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Body-centered cubic structure
CSD 
Central symmetry deviation
EAM 
Embedded Atom Method potential
FS  
Finnis–Sinclair potential
MD 
Molecular dynamics simulation
NMR 
Nuclear Magnetic Resonance experiment
nn 
Nearest-neighbor distance
NPT
 
 
Ensemble in which number of atoms,

pressure and temperature are constant
NVE 
Ensemble in which number of atoms,

volume and total energy are constant
NVT
 
 
Ensemble in which number of atoms,

volume and temperature are constant
PBC  
Periodic boundary condition
1.09.1 Introduction

A concept that is fundamental to the foundations of
Comprehensive Nuclear Materials is that of microstruc-
tural evolution in extreme environments. Given
Comprehensive Nuclear Mater
the current interest in nuclear energy, an emphasis
on how defects in materials evolve under conditions
of high temperature, stress, chemical reactivity, and
radiation field presents tremendous scientific and
technological challenges, as well as opportunities,
across the many relevant disciplines in this important
undertaking of our society. In the emerging field of
computational science, which may simply be defined
as the use of advanced computational capabilities
to solve complex problems, the collective contents
of Comprehensive Nuclear Materials constitute a set of
compelling and specific materials problems that can
benefit from science-based solutions, a situation that
is becoming increasingly recognized.1–4 In discus-
sions among communities that share fundamental
scientific capabilities and bottlenecks, multiscale
modeling and simulation is receiving attention for
its ability to elucidate the underlying mechanisms
governing the materials phenomena that are critical
to nuclear fission and fusion applications. As illu-
strated in Figure 1, molecular dynamics (MD) is an
atomistic simulation method that can provide details
of atomistic processes in microstructural evolution.
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As the method is applicable to a certain range of
length and time scales, it needs to be integrated
with other computational methods to span the length
and time scales of interest to nuclear materials.9

The aim of this chapter is to discuss in elemen-
tary terms the key attributes of MD as a principal
method of studying the evolution of an assembly of
atoms under well-controlled conditions. The intro-
ductory section is intended to be helpful to students
and nonspecialists. We begin with a definition of
MD, followed by a description of the ingredients that
go into the simulation, the properties that one can
calculate with this approach, and the reasons why the
method is unique in computational materials research.
We next examine results of case studies obtained using
an open-source code to illustrate how one can study
the structure and elastic properties of a perfect crystal
in equilibrium and the mobility of an edge dislocation.
We then return to Figure 1 to provide a perspective
on the potential as well as the limitations of MD in
multiscale materials modeling and simulation.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

1.09.2 Defining Classical MD
Simulation Method

In the simplest physical terms, MD may be charac-
terized as a method of ‘particle tracking.’ Operation-
ally, it is a method for generating the trajectories of a
system of N particles by direct numerical integration

 
 
 
 
 
 
 
 
 
 

Figure 1 MD in the multiscale modeling framework of
dislocation microstructure evolution. The experimental

micrograph shows dislocation cell structures in

Molybdenum.5 The other images are snapshots from

computer models of dislocations.6–8
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of Newton’s equations of motion, with appropriate
specification of an interatomic potential and suitable
initial and boundary conditions. MD is an atomistic
modeling and simulation method when the particles
in question are the atoms that constitute the material
of interest. The underlying assumption is that one
can treat the ions and electrons as a single, classical
entity. When this is no longer a reasonable approxi-
mation, one needs to consider both ion and electron
motions. One can then distinguish two versions of
MD, classical and ab initio, the former for treating
atoms as classical entities (position and momentum)
and the latter for treating separately the electronic
and ionic degrees of freedom, where a wave func-
tion description is used for the electrons. In this
chapter, we are concerned only with classical MD.
The use of ab initio methods in nuclear materials
research is addressed elsewhere (Chapter 1.08, Ab
Initio Electronic Structure Calculations for
Nuclear Materials). Figure 2 illustrates the MD sim-
ulation system as a collection of N particles contained
in a volume O. At any instant of time t, the particle
coordinates are labeled as a 3N-dimensional vector,
r3N ðtÞ � fr1ðtÞ; r2ðtÞ; . . . ; rN ðtÞg, where ri repre-
sents the three coordinates of atom i. The simula-
tion proceeds with the system in a prescribed initial
configuration, r3N ðt0Þ, and velocity, _r3N ðt0Þ, at time
t ¼ t0. As the simulation proceeds, the particles evolve
through a sequence of time steps, r3N ðt0Þ ! r3N ðt1Þ !
r3N ðt2Þ ! � � � ! r3N ðtLÞ, where tk ¼ t0 þ kDt ,
k¼ 1,2, . . .,L, andDt is the time step ofMD simulation.
The simulation runs for L number of steps and covers
a time interval of LDt . Typical values of L can range
from 104 to 108 and Dt � 10�15s. Thus, nominal MD
simulations follow the system evolution over time inter-
vals not more than �1–10 ns.
Vj (t)

rj (t)

x

y

N

z

Figure 2 MD simulation cell is a system of N particles
with specified initial and boundary conditions. The output of

the simulation consists of the set of atomic coordinates

r3NðtÞ and corresponding velocities (time derivatives).
All properties of the MD simulation are then derived from

the trajectories, {r3N (t),_r3N(t)}.
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The simulation system has a certain energy E, the
sum of the kinetic and potential energies of the
particles, E¼ KþU, where K is the sum of individual
kinetic energies

K ¼ 1

2
m
XN
j¼1

vj � vj ½1�

and U ¼ Uðr3N Þ is a prescribed interatomic interac-
tion potential. Here, for simplicity, we assume that
all particles have the same mass m. In principle,
the potential U is a function of all the particle coordi-
nates in the system if we allow each particle to interact
with all the others without restriction. Thus, the
dependence of U on the particle coordinates can be
as complicated as the system under study demands.
However, for the present discussion we introduce
an approximation, the assumption of a two-body or
pair-wise additive interaction, which is sufficient to
illustrate the essence of MD simulation.

To find the atomic trajectories in the classical
version of MD, one solves the equations governing
the particle coordinates, Newton’s equations of motion
in mechanics. For our N-particle system with potential
energy U, the equations are

m
d2rj

dt 2
¼ �rrj U ðr3N Þ; j ¼ 1; . . . ;N ½2�

where m is the particle mass. Equation [2] may look
deceptively simple; actually, it is as complicated as the
famous N-body problem that one generally cannot
solve exactly when N is >2. As a system of coupled
second-order, nonlinear ordinary differential equations,
eqn [2] can be solved numerically, which is what is
carried out in MD simulation.

Equation [2] describes how the system (particle
coordinates) evolves over a time period from a given
initial state. Suppose we divide the time period of inter-
est into many small segments, each being a time step of
sizeDt . Given the system conditions at some initial time
t0, r

3N ðt0Þ, and _r3N ðt0Þ, integration means we advance
the system successively by increments of Dt ,

r3N ðt0Þ ! r3N ðt1Þ ! r3N ðt2Þ ! � � � ! r3N ðtLÞ ½3�
where L is the number of time steps making up the
interval of integration.

