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Abstract
We develop a new envelope-function formalism to describe electrons in slowly-varying
inhomogeneously strained semiconductor crystals. A coordinate transformation is used to map
a deformed crystal back to a geometrically undeformed structure with deformed crystal
potential. The single-particle Schrödinger equation is solved in the undeformed coordinates
using envelope function expansion, wherein electronic wavefunctions are written in terms of
strain-parametrized Bloch functions modulated by slowly varying envelope functions.
Adopting a local approximation of the electronic structure, the unknown crystal potential in
the Schrödinger equation can be replaced by the strain-parametrized Bloch functions and the
associated strain-parametrized energy eigenvalues, which can be constructed from unit-cell
level ab initio or semi-empirical calculations of homogeneously deformed crystals at a chosen
crystal momentum. The Schrödinger equation is then transformed into a coupled differential
equation for the envelope functions and solved as a generalized matrix eigenvector problem.
As the envelope functions are slowly varying, a coarse spatial or Fourier grid can be used to
represent the envelope functions, enabling the method to treat relatively large systems.
We demonstrate the effectiveness of this method using a one-dimensional model, where we
show that the method can achieve high accuracy in the calculation of energy eigenstates with
relatively low cost compared to direct diagonalization of the Hamiltonian. We further derive
envelope function equations that allow the method to be used empirically, in which case
certain parameters in the envelope function equations will be fitted to experimental data.

Keywords: envelope function, inhomogeneous strain, slowly varying, electronic structure
calculation
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1. Introduction

It has long been recognized that elastic strain can be used to
tune the properties of materials. This idea of elastic strain
engineering (ESE) is straightforward because the derivative
of a material property P with respect to the applied elastic
strain ε, ∂P/∂ε, is in-general non-zero [1]. However, ESE
has traditionally been limited by the small amount of elastic
strain a material can accommodate, before plastic deformation

or fracture occurs. Recent experiments, however, reveal a class
of ultra-strength materials [1] whose elastic strain limit can
be significantly higher than conventional bulk solids. Notable
examples are two-dimensional (2D) atomic crystals such as
graphene and monolayer molybdenum disulfide (MoS2) [2].
The experimentally measured elastic strain limit of graphene
can be as high as 25% [3, 4], while that of bulk graphite seldom
reaches 0.1%. Monolayer MoS2 can also sustain an effective
in-plane strain of up to 11% [5]. Such a large elastic strain
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limit makes it possible to induce significant material property
changes through the application of elastic strain. In particular,
position-dependent properties can be induced by applying
inhomogeneous strain which is slowly varying at atomic scale
but has large sample-wide difference. For instance, Feng et al
demonstrated that indenting a suspended MoS2 monolayer can
create a local electronic bandgap profile in the monolayer with
1/r spatial variation, r being the distance to the centre of the
indenter tip [6]. This creates an ‘artificial atom’ in which
electrons move in a semiclassical potential resembling that
of a two-dimensional hydrogenic atom. In this article, we
will develop a new envelope function formalism that could be
used to study the electronic structure of such slowly-varying
inhomogeneously strained crystals.

Ab initio electronic structure methods such as density
functional theory (DFT) are routinely used nowadays to
calculate the properties of materials. However, the steep
scaling of computational cost with respect to system size limits
their use to periodic solids, surfaces and small clusters. An
inhomogeneously strained structure usually involves a large
number of atoms and thus falls beyond the current capabilities
of these methods.

In the past, several semi-empirical electronic structure
methods capable of treating systems larger than ab initio
methods have been developed to study the electrical and optical
properties of semiconductor nanostructures. Among those the
most notable are the empirical tight binding method [7, 8],
the empirical pseudopotential method (EPM) [9–11] and the
multi-band k · p envelope function method [12–17]. Both
tight-binding and EPM are microscopic methods [8] that
treat the electronic structure at the level of atoms, while the
multi-band k ·p envelope function method describes electronic
structure at the level of the envelope of wavefunctions, whose
lengthscale is in general much larger than the lattice constant.
Excellent articles discussing the merits and shortcomings
of these methods exist in the literature [8, 9]. Below we
shall briefly review the multi-band k · p envelope function
method and the EPM method, as these two methods have been
demonstrated to treat vary large nanostructures (up to a million
atoms [11, 18]) and are most relevant to our article.

