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Slip corona surrounding bilayer graphene nanopore†
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The electronic and magnetic properties of bilayer graphene (BLG) depend on the stacking order

between the two layers. We introduce a new conceptual structure of ‘‘slip corona’’ on BLG, which is a

transition region between A–A stacking close to a nanopore composed of bilayer edges (BLEs) and A–

B stacking far away. For an extremely small nanopore (diameter Dpore < �5 nm), both atomistic

simulations and a continuummodel reach consistent descriptions on the shape and size of this ‘‘corona’’

(diameter �50 nm), which is much larger than the width of the typical dislocation core (�1 nm) in 3D

metals or the nanopore itself, due to the weak van der Waals interactions and low interlayer shear

resistance between two adjacent layers of graphene. The continuum model also suggests that the width

of this ‘‘corona’’ from the BLE to the A–B stacking area would increase asDpore increases and converge

to �40 nm when Dpore is more than �80 nm. This large stacking transition region provides a new

avenue for tailoring BLG properties.
I. Introduction

Compared with monolayer graphene (MLG) which is a zero

band-gap semimetal, bilayer graphene (BLG) has attracted a lot

of attention recently for possible device applications since it

possesses a band gap in the presence of an external electric

field.1,2 The properties of BLG were interpreted mostly under

the assumption that the stacking of two graphene layers takes

the form of an A–B or Bernal stacking as shown in Fig. 1(a), the

most common stacking order in graphite.3–6 However, in 2009,

it was found by Suenaga and Iijima et al. through high-reso-

lution transmission electron microscopy (HRTEM),7 confirmed

by Huang and Li et al.8,9 that bilayer edges (BLEs) or ‘‘half-

nanotubes’’10 as shown in Fig. 1(b) can change the stacking of

BLG from A–B to A–A, where the two layers are stacked on

top of one another (Fig. 1(c)). Because the electronic and

magnetic properties of BLG depend on the stacking order, this

A–A stacking can result in abnormal Berry’s phases and

quantum Hall effects.9,11–14 BLE (half-nanotube) has no

dangling bonds and similar chemical inertness to a full nano-

tube at room temperature, because fundamentally it is formed

by folding graphene like full nanotubes, but rotating graphene
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by p instead of 2p. Unlike full nanotubes though, BLE has

highly monodisperse folding chirality/edge inclination7,8 (pure

zigzag or armchair only) due to the p-rotation.15 For device

applications, BLEs or half-nanotubes are advantageous because

their atomic structure is well-defined, with atomically sharp and

very straight edges experimentally, in contrast to the atomically

rough monolayer edge (MLE) with irregular shapes.15 Thus,

BLE on BLG provides a new avenue for graphene-based nano-

devices16 with exceptionally stable and well-defined edges to

yield uniform and controllable device behavior.10 However, this

integration brings an interesting new phenomenon regarding the

stacking order: BLEs prefer A–A stacking due to the atomic

structures of 1D edge lines,9 while infinite BLG prefers A–B

stacking due to the van der Waals interaction proportional to

the 2D area, so a stacking transition from A–A near BLEs to

A–B far away should happen on relatively large BLG with

BLEs.

The nanopore on BLG with BLEs as pore edges, as shown in

Fig. 1(d), is a perfect system to study this stacking-order transi-

tion because of geometric simplicity and possible applications.

Graphene nanopores are structures of interest for energy

storage17,18 and molecule/ion selection;19,20 they can also be used

for sensing and detection, like DNA translocation sequencing

when graphene is used as the trans-electrode membrane.21–24

Most nanopores exist on multiple layers of graphene. With BLEs

forcing the A–B to A–A transition near the pore that changes

electronic and magnetic properties, details of the transition will

influence electronic detection of DNA and other potential

applications. Thus, it is necessary to obtain a comprehensive and

quantitative understanding of the stacking-order transition

associated with the BLG nanopore as shown in Fig. 1(d), which

is the main task of this paper. This stacking-order ‘‘topological
Nanoscale, 2012, 4, 5989–5997 | 5989

http://dx.doi.org/10.1039/c2nr31405c
http://dx.doi.org/10.1039/c2nr31405c
http://dx.doi.org/10.1039/c2nr31405c
http://dx.doi.org/10.1039/c2nr31405c
http://dx.doi.org/10.1039/c2nr31405c