How do we numerically integrate eqn [3] for a
given U ? A simple way is to write a Taylor series
expansion,

rj ðt0 þ DtÞ ¼ rj ðt0Þ þ vj ðt0ÞDt
þ 1=2aj ðt0ÞðDtÞ2 þ � � �

½4�
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and a similar expansion for rj ðt0 � DtÞ. Adding the
two expansions gives

rj ðt0 þ DtÞ ¼ � rj ðt0 � DtÞ þ 2rj ðt0Þ
þ aj ðt0ÞðDtÞ2 þ � � �

½5�

Notice that the left-hand side of eqn [5] is what we
want, namely, the position of particle j at the next
time step t0þDt. We already know the positions at t0
and the time step before, so to use eqn [5] we need
the acceleration of particle j at time t0. For this we
substitute Fj ðr3N ðt0ÞÞ=m in place of acceleration
aj ðt0Þ, where Fj is just the right-hand side of
eqn [2]. Thus, the integration of Newton’s equations
of motion is accomplished in successive time incre-
ments by applying eqn [5]. In this sense, MD can be
regarded as a method of particle tracking where one
follows the system evolution in discrete time steps.
Although there are more elaborate, and therefore
more accurate, integration procedures, it is impor-
tant to note that MD results are as rigorous as classical
mechanics based on the prescribed interatomic poten-
tial. The particular procedure just described is called
the Verlet (leapfrog)10 method. It is a symplectic
integrator that respects the symplectic symmetry of
the Hamiltonian dynamics; that is, in the absence of
floating-point round-off errors, the discrete mapping
rigorously preserves the phase space volume.11,12

Symplectic integrators have the advantage of long-
term stability and usually allow the use of larger time
steps than nonsymplectic integrators. However, this
advantage may disappear when the dynamics is not
strictly Hamiltonian, such as when some thermostat-
ing procedure is applied. A popular time integrator
used in many early MD codes is the Gear predictor–
corrector method13 (nonsymplectic) of order 5. Higher
accuracy of integration allows one to take a larger
value of Dt so as to cover a longer time interval for
the same number of time steps. On the other hand,
the trade-off is that one needs more computer mem-
ory relative to the simpler method.

A typical flowchart for an MD code11 would look
something like Figure 3. Among these steps, the part
that is the most computationally demanding is the
force calculation. The efficiency of an MD simulation
therefore depends on performing the force calculation
as simply as possible without compromising the phys-
ical description (simulation fidelity). Since the force is
calculated by taking the gradient of the potential U,
the specification of U essentially determines the com-
promise between physical fidelity and computational
efficiency.
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Figure 3 Flow chart of MD simulation.
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1.09.3 The Interatomic Potential

This is a large and open-ended topic with an exten-
sive literature.14 It is clear from eqn [2] that the
interaction potential is the most critical quantity in
MD modeling and simulation; it essentially controls
the numerical and algorithmic simplicity (or complex-
ity) of MD simulation and, therefore, the physical
fidelity of the simulation results. Since Chapter 1.10,
Interatomic Potential Development is devoted to
interatomic potential development, we limit our dis-
cussion only to simple classical approximations to
Uðr1; r2; . . . ; rN Þ.

Practically, all atomistic simulations are based on
the Born–Oppenheimer adiabatic approximation,
which separates the electronic and nuclear motions.15

Since electrons move much more quickly because
of their smaller mass, during their motion one can
treat the nuclei as fixed in instantaneous positions,
or equivalently the electron wave functions follow the
nuclear motion adiabatically. As a result, the electrons
are treated as always in their ground state as the
nuclei move.
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For the nuclear motions, we consider an expansion
of U in terms of one-body, two-body, . . . N-body
interactions:

Uðr3N Þ ¼
XN
j¼1

V1ðrj Þ þ
XN
i<j

V2ðri ; rj Þ

þ
XN
i<j<k

V3ðri ; rj ; rkÞ þ � � �
½6�

The first term, the sum of one-body interactions, is
usually absent unless an external field is present
to couple with each atom individually. The second
sum is the contribution of pure two-body interactions
(pairwise additive). For some problems, this term
alone is sufficient to be an approximation to U. The
third sum represents pure three-body interactions,
and so on.
1.09.3.1 An Empirical Pair Potential Model

A widely adopted model used in many early MD
simulations in statistical mechanics is the Lennard-
Jones (6-12) potential, which is considered a reason-
able description of van der Waals interactions between
closed-shell atoms (noble gas elements, Ne, Ar, Kr,
and Xe). This model has two parameters that are
fixed by fitting to selected experimental data. One
should recognize that there is no one single physi-
cal property that can determine the entire potential
function. Thus, using different data to fix the model
parameters of the same potential form can lead to
different simulations, making quantitative compar-
isons ambiguous. To validate a model, it is best to
calculate an observable property not used in the
fitting and compare with experiment. This would
provide a test of the transferability of the potential,
a measure of robustness of the model. In fitting
model parameters, one should use different kinds
of properties, for example, an equilibrium or ther-
modynamic property and a vibrational property
to capture the low- and high-frequency responses
(the hope is that this would allow a reasonable inter-
polation over all frequencies). Since there is consid-
erable ambiguity in what is the correct method
of fitting potential models, one often has to rely on
agreement with experiment as a measure of the
goodness of potential. However, this could be mis-
leading unless the relevant physics is built into
the model.

For a qualitative understanding of MD essentials,
it is sufficient to assume that the interatomic
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potential U can be represented as the sum of two-
body interactions

Uðr1; . . . ; rN Þ ffi
X
i<j

V ðrij Þ ½7�

where rij � jri � rj j is the separation distance
between particles i and j. V is the pairwise additive
interaction, a central force potential that is a func-
tion of only the scalar separation distance between
the two particles, rij . A two-body interaction energy
commonly used in atomistic simulations is the
Lennard-Jones potential

V ðrÞ ¼ 4e½ðs=rÞ12 � ðs=rÞ6� ½8�
where e and s are the potential parameters that set the
scales for energy and separation distance, respectively.
Figure 4 shows the interaction energy rising sharply
when the particles are close to each other, showing a
minimum at intermediate separation and decaying to
zero at large distances. The interatomic force

FðrÞ � �dV ðrÞ
dr

½9�

is also sketched in Figure 4. The particles repel each
other when they are too close, whereas at large separa-
tions they attract. The repulsion can be understood as
arising from overlap of the electron clouds, whereas
the attraction is due to the interaction between the
induced dipole in each atom. The value of 12 for
the first exponent in V(r) has no special significance,
as the repulsive term could just as well be replaced by
an exponential. The value of 6 for the second expo-
nent comes from quantum mechanical calculations
(the so-called London dispersion force) and therefore

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V(r)

F(r)
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Figure 4 The Lennard–Jones interatomic potential V(r).
The potential vanishes at r ¼ s and has a depth equal to�e.
Also shown is the corresponding force F(r) between the two

particles (dashed curve), which vanishes at r0 ¼ 21=6s.
At separations less or greater than r0, the force is repulsive

or attractive, respectively. Arrows at nn and 2nn indicate

typical separation distances of nearest and second nearest

neighbors in a solid.
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is not arbitrary. Regardless of whether one uses eqn
[8] or some other interaction potential, a short-range
repulsion is necessary to give the system a certain
size or volume (density), without which the particles
will collapse onto each other. A long-range attraction
is also necessary for cohesion of the system, without
which the particles will not stay together as they must
in all condensed states of matter. Both are necessary
for describing the physical properties of the solids
and liquids that we know from everyday experience.