The starting point of wavefunction based semi-empirical
electronic structure methods is usually the single-particle
Schrödinger equation:[

p2

2m
+ V (r)

]
�(r) = E�(r). (1)

Here V (r) is the crystal potential; �(r) is the electronic
wavefunction. In the k · p envelope function method, �(r)
is expanded in terms of a complete and orthonormal basis set
χnk0 = eik·rψnk0(r), [12] where ψnk0(r) represent the Bloch
functions of the underlying periodic solid at a reference crystal
momentum k0. Mathematically, the expansion is written as

�(r) =
∑
nk

cnk
{
eik·rψnk0(r)

}
. (2)

The summation is over band index n and wave vector k, which
is restricted to the first Brillouin zone (BZ) of the crystal.

This expansion can be re-written as

�(r) =
∑

n

(∑
k

cnkeik·r
)

ψnk0(r) =
∑

n

Fn(r)ψnk0(r).

(3)

The functions Fn(r) = ∑
k cnkeik·r are called envelope

functions because they are smooth functions at the unit-cell
level due to the restriction of wave vector k within the first BZ.
If all bands n are kept, the above expansion is complete. In
practical calculation, only a few bands close to Fermi energy
are included. The reference crystal momentum k0 is normally
chosen to be the wave vector corresponding to the valence band
maximum or conduction band minimum of a semiconductor.

Using this expansion, the Schrödinger equation can be
turned into coupled differential equations for the envelope
functions in the following general form∑

n

H(r, ∇)mnFn(r) = EFm(r). (4)

In the k · p envelope function method, H(r, ∇) is assumed to
have the same form as the k·p Hamiltonian for bulk crystal [19],
after replacing the momentum operators kx , ky , kz in the
k · p Hamiltonian by −i∂/∂x, −i∂/∂y, and −i∂/∂z [12–14].
The empirical parameters in the k · p Hamiltonian are fitted
to the observed properties of bulk crystals or nanostructures
themselves. A numerical solution of the coupled differential
equations gives energy eigenvalues and associated envelope
functions. This method has been successfully applied to a
semiconductor superlattice [13, 15], quantum wires [20], and
quantum dots [21, 22].

The k · p envelope function method can treat the effect
of homogeneous strain by incorporating it as deformation
potential [15, 23–25]. Deformation potential theory assumes
small applied strain, such that the strain-induced band edge
shift of bulk crystals can be expanded to first-order in terms of
the applied strain tensor ε, �E = ∑

ij �ij εij , where �ij are
deformation potentials. A detailed practical implementation
of deformation potential in k ·p envelope function method can
be found in literature [15]. Extension of the k · p envelope
function method to inhomogeneous strain was carried out by
Zhang [26].

The EPM method [9, 11, 27] is another well-known
approach to nanostructure electronic structure calculation.
EPM solves the single-particle Schrödinger equation non-
self-consistently through the use of empirical pseudopotential.
In EPM, the crystal potential V (r) is represented as
a superposition of screened spherical atomic pseudo-
potentials [9]

V (r) =
∑
atom

vatom(r − Ratom). (5)

The atomic pseudo-potentials can be extracted from DFT local
density-approximation (LDA) calculations on bulk systems,
and then empirically adjusted to correct the LDA band
structure error [28]. As the laborious self-consistent potential
determination procedures in ab-initio calculation are avoided,
EPM is computationally cheaper and faster, enabling it to treat
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large nanostructures [10]. Zunger and collaborators showed
that EPM can be more advantageous to k · p method due to
its non-perturbative nature as well as preservation of atomic-
level structural details [29, 30]. EPM treats strain effects
by weighting the atomic pseudopotentials with a scalar pre-
factor fitted to observed properties of strained crystals [11].
While EPM is appealing in many ways, its wide use is limited
by the complications involved in pseudopotential fitting and
Hamiltonian diagonalization.

In this article, we develop a new envelope function
formalism to solve the electronic states in slowly-varying
inhomogeneously strained semiconductor crystals. We aim
to develop a method that takes advantage of the numerical
efficiency of multi-band k ·p envelope function method, while
at the same time incorporates certain microscopic electronic
structure information at the level of ab intio or EPM method.
In speaking of a slowly-varying inhomogeneously strained
semiconductor crystal, we mean that the variation of strain
in the crystal is very small over the distance of a unit
cell, but can be quite large sample-wide (more than a few
percent). Our method assumes, with justification, that in such
slowly-varying inhomogeneously strained semiconductors,
the local crystal potential at the unit-cell level can be
well approximated by that of a homogeneously strained
crystal with the same strain magnitude. Hence, significant
amount of local electronic structure information can be
obtained from unit-cell level ab inito or EPM calculation
of homogeneously strained crystals, which can then be
incorporated into the solution of global electronic structure
using the framework of envelop function method. To achieve
such local to global electronic structure connection, the
global wavefunctions will be expanded in terms of a small
set of Bloch functions parametrized to the strain field ε(x)