Fig. 1 (a) Atomic structure of BLG in A–B stacking from top view; from (a) to (d) red and blue atoms are at the top and bottom layers, respectively. (b)

Atomic structure of a zigzag BLE with A–A stacking BLG near the edge. (c) Top view of BLG with A–A stacking so that two layers totally overlap. (d)

Hexagonal nanopore on BLG with BLE as edges. (e) Conceptual illustration of a diffuse slip displacement field between two graphene layers close to a

BLG nanopore like (d). Different colors of the top layer indicate the magnitude of the relative slip distance between two layers so that red/blue color on

the top layer means A–A/A–B stacking, respectively.
defect’’ is similar to the concept of dislocation in solid mechanics,

where the finite lattice disregistry in the dislocation core gradu-

ally decays to zero far from the core.25 However, different from

normal dislocation that is 1D line defect in the 3D lattice, our

new structure produces a 2D field of slip displacement between

the two graphene layers relative to normal A–B stacking

(considered to be the reference, or slip s ¼ 0). This field

surrounding the BLG nanopore as shown in Fig. 1(e), similar to

the corona surrounding the sun, is named ‘‘slip corona’’ on

multilayer graphene.

To simplify the mechanical analysis, we first assume the pore is

infinitesimal and approximate the pinning effect of the nanopore

as fixing just one atom pair from the top and bottom layers to be

A–A, with the stacking order relaxing to A–B far away from this

point, which can be named as a ‘‘point-constraint’’ case. Setting

this point as the origin (x ¼ 0), slip displacement s(x) can be

defined as

s(x ¼ 0) ¼ BA, s(x / N) ¼ 0 (1)

We will solve s(x) using both atomistic simulations and a

continuum Peierls–Nabarro (PN) model of the dislocation

core,26,27 which is based on the interlayer force obtained from

generalized stacking fault (GSF) energy calculations.26–28 Both

methods output almost the same displacement fields between the

two layers in the transition region, which behaves like a diffuse

and displacement-decaying ‘‘corona’’ surrounding the center

with a diameter of �50 nm. This 2D slip corona is much larger

than the dimension of the typical dislocation core in 3D solids,

which is just several �A or 1–2 nm in width.29,30 We extend the

analyses to real atomic structures of the hexagonal BLE
5990 | Nanoscale, 2012, 4, 5989–5997
nanopore, shown in Fig. 1(d), and similar slip corona fields are

obtained. At the end of this paper, we use the continuum model

to numerically solve the displacement fields of BLE nanopores

with various sizes and analyze how the size of the slip corona

changes correspondingly.
II. Methods

A. Molecular dynamics simulations

Molecular dynamics (MD) simulations were performed by a

LAMMPS Molecular Dynamics simulator with adaptive inter-

molecular reactive empirical bond order (AIREBO) potential,31

where the torsion term was included. For the ‘‘point-constraint’’

case, we constructed 2D BLG in periodic square supercells with

different side lengths (50 nm � 50 nm, 100 nm � 100 nm and

500 nm � 500 nm). In the supercell, there is one-to-one corre-

spondence with atoms in the top and bottom layers. The

coordination system is defined in Fig. 1(a) (x-axis is along the

armchair edge; y-axis is along the zigzag edge). The ideal A–B

stacking is taken as the reference system, so the displacement

between two layers is defined as zero everywhere in a perfect A–

B stacking BLG. On the other hand, for one atom pair from the

top and bottom layers in A–A stacking, the displacement is a

carbon–carbon bond length A0 along the x-axis, which is 1.40 �A

according to empirical interatomic potential,31 and 0 �A along

the y-axis. In the center of our investigated supercells, one atom

pair from the top and bottom layers was always fixed as A–A

stacking to simulate that there was an infinitesimal BLG

nanopore with infinitely high stiffness, so s(x ¼ 0, y ¼ 0) ¼
0 would not change under external stress. Initially, a gradually
This journal is ª The Royal Society of Chemistry 2012