Pair potentials are simple models that capture the
repulsive and attractive interactions between atoms.
Unfortunately, relatively few materials, among them
the noble gases (He, Ne, Ar, etc.) and ionic crystals
(e.g., NaCl), can be well described by pair potentials
with reasonable accuracy. For most solid engineering
materials, pair potentials do a poor job. For example,
all pair potentials predict that the two elastic con-
stants for cubic crystals, C12 and C44, must be equal to
each other, which is certainly not true for most cubic
crystals. Therefore, most potential models for engi-
neering materials include many-body terms for an
improved description of the interatomic interaction.
For example, the Stillinger–Weber potential16 for
silicon includes a three-body term to stabilize the
tetrahedral bond angle in the diamond-cubic struc-
ture. A widely used typical potential for metals is
the embedded-atom method17 (EAM), in which the
many-body effect is introduced in a so-called embed-
ding function.
1.09.4 Book-keeping Matters

Our simulation system is typically a parallelepiped
supercell in which particles are placed either in a very
regular manner, as in modeling a crystal lattice, or in
some random manner, as in modeling a gas or liquid.
For the simulation of perfect crystals, the number of
particles in the simulation cell can be quite small, and
only certain discrete values, such as 256, 500, and 864,
should be specified. These numbers pertain to a face-
centered-cubic crystal that has four atoms in each unit
cell. If our simulation cell has l unit cells along each
side, then the number of particles in the cube will
be 4l3. The above numbers then correspond to cubes
with 4, 5, and 6 cells along each side, respectively.

Once we have chosen the number of particles we
want to simulate, the next step is to choose the system
density we want to study. Choosing the density is
equivalent to choosing the system volume since
density r ¼ N=O, where N is the number of particles
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and O is the supercell volume. An advantage of
the Lennard-Jones potential is that one can work in
dimensionless reduced units. The reduced density rs3

has typical values of about 0.9–1.2 for solids and
0.6–0.85 for liquids. For reduced temperature kBT=e,
the values are 0.4–0.8 for solids and 0.8–1.3 for liquids.
Notice that assigning particle velocities according
to the Maxwellian velocity distribution probability ¼
ðm=2pkBTÞ3=2exp½�mðv2xþv2y þv2zÞ=2kBT �dvx dvy dvz
is tantamount to setting the system temperature T.

For simulation of bulk properties (system with no
free surfaces), it is conventional to use the periodic

boundary condition (PBC). This means that the cubical
simulation cell is surrounded by 26 identical image
cells. For every particle in the simulation cell, there is
a corresponding image particle in each image cell.
The 26 image particles move in exactly the same
manner as the actual particle, so if the actual particle
should happen to move out of the simulation cell,
the image particle in the image cell opposite to the
exit side will move in and become the actual particle
in the simulation cell. The net effect is that par-
ticles cannot be lost or created. It follows then
that the particle number is conserved, and if the
simulation cell volume is not allowed to change,
the system density remains constant.

Since in the pair potential approximation, the
particles interact two at a time, a procedure is needed
to decide which pair to consider among the pairs
between actual particles and between actual and
image particles. The minimum image convention is a
procedure in which one takes the nearest neighbor
to an actual particle as the interaction partner,
regardless of whether this neighbor is an actual parti-
cle or an image particle. Another approximation that
is useful in keeping the computations to a manage-
able level is the introduction of a force cutoff distance
beyond which particle pairs simply do not see each
other (indicated as rc in Figure 4). In order to avoid a
particle interacting with its own image, it is necessary
to set the cutoff distance to be less than half of the
simulation cell dimension.

Another book-keeping device often used in MD
simulation is a neighbor list to keep track of who are the
nearest, second nearest, . . . neighbors of each particle.
This is to save time from checking every particle in the
system every time a force calculation is made. The list
can be used for several time steps before updating. In
low-temperature solidswhere the particles do notmove
very much, it is possible to do an entire simulation
without, or with only a few, updating, whereas in simu-
lation of liquids, updation every 5or 10 steps is common.
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If one uses a naı̈ve approach in updating the
neighbor list (an indiscriminate double loop over all
particles), then it will get expensive for more than a
few thousand particles because it involves N�N

operations for an N-particle system. For short-range
interactions, where the interatomic potential can be
safely taken to be zero outside of a cutoff rc, acceler-
ated approaches exist that can reduce the number of
operations from order-N2 to order-N. For example,
in the so-called ‘cell lists’ approach,18 one partitions
the supercell into many smaller cells, and each cell
maintains a registry of the atoms inside (order-N
operation). The cell dimension is chosen to be greater
than rc, so an atom cannot possibly interact with
more than one neighbor atom. This will reduce the
number of operations in updating the neighbor list
to order-N.

With the so-called Parrinello–Rahman method,19

the supercell size and shape can change dynamically
during a MD simulation to equilibrate the internal
stress with the externally applied constant stress. In
these simulations, the supercell is generally non-
orthogonal, and it becomes much easier to use the
so-called scaled coordinates sj to represent particle
positions. The scaled coordinates sj are related to the
real coordinates rj through the relation, rj ¼ H � sj ,
when both rj and sj are written as column vectors.
H is a 3� 3 matrix whose columns are the three
repeat vectors of the simulation cell. Regardless of
the shape of the simulation cell, the scaled coordi-
nates of atoms can always be mapped into a unit
cube, ½0; 1Þ � ½0; 1Þ � ½0; 1Þ. The shape change of
the simulation cell with time can be accounted for
by including the matrix H into the equation of
motion. A ‘cell lists’ algorithm can still be worked
out for a dynamically changing H, which minimizes
the number of updates.13

For modeling ionic crystals, the long-range elec-
trostatic interactions must be treated differently
from short-ranged interactions (covalent, metallic,
van der Waals, etc.). This is because a brute-force
evaluation of the electrostatic interaction energies
involves computation between all ionic pairs,
which is of the order N2, and becomes very time-
consuming for large N. The so-called Ewald sum-
mation20,21 decomposes the electrostatic interaction
into a short-ranged component, plus a long-ranged
component, which, however, can be efficiently
summed in the reciprocal space. It reduces the
computational time to order N3/2. The particle mesh
Ewald22–24 method further reduces the computational
time to order N log N.
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1.09.5 MD Properties

