which case tV 
 1 ps. Thus
diffusive and vibrational motions of an atom in simple liq-
uids cannot be easily separated, and it does not make sense
to choose Dt as between tD and tV. So one is likely to choose
Dt� tD 
 tV in order to obtain a smooth field, in which case
the individuality of atoms in a one particle density field is lost
due to diffusive mixing. With Dt� tD 
 tV the resulting
q(x, t) must be highly uniform if inspected at an atomic
wavelength of�r0. So, in a quiescent simple fluid, if far from
its interfaces, where q(x, t) can change abruptly [16,358],
q(x, t) will be a uniform q0. This is the case for a simple mon-
atomic fluid or a “structureless fluid” [359].

The situation with time averaging is quite different for
solids, which can be crystalline or amorphous. In simple
monatomic metallic crystals at their corresponding melting
temperature the self-diffusivity Ds 
 10�12 m2 s�1, so
tD = r0

2/Ds 
 40 ns, while tV is still �1 ps. Furthermore,
Ds drops rapidly with decreasing temperature. So tD� tV,
and there is a clear separation of timescales between vibra-
tional and diffusive motion of an atom in the crystalline
bulk. The same also holds true for most amorphous solids.
One thus has a choice of picking either

tD � Dt� tV; ð10aÞ
or

Dt� tD � tV: ð10bÞ

for time averaging in Eq. (9).
In crystals, for both Eqs. (10a) and (10b), if diffusion

occurs by mechanisms that preserve the long-range order
of the vibrational site lattice (termed a “network” in
[360,361]), such as by vacancy exchange, then q(x, t) result-
ing from Eq. (9) will preserve strong modulations at atomic
wavelengths. Indeed, the Bragg peaks and Debye–Waller
factor [362,363] from diffraction experiments directly corre-
spond to such q(x, t) modulation spacing and width,
respectively. There may still be coarse grained t-depen-
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dence in q(x, t), arising from transformations in solids
occurring on much slower timescales than Dt, which would
correspond to diffraction pattern changes in in-situ diffrac-
tion experiments [364,365], but the basic “wavy features” of
q(x, t), i.e. long-range order, is robustly preserved with
either Eq. (10a) or (10b) coarse graining. One can thus
hope to formulate a free energy function based on such
robust features of q(x, t) with no ambiguity.

For amorphous solids the time averaging in Eq. (9) is a
more sensitive issue, because diffusion can occur by mech-
anisms that locally destroy the site “network” [360,361].
That is to say, mass transport may not only occur by
exchange of matter between “sites”, but the vibrational
sites themselves could be removed or added. In such case
Eqs. (10a) and (10b) time averaging does make a difference.
In Eq. (10a) the “wavy features” of q(x, t) is preserved, as
one coarse grains over vibrational motion only, whereas in
Eq. (10b) one runs the risk of losing the wavy features, as in
liquids. Thus, in order to formulate a free energy function
for amorphous materials, which does not have long-range
order, one must state from which time averaging scheme,
Eqs. (10a), (10b), the dependent field q(x, t) is derived,
since the two schemes lead to fundamentally different
q(x, t). The difference in the free energies can be shown
to be proportional to the residual entropy of the glass. This
subtlety can be important even for crystalline solids, since
the in-plane atomic structures of many crystal grain bound-
aries and crystal–crystal phase boundaries may be regarded
as “random” or “amorphous”, with no long-range order.
The spatial and temporal domains of validity of PFC sim-
ulation have been explored based on the Poisson bracket
formalism by Majaniemi et al. [366,367].

For systems at complete equilibrium, assuming ergodic-
ity, time averaging is the same as ensemble averaging, and
one will only obtain a time-independent field q(x) from Eq.
(9), and formulate a free energy function with it. However,
most often we are interested in materials kinetics problems
where a local equilibrium is reached at some small length-
scale but the system is out of equilibrium at some coarser
length scales. To monitor the evolution of q(x, t) one thus
needs to formulate an equivalent time-dependent density
function theory (TDDFT) [368] for classical discrete parti-
cles system. There is no reason to suspect that for weakly
out of equilibrium systems Onsager’s linear response and
the Cahn–Hilliard formalism for conserved fields [361]
would not work for the density field. So the evolution
equation formulated by Elder et al. [330,331] is conven-
tional, as is the typical phase field approach. The novelty
of the PFC method lies in its adaptation of the atomic den-
sity wave [335,369] as the order parameter, and its possible
connection with atomistic simulations [357].

In order to simulate crystals the PFC free energy func-
tion F[q] needs to stabilize long-range order or “wavy fea-
tures” of q(x, t) inside bulk crystals. This means that in the
reciprocal space certain k-wavevector density fluctuations
need to be soft. This was achieved in Elder [331] by taking
a free energy term of the form:

k
Z

dxq k2
o þr2

� �2
q=2; ð11Þ

and fitting it to the pair correlation function (structure fac-
tor) of liquid Ar close to its melting point, measured by
neutron diffraction. In two-dimensions a triangular close-
packed crystal lattice was thus stabilized. The elastic con-
stants were calculated for the perfect crystal. Then, grain
boundaries were created and relaxed and grain boundary
energies were evaluated as a function of the misorientation
angle, which was shown to follow the Read–Shockley rela-
tion [370] with energy cusps (singularities). This suggested
the existence of crystallographic dislocations in PFC. In-
deed, when simulating epitaxial crystal growth from a li-
quid dislocations were found to nucleate spontaneously,
and then move along slip planes to reduce the elastic strain
energy in the film. Crack nucleation and propagation were
also demonstrated [331].