varying trial s(x, y) was added to transform this A–A stacking

in the center to A–B stacking far away. To obtain the equilib-

rium distribution of the displacement field under this constraint,

conjugated gradient (CG) minimization was applied first for the

whole supercell while fixing A–A stacking for the atom pair at

center, followed by MD simulations with the same constraint

at 50 K for 100 picoseconds, and then followed by CG mini-

mization again. All atoms except the center atom pair were

relaxed in all three directions x, y, z. With the equilibrium

configuration, the displacement fields s(x,y) ¼ [u(x,y),v(x,y)],

where u/v is the displacement along x/y-axis defined according

to the reference system mentioned above, were obtained by

calculating the displacement vector of each atom at the top

layer relative to the atom in the corresponding pair at the

bottom layer.

In addition, we built 2D BLG periodic square supercells (50

nm � 50 nm and 100 nm � 100 nm) with the hexagonal nano-

pore as shown in Fig. 1(d). On this nanopore each edge is a zigzag

BLE and the length of each edge is 2.9 nm. All the atoms on the

BLE are in sp2 bonding state with three nearest neighbors, and

there is a decagon on each corner of the edge intersections. Then

we performed the same MD calculations as the above proce-

dures, except that all the atoms in the supercell were relaxed. The

displacement fields s(x,y) ¼ [u(x,y),v(x,y)] were also obtained

based on the equilibrium configurations.
B. Continuum model

The results from direct atomistic simulation depend on the

accuracy of empirical interatomic potential. Thus, it is instructive

also to build a continuum model of this 2D slip corona that can

output the analytical description of this displacement field. As in

the PN model, there are two types of forces involved in the slip

corona. One is the in-plane elastic force in monolayer graphene

due to Vs; the other is the nonlinear glue force between two layers

due to the GSF.26,27 At equilibrium, the net force on each point is

zero, so the governing equation can be built based on this

requirement. For the elastic force, we regard monolayer gra-

phene as an isotropic medium which can be described by two

parameters, E, the Young’s modulus and n, the Poisson ratio.

For the interlayer glue force, it depends on the interaction

potential between two layers. So we need to calculate GSF

energy for BLG, also called the g-surface, which is a 2D periodic

energy surface g(s) that describes the variation of interlayer

energy due to rigid shifts between the top and bottom layers.28

Thus BLG was built in a 5.80 � 5.86 nm2 supercell with 2688

atoms andmolecular static calculations were performed based on

AIREBO potential.31 Rigid displacements between two graphene

layers were applied and CG minimization was used to relax all

atoms only along the z-axis. GSF for a rigid shift s, g(s), is

calculated as

g(s) ¼ (En(s) � En0)/As (2)

here En(s) and En0 are the energies of the supercell with rigid shift

s¼ [u,v] and the supercell with perfect A–B stacking, respectively;

As is the area of supercell.

To build a mathematical model for an analytic description of

the displacement field, we need to get an approximate analytical
This journal is ª The Royal Society of Chemistry 2012
expression of GSF based on the above atomic calculations, from

which we can give an analytical expression of the glue force

between two layers in BLG. Because monolayer graphene is just

one atom-layer in thickness, technically, we consider the force

between two layers as the body force. Setting t as the effective

thickness of the graphene monolayer, the force along x-axis and

y-axis can be expressed as fx(u, v) ¼ �vug/t and fy(u, v) ¼ �vvg/t.