1.09.5.1 Property Calculations

Let hAi denote a time average over the trajectory
generated by MD, where A is a dynamical variable,
A(t). Two kinds of calculations are of common inter-
est, equilibrium single-point properties and time-
correlation functions. The first is a running time
average over the MD trajectories

hA i ¼ lim
t!1

1

t

ðt
o

dt 0Aðt 0Þ ½10�

with t taken to be as long as possible. In terms of
discrete time steps, eqn [10] becomes

hA i ¼ 1

L

XL
k¼1

AðtkÞ ½11�

where L is the number of time steps in the trajectory.
The second is a time-dependent quantity of the form

hAð0ÞBðtÞi ¼ 1

L0
XL0
k¼1

AðtkÞBðtk þ tÞ ½12�

where B is in general another dynamical variable,
and L0 is the number of time origins. Equation [12]
is called a correlation function of two-dynamical vari-
ables; since it is manifestly time dependent, it is able to
represent dynamical information of the system.

We give examples of both types of averages by
considering the properties commonly calculated in
MD simulation.

U ¼
XN
i<j

V ðrij Þ
* +

potential energy ½13�

T ¼ 1

3NkB

XN
i¼1

mivi � vi
* +

temperature ½14�

P¼ 1

3O

XN
i¼1

mivi �vi �
X
j>i

@V ðrij Þ
@rij

rij

0
@

1
A* +

pressure ½15�

gðrÞ¼ 1

r4pr 2N

XN
i¼1

X
j 6¼i

dðr �jri � rj jÞ
* +

radial distribution function

½16�

MSDðtÞ¼ 1

N

XN
i¼1

jriðtÞ� rið0Þj2

mean squared displacement

½17�
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vð0Þ �vðtÞh i¼ 1

N

XN
i¼1

1

L0
XL0
k¼1

viðtkÞ �viðtkþ tÞ

velocity autocorrelation function

½18�

sab ¼
X
i

va

O

� �
siab; siab

¼ 1

va
�mviavibþ

X
j>i

@V ðrij Þ
@rij

rijarijb

rij

* +

Virial stress tensor

½19�

In eqn [19], va is the average volume of one atom,
via is the a-component of vector vi, and rija is the
a-component of vector ri � rj . The interest in writing
the stress tensor in the present form is to suggest that
the macroscopic tensor can be decomposed into
individual atomic contributions, and thus siab is
known as the atomic level stress25 at atom i. Although
this interpretation is quite appealing, one should be
aware that such a decomposition makes sense only
in a nearly homogeneous system where every atom
‘owns’ almost the same volume as every other atom.
In an inhomogeneous system, such as in the vicinity
of a surface, it is not appropriate to consider such
decomposition. Both eqns [15] and [19] are written
for pair potential models only. A slightly different
expression is required for potentials that contain
many-body terms.26
1.09.5.2 Properties That Make MD Unique

A great deal can be said about why MD is a useful
simulation technique. Perhaps the most impor-
tant statement is that, in this method, one follows the
atomic motions according to the principles of classical
mechanics as formulated by Newton and Hamilton.
Because of this, the results are physically as meaningful
as the potential U that is used. One does not have to
apologize for anyapproximation in treating theN-body
problem. Whatever mechanical, thermodynamic, and
statistical mechanical properties that a system of N
particles should have, they are all present in the
simulation data. Of course, how one extracts these
properties from the simulation output – the atomic
trajectories – determines how useful the simulation is.
We can regard MD simulation as an ‘atomic video’ of
the particle motion (which can be displayed as a
movie), and how to extract the information in a scien-
tifically meaningful way is up to the viewer. It is to be
expected that an experienced viewer can get much
more useful information than an inexperienced one.
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The above comments aside, we present here
the general reasons why MD simulation is useful (or
unique). These are meant to guide the thinking of
the nonexperts and encourage them to discover
and appreciate the many significant aspects of this
simulation technique.

(a) Unified study of all physical properties. Using MD,
one can obtain the thermodynamic, structural,
mechanical, dynamic, and transport properties
of a system of particles that can be studied in a
solid, liquid, or gas. One can even study chemical
properties and reactions that are more difficult
and will require using quantum MD, or an
empirical potential that explicitly models charge
transfer.27

(b) Several hundred particles are sufficient to simulate bulk

matter. Although this is not always true, it is rather
surprising that one can get quite accurate ther-
modynamic properties such as equation of state
in this way. This is an example that the law of
large numbers takes over quickly when one can
average over several hundred degrees of freedom.

(c) Direct link between potential model and physical proper-

ties. This is useful from the standpoint of funda-
mental understanding of physical matter. It is also
very relevant to the structure–property correla-
tion paradigm in material science. This attribute
has been noted in various general discussions
of the usefulness of atomistic simulations in
material research.28–30

(d) Complete control over input, initial and boundary

conditions. This is what provides physical insight
into the behavior of complex systems. This is
also what makes simulation useful when com-
bined with experiment and theory.

(e) Detailed atomic trajectories. This is what one obtains
from MD, or other atomistic simulation tech-
niques, that experiment often cannot provide.
For example, it is possible to directly compute
and observe diffusion mechanisms that otherwise
may be only inferred indirectly from experi-
ments. This point alone makes it compelling for
the experimentalist to have access to simulation.

We should not leave this discussion without reminding
ourselves that there are significant limitations to MD
as well. The two most important ones are as follows:

(a) Need for sufficiently realistic interatomic potential

functions U. This is a matter of what we really
know fundamentally about the chemical binding
of the system we want to study. Progress is being
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made in quantum and solid-state chemistry and
condensed-matter physics; these advances will
make MD more and more useful in understand-
ing and predicting the properties and behavior of
physical systems.

(a) Computational-capability constraints. No computers
will ever be big enough and fast enough. On the
other hand, things will keep on improving as far
as we can tell. Current limits on how big and how
long are a billion atoms and about a microsecond
in brute force simulation. A billion-atom MD
simulation is already at the micrometer length
scale, in which direct experimental observations
(such as transmission electron microscopy) are
available. Hence, the major challenge in MD
simulations is in the time scale, because most of
the processes of interest and experimental obser-
vations are at or longer than the time scale of a
millisecond.
1.09.6 MD Case Studies

In the following section, we present a set of case
studies that illustrate the fundamental concepts dis-
cussed earlier. The examples are chosen to reflect
the application of MD to mechanical properties of
crystalline solids and the behavior of defects in
them. More detailed discussions of these topics,
especially in irradiated materials, can be found in
Chapter 1.11, Primary Radiation Damage For-
mation and Chapter 1.12, Atomic-Level Level
Dislocation Dynamics in Irradiated Metals.
1.09.6.1 Perfect Crystal

Perhaps the most widely used test case for an atomis-
tic simulation program, or for a newly implemented
potential model, is the calculation of equilibrium
lattice constant a0, cohesive energy Ecoh, and bulk
modulus B. Because this calculation can be performed
using a very small number of atoms, it is also a widely
used test case for first-principle simulations (see
Chapter 1.08, Ab Initio Electronic Structure Cal-
culations for Nuclear Materials). Once the equilib-
rium lattice constants have been determined, we can
obtain other elastic constants of the crystal in addition
to the bulk modulus. Even though these calculations
are not MD per se, they are important benchmarks that
practitioners usually perform, before embarking on
MD simulations of solids. This case study is discussed
in Section 1.09.6.1.1.
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Following the test case at zero temperature, MD
simulations can be used to compute the mechanical
properties of crystals at finite temperature. Before
computing other properties, the equilibrium lattice
constant at finite temperature usually needs to be
determined first, to account for the thermal expan-
sion effect. This case study is discussed in Section
1.09.6.1.2.