The detailed processes of edge dislocation glide, climb
and annihilation were examined by PFC in two-dimensions
[371]. The energetic behavior of an edge dislocation was
found to follow that suggested by the Peierls–Nabarro
model [1,232], with an increasing dislocation core width cor-
responding to a reduced Peierls barrier. However, the
dynamics of dislocation motion are not entirely realistic,
in the sense that they corresponds to an over-damped sys-
tem. The inertia effect, which comes from the second order
€xi term in the Newtonian equations of motion, is entirely
absent in Berry et al. [371], since the Onsager linear response
formalism [361] is first order in time. This difficulty arises
because the coarse graining timescale Dt in Eqs. (10a) and
(10b) is much larger than the elastodynamic response time
of an atomic resolution system, which is tV. This deficiency
was later addressed by Stefanovic et al. [372] for situations
where the elastodynamic effects are deemed important, for
instance correlated defect propagation where isothermal
transition state theory [373] breaks down. Dislocation emis-
sion and absorption from grain boundaries, as well as grain
rotation and grain boundary migration, have been demon-
strated for stressed PFC nanocrystals [374].

To connect with coarser scale continuum descriptions
there have been attempts to derive renormalization group
reduction [195,375–377] of PFC with adaptive meshing
[378], where a density wave (complex amplitude) “envelop
function” is used to represent the mostly perfect crystalline
regions within each grain. This method has been applied to
study grain growth. Stress-driven morphological instabili-
ties such as the Asaro–Tiller–Grinfeld instability of strained
films [77,87,311,322–324] has also been studied by PFC [379]
at diffusive timescales. Continuum elasticity prediction of
the unstable wavelength (leading to island formation) was
obtained, within the limit of small misfit stresses.

Efforts to improve the stability and efficiency of PFC
simulations are currently underway [380,381]. It should
be noted that compared with traditional molecular dynam-
ics simulations, while the temporal scales reached by PFC
are superior, the usage of a planewave basis to resolve
the atomic density wave at sub-angstrom resolution makes
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simulating a large number of atomic sites in three-dimen-
sions quite expensive [382]. Suppose that 20 grid points
are required to realistically resolve the atomic density of
one vibrational site in one direction – as the Lindemann
melting criterion [383] states that a crystal should collapse
when the Debye–Waller broadening [362,363] reaches more
than �15% of the nearest neighbor bond length – 8000 grid
points are required to satisfactorily represent one atomic
site and its relatively narrow density peak in three-dimen-
sions. Suppose that 106 solid atoms are simulated, the typ-
ical size in present molecular dynamics simulations, it
would require 64 GB of memory just to store q(x, t). The
usage of a planewave basis in current PFC simulations is
predicated by high order gradient operators contained in
terms like Eq. (11), which is more efficiently treated in reci-
procal space than in real space, similarly to the historical
development of prevalent DFT codes for electronic struc-
ture calculations. However, the physical meaning of Eq.
(11) is less transparent, and good fitting to the liquid struc-
ture factor can only be achieved for certain k-ranges and
temperatures that may not be representative of solid-state
energetics at low temperatures. For the above conceptual
and algorithmic reasons it is perhaps advantageous to also
develop a completely real space counterpart to PFC, using
a Gaussian basis set instead of a planewave basis [384]. A
Gaussian-based method under development is called diffu-
sive molecular dynamics (DMD), which is based on a more
thorough treatment of the vibrational free energy at the
low temperature limit, in contrast to the present PFC for-
mulation, which may be regarded as a high temperature
expansion around the liquid–solid coexistence temperature.
The mesh-free algorithm of DMD is much closer to tradi-
tional atomistic simulations of discrete atoms than contin-
uum field-based simulations. Efforts are also being made to
utilize realistic interatomic potentials, such as embedded
atom method (EAM) potentials, and the microscopic diffu-
sional mobility database, which is predicated upon local
bonding environments [384].

To summarize, the PFC method is a promising tech-
nique operating on diffusive timescales and at atomic spa-
tial resolution. It turns the traditional view of fields and
particles on its head: most researchers in the mechanics
of materials community would regard continuum fields as
“larger” than a particle, but a particle is “larger” than
the field in PFC. The method has demonstrated great
potential in treating defects and deformation, especially
coupled diffusional–displacive processes. Significant devel-
opments are still needed to turn this promising method into
a materials-specific simulation tool.

8. Concluding remarks

Continuum approaches will remain important at the
nanoscale and atomic scales. Rather than competing with
atomistic simulations, they embrace the discrete atom nat-
ure of matter and attempt the best matched-asymptote con-
tinuum description, in the spirit of the gradient

thermodynamics approach of van der Waals to Cahn.
The goal is to achieve particle–field unity out of duality.
The following unique features have made the phase field
approach a useful means in modeling microstructural evo-
lution, especially when there are complex chemical and
structural interactions:

� direct utilization of ab initio energetics (rather than
through a proxy of fitted interatomic potentials);
� incorporation of thermochemical and diffusive kinetics

databases;
� a simplified and parameterized view of complicated

processes.

Plasticity and fracture in real materials are often com-
plex as a rule, rather than as an exception. While a certain
amount of simplification is desirable, the complexities can
only be boiled down to an irreducible set. The phase field
approach, incorporating diffusive and displacive degrees
of freedom, and carefully calibrated against atomistic sim-
ulations for model interatomic potentials, are well suited to
treat these chemical and microstructural complexities in an
integrated manner.
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