If we do not take wrinkles and ripples of graphene into account32

and regard this model as a plane stress problem,33 we can write

down the governing equations as8>>>>>>>>><
>>>>>>>>>:

v2u

vx2
þ 1� n

2

v2u

vy2
þ 1þ n

2

v2v

vxvy
� 2ð1� n2Þ

E
ð�vug=tÞ ¼ 0

v2v

vy2
þ 1� n

2

v2v

vx2
þ 1þ n

2

v2u

vxvy
� 2ð1� n2Þ

E
ð�vvg=tÞ ¼ 0

uðx; yÞ; vðx; yÞ/0 when jxj/N or jyj/N

uðx; yÞ ¼ B1ðx; yÞ; vðx; yÞ ¼ B2ðx; yÞ when ðx; yÞ˛vU

(3)

Umeans the domain of the equations; here the domain is infinite.

vU means the finite-value border of the domain. B1(x, y) and

B2(x, y) are two boundary value functions which are given

according to detailed structures. For simplification, here we just

build the continuum model of the ‘‘point-constraint’’ case, so vU

is the point located at the fixed pair, which is (0,0) in our refer-

ence, and the boundary value functions are B1(0, 0) ¼ A0

(carbon–carbon bond length) and B2(0, 0) ¼ 0 in this situation.

The solutions of these governing equations are shown in

Section III B.
III. Results and discussions

A. MD simulations of point-constraint case

The displacement fields of u and v in a 50 nm � 50 nm supercell

for the ‘‘point-constraint’’ case are plotted from top view in

Fig. 2. The results of a 100 nm � 100 nm supercell are also

plotted in the ESI, Fig. S1,† which are almost the same as those

in the smaller supercell. It shows that most displacements occur

along the x-axis surrounding the fixed center in the shape of an

ellipse with the size of tens of nanometers. u decreases from 1.40
�A (A–A stacking) at the center to �0 �A (A–B stacking) far from

the center. On the other hand, the displacements along the y-axis

are very small ( �0.05 �A < v < +0.05 �A) and can be divided into

four different sections with different signs; in each section, it

behaves like a liquid-drop shape; the magnitude of v decreases

from the maximum in the center (�0.05 �A) to 0 far from it.

Beside displacements along the x and y directions, there are also

undulations along the z-axis so that there are many ripples on

each layer of BLG with wavelength of several nanometers,32 thus

most atom pairs have total displacements oscillating near the

ideal value of A–B stacking (0 �A here). However, such ripples

would not affect x–y displacement fields significantly except for v

far from the center, where the magnitudes of v are very small

(between �0.01 �A and 0.01 �A).

To investigate the shape and size of the displacement field in

a more quantitative way, the total displacement of each atom

pair, dh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
, is projected on both x and y-axes, respec-

tively, and plotted in Fig. 2(c)–(e) for different supercells. First,

it shows that the maximum of d decreases from 1.40 to �0 �A
Nanoscale, 2012, 4, 5989–5997 | 5991



Fig. 2 (a) and (b) Displacement fields of BLG along the x-axis, u, and along the y-axis, v, in a 50 nm� 50 nm supercell with one central atom pair fixed

as A–A stacking. From (c) to (e) total displacements (d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
) projected on both x and y-axes in (c) 50 nm � 50 nm, (d) 100 nm � 100 nm and (e)

500 nm � 500 nm supercell, respectively.
smoothly, behaving like a displacement-decaying ‘‘volcano’’.