1.09.6.1.1 Zero-temperature properties

In this test case, let us consider a body-centered
cubic (bcc) crystal of Tantalum (Ta), described by
the Finnis–Sinclair (FS) potential.31 The calculations
are performed using the MDþþ program. The source
code and the input files for this and subsequent
test cases in this chapter can be downloaded
from http://micro.stanford.edu/wiki/Comprehensive_
Nuclear_Materials_MD_Case_Studies.

The cut-off radius of the FS potential for Ta is
4.20 Å. To avoid interaction between an atom with its
own periodic images, we consider a cubic simulation
cell whose size is much larger than the cut-off radius.
The cell dimensions are 5[100], 5[010], and 5[001]
along x, y, and z directions, and the cell contains
N¼ 250 atoms (because each unit cell of a bcc
crystal contains two atoms). PBC are applied in all
three directions. The experimental value of the equi-
librium lattice constant of Ta is 3.3058 Å. Therefore,
to compute the equilibrium lattice constant of this
potential model, we vary the lattice constant a from
3.296 to 3.316 Å, in steps of 0.001 Å. The potential
energy per atom E as a function of a is plotted in
Figure 5. The data can be fitted to a parabola. The
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location of the minimum is the equilibrium lattice
constant, a0¼ 3.3058 Å. This exactly matches the
experimental data because a0 is one of the fitted
parameters of the potential. The energy per atom at
a0 is the cohesive energy, Ecoh¼�8.100 eV, which is
another fitted parameter. The curvature of parabolic
curve at a0 gives an estimate of the bulk modulus,
B¼ 197.2GPa. However, this is not a very accurate
estimate of the bulk modulus because the range of a is
still too large. For a more accurate determination of
the bulk modulus, we need to compute the E(a) curve
again in the range of ja � a0j<10�4 Å. The curvature
of the E(a) curve at a0 evaluated in the second calcu-
lation gives B¼ 196.1GPa, which is the fitted bulk
modulus value of this potential model.31

When the crystal has several competing phases
(such as bcc, face-centered cubic, and hexagonal-
closed-packed), plotting the energy versus volume
(per atom) curves for all the phases on the same
graph allows us to determine the most stable phase
at zero temperature and zero pressure. It also allows
us to predict whether the crystal will undergo a phase
transition under pressure.32

Other elastic constants besides B can be computed
using similar approaches, that is, by imposing a
strain on the crystal and monitoring the changes in
potential energy. In practice, it is more convenient
to extract the elastic constant information from the
stress–strain relationship. For cubic crystals, such as
Ta considered here, there are only three independent
elastic constants, C11, C12, and C44. C11 and C12 can
be obtained by elongating the simulation cell in the
x-direction, that is, by changing the cell length into
L ¼ ð1þ exxÞ � L0, where L0 ¼ 5a0 in this test case.
This leads to nonzero stress components sxx, syy, szz,
as computed from the Virial stress formula [19],
as shown in Figure 6 (the atomic velocities are
zero because this calculation is quasistatic). The
slope of these curves gives two of the elastic con-
stants C11¼ 266.0GPa and C12¼ 161.2GPa. These
results can be compared with the bulk modulus
obtained from potential energy, due to the relation
B ¼ ðC11 þ 2C12Þ=3 ¼ 196:1GPa.

C44 can be obtained by computing the shear
stress sxy caused by a shear strain exy. Shear strain
exy can be applied by adding an off-diagonal element
in matrix H that relates scaled and real coordinates
of atoms.

H ¼
L0 2exyL0 0
0 L0 0
0 0 L0

2
4

3
5 ½20�
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The slope of the shear stress–strain curve gives the
elastic constant C44¼ 82.4GPa.

In this test case, all atoms are displaced according
to a uniform strain, that is, the scaled coordinates
of all atoms remain unchanged. This is correct for
simple crystal structures where the basis contains
only one atom. For complex crystal structures with
more than one basis atom (such as the diamond-cubic
structure of silicon), the relative positions of atoms in
the basis set will undergo additional adjustments when
the crystal is subjected to a macroscopically uniform
strain. This effect can be captured by performing
energy minimization at each value of the strain before
recording the potential energy or the Virial stress
values. The resulting ‘relaxed’ elastic constants corre-
spond well with the experimentally measured values,
whereas the ‘unrelaxed’ elastic constants usually
overestimate the experimental values.

1.09.6.1.2 Finite-temperature properties

Starting from the perfect crystal at equilibrium lattice
constant a0, we can assign initial velocities to the
atoms and perform MD simulations. In the simplest
simulation, no thermostat is introduced to regulate
the temperature, and no barostat is introduced to
regulate the stress. The simulation then corresponds
to the NVE ensemble, where the number of particles
N, the cell volume V (as well as shape), and total
energy E are conserved. This simulation is usu-
ally performed as a benchmark to ensure that the
numerical integrator is implemented correctly and
that the time step is small enough.

The instantaneous temperature T inst is defined
in terms of the instantaneous kinetic energy K
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through the relation K � ð3N=2ÞkBT inst, where kB
is Boltzmann’s constant. Therefore, the velocity can
be initialized by assigning random numbers to each
component of every atom and scaling them so that
T inst matches the desired temperature. In practice,
T inst is usually set to twice the desired temperature
for MD simulations of solids, because approximately
half of the kinetic energy flows to the potential
energy as the solids reach thermal equilibrium.
We also need to subtract appropriate constants from
the x, y, z components of the initial velocities to make
sure the center-of-mass linear momentum of the
entire cell is zero. When the solid contains surfaces
and is free to rotate (e.g., a nanoparticle or a
nanowire), care must be taken to ensure that the
center-of-mass angular momentum is also zero.

Figure 7(a) plots the instantaneous temperature
as a function of time, for an MD simulation starting
with a perfect crystal and T inst¼ 600K, using the
Velocity Verlet integrator13 with a time step of
Dt¼ 1 fs. After 1 ps, the temperature of the simulation
cell is equilibrated around 300K. Due to the finite
time step Dt, the total energy E, which should be
a conserved quantity in Hamiltonian dynamics,
fluctuates during the MD simulation. In this simula-
tion, the total energy fluctuation is <2� 10–4 eV per
atom, after equilibrium has been reached (t> 1 ps).
There is also zero long-term drift of the total energy.
This is an advantage of symplectic integrators11,12

and also indicates that the time step is small enough.
The stress of the simulation cell can be computed by

averaging the Virial stress for time between 1 and 10ps.
A hydrostatic pressure P � �ðsxx þ syy þ szzÞ=3 ¼
1:33	 0:01GPa is obtained. The compressive stress
develops because the crystal is constrained at the
zero-temperature lattice constant. A convenient way
to find the equilibrium lattice constant at finite tem-
perature is to introduce a barostat to adjust the vol-
ume of the simulation cell. It is also convenient
to introduce a thermostat to regulate the temperature
of the simulation cell. When both the barostat and
thermostat are applied, the simulation corresponds
to the NPT ensemble.

The Nose–Hoover thermostat11,33,34 is widely
used for MD simulations in NVT and NPT ensem-
bles. However, care must be taken when applying it
to perfect crystals at medium-to-low temperatures,
in which the interaction between solid atoms is close
to harmonic. In this case, the Nose–Hoover thermo-
stat has difficulty in correctly sampling the equi-
librium distribution in phase space, as indicated by
periodic oscillation of the instantaneous temperature.

 
 
 
 
 

ials (2012), vol. 1, pp. 249-265 
 



0.5 1 1.5 2 2.5
0

200

400

600

Tin
st

 (K
)

t (ps)
0

(a)

3
0

1

2

p
 (G

P
a)

0

(b)

20 40 60 80 100

250

300

350

Tin
st

 (K
)

t (ps)

−2

0

2

p
 (G

P
a)

Figure 7 (a) Instantaneous temperature Tinst and Virial pressure p as functions of time in an NVE simulation with initial
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The Nose–Hoover chain35 method has been devel-
oped to address this problem.

The Parrinello–Rahman19 method is a widely
used barostat for MD simulations. However, periodic
oscillations in box size are usually observed during
equilibration of solids. This oscillation can take a very
long time to die out, requiring an unreasonably long
time to reach equilibrium (after which meaningful
data can be collected). A viscous damping term is
usually added to the box degree of freedom to accel-
erate the speed of equilibration. Here, we avoid the
problem by performing a series of NVT simulations,
each one lasting for 1 ps using the Nose–Hoover
chain method with Velocity Verlet integrator and
Dt¼ 1 fs. Before starting each new simulation, the
simulation box is subjected to an additional hydro-
static elastic strain of e ¼ hPi=B0 , where hPi is the
average Virial pressure of the previous simulation,
where B0 ¼ 2000GPa is an empirical parameter.

The instantaneous temperature and Virial pressure
during 100 of these NVT simulations are plotted in
Figure 7(b). The instantaneous temperature fluctuates
near the desired temperature (300K) nearly from the
beginning of the simulation. The Virial pressure is well
relaxed to zero at t¼ 20 ps. The average box size from
50 to 100 ps is L¼ 16.5625 Å, which is larger than
the initial value of 16.5290 Å. This means that the
normal strain caused by thermal expansion at 300K is
exx¼ 0.00203. Hence, the coefficient of thermal expan-
sion is estimated to be a ¼ exx=T ¼ 6:8� 10�6K�1:35

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.09.6.2 Dislocation

Dislocations are line defects in crystals, and their
motion is the carrier for plastic deformation of
Comprehensive Nuclear Mater
crystals under most conditions (T<Tm/2).
36,37 The

defects produced by irradiation (such as vacancy and
interstitial complexes) interact with dislocations,
and this interaction is responsible for the change in
the mechanical properties by irradiation (such as
embrittlement).38 MD simulations of dislocation
interaction with other defects are discussed in detail
in Chapter 1.12, Atomic-Level Level Dislocation
Dynamics in Irradiated Metals. Here, we describe
a more basic case study on the mobility of an edge
dislocation in Ta. In Section 1.09.6.2.1, we describe
the method of computing its Peierls stress, which
is the critical stress to move the dislocation at zero
temperature. In Section 1.09.6.2.2, we describe how
to compute the mobility of this dislocation at finite
temperature by MD.

1.09.6.2.1 Peierls stress at zero temperature

Dislocations in the dominant slip system in bcc
metals have h111i=2 Burgers vectors and {110} slip
planes. Here, we consider an edge dislocation with
Burgers vector b ¼ 1=2½111� (along x-axis), slip plane
normal ½110� (along y-axis), and line direction ½1 12�
(along z-axis). To prepare the atomic configuration,
we first create a perfect crystal with dimensions
30½111�, 40½110�, 2½ 1 12� along the x-, y-, z-axes.
We then remove one-fourth of the atomic layers
normal to the y-axis to create two free surfaces,
as shown in Figure 8(a).

We introduce an edge dislocation dipole into the
simulation cell by displacing the positions of all
atoms according to the linear elasticity solution of
the displacement field of a dislocation dipole. To
satisfy PBC, the displacement field is the sum of the
contributions from not only the dislocation dipole
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inside the cell, but also its periodic images. Care must
be taken to remove the spurious term caused by the
conditional convergence of the sum.26,40–42 Because
the Burgers vector b is perpendicular to the cut-
plane connecting the two dislocations in the dipole,
atoms separated from the cut-plane by <jbj=2 in the
x-direction need to be removed. The resulting struc-
ture contains 21 414 atoms. The structure is subse-
quently relaxed to a local energy minimum with zero
average stress. Because one of the two dislocations in
the dipole is intentionally introduced into the vacuum
region, only one dislocation remains after the relaxa-
tion, as shown in Figure 8(b).

The dislocation core is identified by central
symmetry analysis,13 which characterizes the degree
of inversion-symmetry breaking. In Figure 8(b), only
atoms with a central symmetry deviation (CSD)
parameter larger than 1.5 Å2 are plotted. Atoms with
CSD parameter between 0.6 and 6 Å2 appear at the
center of the cell and are identified with the disloca-
tion core. Atoms with a CSD parameter between
10 and 20 Å2 appear at the top and bottom of the
cell and are identified with the free surfaces.

The edge dislocation thus created will move along
the x-direction when the shear stress sxy exceeds
a critical value. To compute the Peierls stress, we
apply shear stress sxy by adding external forces on
surface atoms. The total force on the top surface
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atoms points in the x-direction and has magnitude
of Fx ¼ sxyLxLz . The total force on the bottom sur-
face atoms has the same magnitude but points in
the opposite direction. These forces are equally
distributed on the top (and bottom) surface atoms.
Because we have removed some atoms when creating
the edge dislocation, the bottom surface layer has
fewer atoms than the top surface layer. As a result,
the external force on each atom on the top surface is
slightly lower than that on each atom on the bottom
surface.