Second, it decays a little bit more quickly along the y-axis than

the x-axis, indicating that the contours of the displacement

field are elliptically shaped. Third, the size of such decaying

fields can be determined: in Fig. 2(c), the maximum d keeps

decreasing until the boundaries of the 50 nm � 50 nm super-

cell; the non-zero value of d at the boundary comes from the

ripple structure mentioned above. In Fig. 2(d), the slope of the

maximum d becomes almost zero when it is �25 nm away

from the center, beyond which d oscillates around �0 �A so

that BLG behaves like A–B stacking and the oscillations

originate from the ripples on two layers; in Fig. 2(e), such

transition of slopes for the maximum d also occurs at �25 nm

away from the center. From these convergent calculations,

it can be estimated that the transition region of the displace-

ment fields under single-point constraint of A–A stacking

in BLG has a diameter of �50 nm, much larger than the

typical dislocation core width (few nm) in 3D solids.29,30 It is

also significantly bigger than most graphene nanopores

themselves.
B. A continuum model of point-constraint case

GSF g(s) of BLG is obtained from eqn (2) based on AIREBO

potential and the result is plotted in Fig. 3(a), where GSF

behaves as energy-increasing circular contours surrounding the

displacement vector corresponding to A–A stacking of
5992 | Nanoscale, 2012, 4, 5989–5997
BLG. The maximum stacking fault energy at A–A stacking

is �5 mJ m�2, much smaller than the typical metallic system

(�160 mJ m�2 for Cu (ref. 34) and �200 mJ m�2 for Al (ref. 30)

for the unstable stacking) because it results from van der Waals

interactions between two layers. This result also qualitatively

supports the conclusion that the A–A stacking topological

defect should have a transition region much larger than its

counterparts in typical metallic systems. To build a mathemat-

ical model for an analytic description of the displacement field,

we use Fourier transform to get an approximate expression of

GSF (more details in the ESI, Section S2†). The result is shown

below:

gðu; vÞ ¼ 3A0
2Gt

2p2h0

�
cos2

�
2pu

3A0

� 2p

3

�

þ cos

�
2pvffiffiffi
3

p
A0

�
cos

�
2pu

3A0

� 2p

3

�
þ 1

4

� (4)

where A0 is the bond length of graphene and h0 is the inter-layer

distance; Gt is the effective inter-layer shear modulus. To fit the

g-surface obtained from interatomic potentials, we set Gt ¼
1.588 meV �A�3, A0 ¼ 1.40 �A and h0 ¼ 3.34 �A. As shown in

Fig. 3(b), the fitting g-surface matches the directly calculated

result very well.

According to eqn (4), the interlayer forces fx(u, v)¼�vug/t and

fy(u, v) ¼ �vvg/t are nonlinear, so it is difficult to get the analytic

solution of the governing equations. But when u, v are small,
This journal is ª The Royal Society of Chemistry 2012



Fig. 3 Generalized stacking fault energy (g-surface) of BLG. (a) GSF calculated by MD simulation. (b) GSF fitted by eqn (4). ZZ/AC means zigzag/

armchair.
which is reasonable for most of the displacement field far away

from the center as shown in Fig. 2, we can use the linear

perturbation forms of fx(u, v) and fy(u, v) instead of the exact

nonlinear expressions. Then the governing equations of eqn (3)

become8>>><
>>>:

v2u

vx2
þ 1� n

2

v2u

vy2
þ 1þ n

2

v2v

vxvy
� k0

2u ¼ �adðxÞdðyÞ
v2v

vy2
þ 1� n

2

v2v

vx2
þ 1þ n

2

v2u

vxvy
� k0

2v ¼ �bdðxÞdðyÞ
(5)

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gtð1� n2Þ

Eth0

s
and [a, b] is the reduced external

force, which produces a vector displacement at the origin that is

collinear with the force in this linearized isotropic system. Based

on these approximate linear interlayer forces, we can adopt

Green’s function methods to solve eqn (5). There are two

displacement fields (u and v), so there are four Green’s functions

to describe them, two of which are for u and v, respectively. Thus

the analytical expressions of the displacement fields can be

written in polar coordination as the following�
uðr; qÞ ¼ au1ðr; qÞ þ bu2ðr; qÞ
vðr; qÞ ¼ av1ðr; qÞ þ bv2ðr; qÞ (6)

Here u1/u2 and v1/v2 are the Green’s functions of the system due

to the reduced external force [a, b] at the origin. Mathematically,

eqn (6) can be easily solved by using Fourier transform of eqn (5)

(more details in the ESI, Section S3†). Their detailed forms are

written as follows:8>>>>>>>>>>><
>>>>>>>>>>>:

u1ðr; qÞ ¼ 1

2
Qðk0rÞ þ 1

2
cosð2qÞWðk0rÞ

v1ðr; qÞ ¼ 1

2
sinð2qÞW ðk0rÞ

u2ðr; qÞ ¼ 1

2
sinð2qÞW ðk0rÞ

v2ðr; qÞ ¼ 1

2
Qðk0rÞ � 1

2
cosð2qÞW ðk0rÞ

(7)
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>>>>>>>>>>>>>:
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K0ðk0rÞ
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2p
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2K0

�
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Mðk0rÞ

Mðk0rÞ ¼ K1ðk0rÞ
k0r

� 1

ðk0rÞ2
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ffiffiffiffiffiffiffiffiffiffiffi
2

1� n

r
(8)

Where K0($) and K1($) are modified Bessel functions of the

secondkind.As the linearized eqn (5) getsmore accurate compared

to the fully non-linear eqn (3) at small u, v, the solution above

means that in the far field, the slip corona decays exponentially.

For BLG, n ¼ 0.17,35 Et ¼ 13.89 eV �A�2,36 and Gt ¼ 1.588

meV �A�3 from the above GSF calculations, therefore we have

k0 ¼ 0.00814 �A�1. Under these parameters, the displacement

fields u(x, y) and v(x, y) from the analytical solution of eqn (5) are

plotted in Fig. 4. Compared with MD results in Fig. 2, the

displacements on both the x and y-axes behave almost the same:

the larger displacements on the x-axis decay smoothly far from

the center, and the smaller displacements on the y-axis behave as

the liquid-drop shape in four different sections with different

signs. Furthermore, we can find the diameter of this 2D ‘‘slip

corona’’ to be about 50 nm, which is exactly what we observed in

MD results. Thus, both qualitatively and quantitatively, MD

results and analytical solutions match each other. There are only

small differences in the center area (diameter �1 nm), which

results from inaccurate linear approximation of nonlinear forces

in eqn (5). Thus, for more elaborate study, we must take the

nonlinear effects and rippling effects into account to get a more

profound understanding. However, this linearized model is good

enough to provide some insight into this problem because of its

good agreement with MD results in most areas.

C. MD simulations of the BLG nanopore

Beside the ideal defect that only one atom pair is fixed as A–A in

a perfect BLG (‘‘point-constraint’’ case), a more realistic case
Nanoscale, 2012, 4, 5989–5997 | 5993



Fig. 4 Continuummodel solutions of BLGwith single atom pair fixed as A–A stacking. Contours of displacement fields along the x and y-axes, u and v,

are shown in (a and b). (c and d) are the total displacement fields (d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
) projected on the x and y-axes, respectively.
should be the finite-size nanopore with half-nanotube edges as

shown in Fig. 1(d). Near BLE there is A–A stacking order

locally,8,9 which would transform into A–B stacking far away.

However, the size of the transition area and detailed transition

mechanismmay be different from the previous ‘‘point-constraint’’

case because there is no artificial force to permanently fix A–A

stacking on the BLE. To clarify this effect, we make the same

hexagonal nanopore, Fig. 1(d) as described in Section II A. MD

simulationswere performed toobtain the equilibriumdistribution

of displacement fields under this configuration.

After relaxation, the atomic structure of the BLG nanopore is

plotted in Fig. 5(a) from the top view. Displacement fields along

the x- and y-axes are shown in Fig. 5(b) and (c), respectively.

Both of them are similar with those of ‘‘point-constraint’’ case

except for some deviations. First, for the u field, the maximum

value at the center is just �1.1 �A, less than the carbon–carbon

bond length (1.40 �A) in the ‘‘point-constraint’’ case. This is

because all the atoms are relaxed and there is no artificial force to

fix A–A stacking for any atom pair. On the other hand, this result

confirms that BLE makes BLG transition from A–B stacking to

the structure close to A–A stacking, even though it can not

produce perfect A–A stacking on BLE. Meanwhile, the v field

behaves almost the same as its counterpart in the ‘‘point-

constraint’’ case (liquid-drop shape in four sections with different
5994 | Nanoscale, 2012, 4, 5989–5997
signs), except the magnitude increases a little bit (0.08 �A), which

may also result from the fact that there is no artificial constraint.