We apply shear stress sxy in increments of 1MPa
and relax the structure using the conjugate gradient
algorithm at each stress. The dislocation (as identified
by the core atoms) does not move for sxy< 27MPa
but moves in the x-direction during the relaxation at
sxy¼ 28MPa. Therefore, this simulation predicts
that the Peierls stress of edge dislocation in Ta (FS
potential) is 28	 1MPa. The Peierls stress computed
in this way can depend on the simulation cell size.
Therefore, we will need to repeat this calculation for
several cell sizes to obtain a more reliable prediction
of the Peierls stress. There are other boundary
conditions that can be applied to simulate disloca-
tions and compute the Peierls stress, such as PBCs in
both x- and y-directions,42 and the Green’s function
boundary condition.44 Different boundary conditions
have different size dependence on the numerical
error of the Peierls stress.

The simulation cell in this study contains two free
surfaces and one dislocation. This is designed to
minimize the effect of image forces from the bound-
ary conditions on the computed Peierls stress. If the
surfaces were not created, the simulation cell would
have to contain at least two dislocations so that the
total Burgers vector content was zero. On application
of the stress, the two dislocations in the dipole would
move in opposite directions, and the total energy
would vary as a function of their relative position.
This would create forces on the dislocations, in addi-
tion to the Peach–Koehler force from the applied
stress, and would lead to either overestimation or
underestimation of the Peierls stress. On the contrary,
the simulation cell described above has only one
dislocation, and as it moves to an equivalent lattice
site in the x-direction, the energy does not change
due to the translational symmetry of the lattice. This
means that, by symmetry, the image force on the
dislocation from the boundary conditions is iden-
tically zero, which leads to more accurate Peierls
stress predictions. However, when the simulation
cell is too small, the free surfaces in the y-direction
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and the periodic images in the x-direction can still
introduce (second-order) effects on the critical stress
for dislocation motion, even though they do not
produce any net force on the dislocation.

1.09.6.2.2 Mobility at finite temperature

The relaxed atomic structure from Section 1.09.6.2.1
at zero stress can be used to construct initial
conditions for MD simulations for computing dislo-
cation mobility at finite temperature. The dislocation
in Section 1.09.6.2.1 is periodic along its length
(z-axis) with a relatively short repeat distance
ð2½1 12�Þ. In a real crystal, the fluctuation of the
dislocation line can be important for its mobility.
Therefore, we extend the simulation box length by
five times along z-axis by replicating the atomic
structure before starting the MD simulation. Thus,
the MD simulation cell has dimensions 30[111],
40½110�, 10½1 12� along the x, y, z axes, respectively,
and contains 10 7070 atoms.

In the following section, we compute the disloca-
tion velocity at several shear stresses at T¼ 300K.
For simplicity, the simulation in which the shear
stress is applied is performed under the NVTensem-
ble. However, the volume of the simulation cell needs
to be adjusted from the zero-temperature value to
accommodate the thermal expansion effect. The
cell dimensions are adjusted by a series of NVT
simulations using an approach similar to that used in
Section 1.09.6.1.2, except that exx, eyy, ezz are allowed
to adjust independently. As we have found in Section
1.09.6.1.2 that for a perfect crystal, the thermal strain
at 300K is e¼ 0.00191, exx , eyy , ezz are initialized to this
value at the beginning of the equilibration.
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After the equilibration for 10 ps, we perform
MD simulation under different shear stresses sxy
up to 100MPa. The simulations are performed
under the NVT chain method using the Velocity
Verlet algorithm with Dt¼ 1 fs. The shear stress is
applied by adding external forces on surface atoms, in
the same way as in Section 1.09.6.2.1. The atomic
configurations are saved periodically every 1 ps. For
each saved configuration, the CSD parameter45 of
each atom is computed. Due to thermal fluctuation,
certain atoms in the bulk can also have CSD values
exceeding 0.6 Å2. Therefore, only the atoms whose
CSD value is between 4.5 and 10.0 Å2 are classified as
dislocation core atoms.

Figure 9(a) plots the average position hxi of dis-
location core atoms as a function of time at different
applied stresses. Due to PBC in x-direction, it is
possible to have certain core atoms at the left edge
of the cell with other core atoms at the right edge of
the cell, when the dislocation core moves to the cell
border. In this case, we need to ensure that all atoms
are within the nearest image of one another, when
computing their average position in x-direction.
When the configurations are saved frequently
enough, it is impossible for the dislocation to move
by more than the box length in the x-direction since
the last time the configuration was saved. Therefore,
the average dislocation position hxi at a given snap-
shot is taken to be the nearest image of the average
dislocation position at the previous snapshot so
that the hxiðtÞ plots in Figure 9(a) appear as smooth
curves.

Figure 9(a) shows that all the hxiðtÞ curves
at t¼ 0 have zero slope and nonzero curvature,
0
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indicating that the dislocation is accelerating. Even-
tually, hxi becomes a linear function of t, indicating
that the dislocation has settled down into steady-state
motion. The dislocation velocity is computed from
the slope of the hxiðtÞ in the second half of the time
period. Figure 9(b) plots the dislocation velocity
obtained in this way as a function of the applied
shear stress. The dislocation velocity appears to be
a linear function of stress in the low stress limit,
with mobility M ¼ v=ðsxy � bÞ ¼ 2:6� 104 Pa�1 s�1.
Dislocation mobility is one of the important material
input parameters to dislocation dynamics (DD)
simulations.46–48

For accurate predictions of the dislocation veloc-
ity and mobility, MD simulations must be performed
for a long enough time to ensure that steady-state
dislocation motion is observed. The simulation cell
size also needs to be varied to ensure that the
results have converged to the large cell limit. For
large simulation cells, parallel computing is usually
necessary to speed up the simulation. The LAMMPS
program49 (http://lammps.sandia.gov) developed at
Sandia National Labs is a parallel simulation program
that has been widely used for MD simulations of
solids.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

1.09.7 Perspective

The previous sections give a hands-on introduc-
tion to the basic techniques of MD simulation.
More involved discussions of the technical aspects
may be found in the literature.30 Here, we offer
comments on several enduring attributes of MD
from the standpoint of benefits and drawbacks,
along with an outlook on future development.

MD has an unrivalled ability for describing
material geometry, that is, structure. The Greek phi-
losopher Democritus (ca. 460 BCE–370 BCE) recog-
nized early on that the richness of our world arose
from an assembly of atoms. Even without very sophis-
ticated interatomic potentials, a short MD simulation
run will place atoms in quite ‘reasonable’ locations
with respect to each other so that their cores do not
overlap. This does not mean that the atomic positions
are correct, as there could be multiple metastable
configurations, but it provides reasonable guesses.
Unlike some other simulation approaches, MD is
capable of offering real geometric surprises, that is
to say, providing new structures that the modeler
would never have expected before the simulation
run. For this reason, visualization of atomistic
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structure at different levels of abstraction is very
important, and there are several pieces of free soft-
ware for this purpose.13,50,51

As the ball-and-stick model of DNA by Watson
and Crick52 was nothing but an educated guess
based on atomic radii and bond angles, MD simula-
tions can be regarded as ‘computational Watson and
Crick’ that are potentially powerful for structural
discovery. This remarkable power is both a blessing
and a curse for modelers, depending on how it is
harnessed. Remember that Watson and Crick had
X-ray diffraction data against which to check their
structural model. Therefore, it is very important to
check the MD-obtained structures against experiments
(diffraction, high-resolution transmission electron
microscopy, NMR, etc.) and ab initio calculations
whenever one can.

Another notable allure of MD simulations is that
it creates a ‘perfect world’ that is internally consis-
tent, and all the information about this world is
accessible. If MD simulation is regarded as a numeri-
cal experiment, it is quite different from real experi-
ments, which all practitioners know are ‘messy’ and
involve extrinsic factors. Many of these extrinsic fac-
tors may not be well controlled, or even properly
identified, for instance, moisture in the carrier gas,
initial condition of the sample, the effects of vibra-
tion, thermal drift, and so on. The MD ‘world’ is
much smaller, with perfectly controlled initial condi-
tions and boundary conditions. In addition, real
experiments can only probe a certain aspect, a small
subset of the properties, while MD simulation gives
the complete information. When the experimental
result does not work out as expected, there could be
extraneous factors, such as a vacuum leak, impurity
in the reagents, and so on that could be very difficult
to trace back. In contrast, when a simulation gives a
result that is unexpected, there is always a way to
understand it, because one has complete control of
the initial conditions, boundary conditions, and all
the intermediate configurations. One also has access
to the code itself. A simulation, even if a wrong one
(with bugs in the program), is always repeatable.
Not so with actual experiments.

It is certainly true that any interatomic potential
used in an MD simulation has limitations, which
means the simulation is always an approximation of
the real material. It also can happen that the limita-
tions are not as serious as one might think, such as in
establishing a conceptual framework for fundamental
mechanistic studies. This is because the value of MD
is much greater than simply calculating material
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parameters. MD results can contribute a great deal
towards constructing a conceptual framework and
some kind of analytical model. Once the conceptual
framework and analytical model are established, the
parameters for a specific material may be obtained by
more accurate ab initio calculations or more readily
by experiments. It would be bad practice to regard
MD simulation primarily as a black box that can
provide a specific value for some property, without
a deeper analysis of the trajectories and interpreta-
tion in light of an appropriate framework. Such a
framework, external to the MD simulation, is often
broadly applicable to a variety of materials; for exam-
ple, the theory and expressions of solute strengthen-
ing in alloys based on segregation in the dislocation
core. If solute strengthening occurs in a wide variety
of materials, then it should also occur in ‘computer
materials.’ Indeed, the ability to parametrically tune
the interatomic potential, to see which energetic
aspect is more important for a specific behavior or
property, is a unique strength of MD simulations
compared with experiments. One might indeed
argue that the value of science is to reduce the com-
plex world to simpler, easier-to-process models. If
one wants only all the unadulterated complexity,
one can just look at the world without doing anything.
Thus, the main value of simulation should not be in
the final result but also in the process, and the role of
simulations should be to help simplify and clarify, not
just to reproduce, the complexity. According to this
view, the problem with a specific interatomic poten-
tial is not that it does not work, but that it is not
known which properties the potential can describe
and which it cannot, and why.

There are also fundamental limitations in the MD
simulation method that deserve comment. The algo-
rithm is entirely classical, that is, it is Newtonian
mechanics. As such, it misses relativistic and quantum
effects. Below the Debye temperature,53 quan-
tum effects become important. The equipartition
theorem from classical statistical mechanics, stating
that every degree of freedom possesses kBT/2 kinetic
energy, breaks down for the high-frequency modes at
low temperatures. In addition to thermal uncertain-
ties in a particle’s position and momentum, there are
also superimposed quantum uncertainties (fluctua-
tions), reflected by the zero-point motion. These
effects are particularly severe for light-mass elements
such as hydrogen.54 There exist rigorous treatments
for mapping the equilibrium thermodynamics of
a quantum system to a classical dynamics system.
For instance, path-integral molecular dynamics
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(PIMD)55,56 can be used to map each quantum particle
to a ring of identical classical particles connected by
Planck’s constant-dependent springs to represent quan-
tum fluctuations (the ‘multi-instance’ classical MD
approach). There are also approaches that correct for
the quantum heat capacity effect with single-instance
MD.53,57 For quantum dynamical properties outside of
thermal equilibrium, or even for evaluating equilibrium
time-correlation functions, the treatment based on an
MD-like algorithm becomes even more complex.58–60

It is well recognized in computational material
research that MD has a time-scale limitation. Unlike
viscous relaxation approaches that are first order
in time, MD is governed by Newtonian dynamics
that is second order in time. As such, inertia and
vibration are essential features of MD simulation.
The necessity to resolve atomic-level vibrations
requires the MD time step to be of the order
picosecond/100, where a picosecond is the charac-
teristic time period for the highest-frequency oscilla-
tion mode in typical materials, and about 100 steps
are needed to resolve a full oscillation period with
sufficient accuracy. This means that the typical
timescale of MD simulation is at the nanosecond
level, although with massively parallel computer and
linear-scaling parallel programs such as LAMMPS,49

one may push the simulations to microsecond to
millisecond level nowadays. A nanosecond-level
MD simulation is often enough for the convergence
of physical properties such as elastic constants, ther-
mal expansion, free energy, thermal conductivity,
and so on. However, chemical reaction processes,
diffusion, and mechanical behavior often depend on
events that are ‘rare’ (seen at the level of atomic
vibrations) but important, for instance, the emission
of a dislocation from grain boundary or surface.61

There is no need to track atomic vibrations, impor-
tant as they are, for time periods much longer than
a nanosecond for any particular atomic configura-
tion. Important conceptual and algorithmic advances
were made in the so-called Accelerated Molecular
Dynamics approaches,62–66 which filter out repetitive
vibrations and are expected to become more widely
used in the coming years.

. . . Above all, it seems to me that the human mind

sees only what it expects.

These are the words of Emilio Segré (Noble Prize in
Physics, 1959, for the discovery of the antiproton) in a
historical account of the discovery of nuclear fission
by O. Hahn and F. Strassmann,67 which led to a Nobel
Prize in Chemistry, 1944, for Hahn. Prior to the
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discovery, many well-known scientists had worked on
the problem of bombarding uranium with neutrons,
including Fermi in Rome, Curie in Paris, and Hahn
and Meitner in Berlin. All were looking for the pro-
duction of transuranic elements (elements heavier
than uranium), and none were open minded enough
to recognize the fission reaction. As atomistic simula-
tion can be regarded as an ‘atomic camera,’ it would
be wise for anyone who wishes to study nature
through modeling and simulation to keep an open
mind when interpreting simulation results.
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