Furthermore, the projections of total displacements on both the

x and y-axes are plotted in Fig. 5(d). It shows that the slope of

maximum displacements decays to almost zero at supercell

boundaries, suggesting that the size of transition region has a

diameter of�50 nm, also similar to that of the ‘‘point-constraint’’

case. We also calculate the case of the same hexagonal BLG

nanopore in a 100 nm � 100 nm supercell and obtain the same

size of the transition region, as shown in the ESI, Fig. S2.† This is

because the nanopore has a diameter �3 nm � 50 nm, so the

approximation of ‘‘point-constraint’’ should be correct to

describe most area of this slip corona structure. In summary, the

high degrees of similarity between the real BLG nanopore and

‘‘point-constraint’’ case support the validity of both solutions.
D. A continuum model of the BLG nanopore

All the above cases are based on the assumption that the size of

the nanopore is extremely small so that ‘‘point-constraint’’

approximation is reasonable.When the diameter of the nanopore

is comparable with the diameter of this slip corona (�50 nm), the

above solution may be not accurate. To illustrate the effect of the

nanopore size to slip corona, we use the continuum model to
This journal is ª The Royal Society of Chemistry 2012



Fig. 5 (a) Top view of the atomic structure of the hexagonal BLG nanopore composed of zigzag BLE after MD relaxation. Red and blue atoms are at

the top and bottom layer, respectively. (b and c) Displacement fields along the x (b) and y (c) axes of this hexagonal BLG nanopore in a 50 � 50 nm

supercell. (d) Total displacements projected on both the x and y-axes, respectively.
solve the displacement field surrounding the nanopore with

various sizes. In principle, we can apply Green’s functions of eqn

(5) for the BLE nanopore with arbitrary shapes and sizes. If

curve vC is the BLE surrounding the nanopore, the solution

based on Green’s functions is�
uðx; yÞ ¼ Ð Ð

C
aðxs; ysÞu1ðr; qÞdxsdys þ

Ð Ð
C
bðxs; ysÞu2ðr; qÞdxsdys

vðx; yÞ ¼ Ð Ð
C
aðxs; ysÞv1ðr; qÞdxsdys þ

Ð Ð
C
bðxs; ysÞv2ðr; qÞdxsdys

;

(9)

where (xs, ys) is the point in the zone enclosed by the curve vC,

rh
h
ðx� xsÞ2 þ ðy� ysÞ2

i1
2

and qharctan

�
y� ys

x� xs

�
. Because

a(xs, ys) and b(xs, ys) are unknown forces, we cannot get the

analytic solution to eqn (9). However, we can get the numerical

solution by the following procedure: adopting the orientation of

the hexagonal zigzag BLE nanopore as shown in Fig. 5(a), we

know u(xs, ys)¼A0 and v(xs, ys)¼0 within the zone C; so we

numerically ‘‘invert’’ the linear system of equations, eqn (9), to

get a(xs, ys) and b(xs, ys) within the zone C; we then substitute
This journal is ª The Royal Society of Chemistry 2012
these a(xs, ys) and b(xs, ys) into eqn (9) again, to finally obtain the

displacement fields u and v in the whole domain. When the

diameter of the nanopore is �3 nm, the displacement fields of

the slip corona, as shown in the ESI, Fig. S5,† are almost the

same as those from MD simulations in Fig. 5. Then we increase

the diameter of the nanopore gradually and solve the total

displacement d along the x-axis. The results are shown in

Fig. 6(a), which indicates that the region of the slip corona

extends as the size of the nanopore increases. The extreme case is

that the diameter of this BLE pore is infinitely large, so each

hexagonal edge can be considered as infinitely long zigzag BLE.

The displacement field under this limitation can be solved

analytically. According to eqn (5), we have v ¼ 0 and vyu ¼ 0 for

the infinitely long zigzag BLE, so eqn (5) becomes

d2u

dx2
� k0

2u ¼ �a0dðxÞ (10)

The solution obviously is u ¼ A0exp(�k0x) that is also plotted

in Fig. 6(a). To make quantitative evaluation, we define the
Nanoscale, 2012, 4, 5989–5997 | 5995



Fig. 6 (a) The total displacements d of BLG along the x-axis defined in Fig. 5(a) for BLE nanopores with various radii (Rh

ffiffiffi
3

p

2
� edge length). (b) The

width of the slip corona vs. the radius of the nanopore. The width is defined as the distance from the BLE to the area of almost A–B stacking (d < 0.05�A)

along the x-axis in Fig. 5(a).
‘‘width’’ of the slip corona as the distance from BLE to the area

of total displacement smaller than 0.05 �A, and its variation with

the size of the nanopore that is plotted in Fig. 6(b), which shows

that the width of the slip corona increases gradually with the size

(radius) of the nanopore. For the extremely large case as

described by eqn (10), the width of the slip corona is �40 nm.

When the diameter of the nanopore is larger than �80 nm, the

width of the slip corona is already convergent to �40 nm, so it

can be considered as the case of infinitely long BLE. On the other

hand, for nanopores with a diameter smaller than �5 nm, the

width of the slip corona is still �25 nm (half of the diameter of

the slip corona for the ‘‘point-constraint’’ case), so the ‘‘point-

constraint’’ approximation is still valid and the whole slip corona

can be roughly regarded as a circular area with a diameter of�50

nm. Nanopores with such small diameters may have more

potential applications in DNA sequencing and molecule/ion

selection because of the small sizes of DNA (�2 nm) and mole-

cules/ions.19–21
IV. Conclusions

In conclusion, we have demonstrated that a stacking-order

transition should happen on the integrated structures of the

BLG nanopore from A–A near BLE on the nanopore to A–B

far away. We used both MD simulations and the continuum

model to reach consistent descriptions of the displacement field

s(x,y) between two layers in the transition region in a simple

‘‘point-constraint’’ case; MD simulations of BLG with the real

hexagonal nanopore as shown in Fig. 1(d) also output similar

s(x, y). The shape of these slip displacement fields is similar to

the diffuse corona surrounding the sun and is thereby named

‘‘slip corona’’ on BLG. The size of the ‘‘slip corona’’ (diameter

�50 nm for the extremely small nanopore with the diameter

Dpore < 5 nm) is much larger than the width of the typical

dislocation core (�1 nm) in 3D metals or the nanopore itself,

due to the weak van der Waals interactions and low interlayer

shear resistance between two adjacent layers of graphene. The

continuum model also suggests that the width of this ‘‘corona’’

from the BLE to the A–B stacking area would increase gradu-

ally as Dpore increases and converge to �40 nm as Dpore reaches

to �80 nm.
5996 | Nanoscale, 2012, 4, 5989–5997
The slip displacement between two layers in BLG can signifi-

cantly change the band structure near the Dirac point,37 and an

inhomogeneous displacement field s(x, y) can bring more inter-

esting results. For example, BLG with a small angle rotation

between two layers, which also produces a stacking defect, was

found not to open an electronic gap under an external electric

field perpendicular to the layers.13 Here our BLG nanopore with

slip corona could result in new electronic and optical properties

since it significantly changes the local symmetry and introduces a

relatively large continuum field to the lattice structure. In addi-

tion, we can produce arrays of BLG nanopores on a large BLG,

with associated slip coronas interfering constructively or

destructively with each other. We note that each slip corona

carries a ‘‘vector charge’’ BA or Burgers vector with three

possibilities as shown in Fig. 1(a). The total displacement fields

would depend on the density, position and vector charge

arrangements of such arrays and the size of an individual

nanopore, which may provide us with a new avenue to produce

graphene-based devices like the concept of metamaterials.38
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