in the deformed crystal, each of which is multiplied by a
slowly varying envelope function. The strain-parametrized
Bloch functions are constructed by smoothly connecting the
Bloch functions of homogeneously strained crystals, a process
made possible by a coordinate transformation method that
maps the deformed crystal back to a undeformed one with
deformed crystal potential. This set of strain-parametrized
Bloch functions, together with strain-parametrized energy
eigenvalues associated with those Bloch functions, can then
be used to eliminate the unknown crystal potential term in the
global Schröinger equation for the inhomogeneously strained
crystal. The electronic structure problem will subsequently
be turned into a set of coupled differential equations for
the envelope functions, and solved as a generalized matrix
eigenvector problem. Due to the slowly-varying nature of
the envelope functions, coarse spatial or Fourier grid can be
used to represent them, therefore reduces the computational
cost of the method compared to full-scale ab initio or
(potentially) EPM calculation of the inhomogeneously strained
crystals.

The structure of the paper is as follows. In section 2,
we lay out the general formalism of our envelope function
method for slowly-varying inhomogeneously strain crystals.
To demonstrate its effectiveness, we will apply the method to
a model one-dimensional strained semiconductor in section 3.

In section 4, we will discuss the practical issues when applying
the method to three-dimensional realistic solids. Finally, we
will derive in section 5 a set of differential eigenvalue equations
for the envelope functions when our method is used as a purely
empirical fitting scheme.

2. Formalism

2.1. Coordinate transformation

To facilitate the formulation of our envelope function method
for slowly-varying inhomogeneously strained crystal, we
first elaborate a coordinate transformation method which
converts the electronic structure problem of a deformed
crystal to a undeformed one with deformed crystal potential.
This approach has been employed to study electron–phonon
interactions [31], and to prove extended Cauchy–Born rule
for smoothly deformed crystals [32–34]. The construction here
partly follows E et al [34].

In laboratory Cartesian coordinates, denote by Xi and X′
i

the position vectors of the i-th atom in a crystal before and
after deformation, we can write

X′
i = Xi + Ui . (6)

Above, Ui is the displacement of the i-th atom. Ui is assumed
to follow a smooth displacement field u(x) in the smoothly
deformed crystal, i.e. there exists a smooth displacement field
u(x), which maps every atom in the crystal to a new position
X′

i = Xi + u(Xi ). This assumption is closely related to the
Cauchy–Born rule [35] in solid mechanics.

Since the smooth displacement field u(x) is defined for
every point in the space, it can be used to map a function as
well. For example, if a function f (x) is originally defined
for an unstrained crystal, which for example can be the
crystal potential V (x) or wavefunction �(x), after mapping
it becomes a new function h(x′) given by

h(x + u(x)) = f (x), (7)

since the value of function h(x′) at point x′ = x + u(x) is
mapped from function f (x) at point x. This mapping of a
known function defined in a undeformed crystal to a deformed
crystal can be done reversely. Suppose, for example, the crystal
potential of a deformed crystal is V (x′), it can be mapped back
to a function V ∗(x) defined in the ‘undeformed coordinates’
x as

V ∗(x) = V (x + u(x)). (8)

Namely, the value of function V ∗(x) at position x is the same
as the value of function V (x′) at x′ = x + u(x). Hereafter, the
appearance of the superscript ‘∗’ on a function denotes that the
function has been mapped back to undeformed coordinates x
with the following general mapping rule

f ∗(x) = f (x + u(x)), (9)

where f (x′) is a function defined for a deformed crystal.
We can apply the above mapping, which is essentially a

nonlinear coordinate transformation, to differential operators
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as well, such as the Hamiltonian operator in the Schrödinger
equation. In Hartree atomic units, the Schrödinger equation
for deformed crystal reads[

−1

2
� + V (x′)

]
�(x′) = E�(x′), (10)

where � is the Laplacian. Applying the following deformation
mapping (coordinate transformation) to the Schrödinger
equation,

x′ = x + u(x), (11)

it will be transformed into the undeformed coordinates x as[
−1

2
�∗ + V ∗(x)

]
�∗(x) = E�∗(x). (12)

�∗, V ∗(x) and �∗(x) are the Laplacian, crystal potential
and wavefunctions mapped to undeformed coordinates,
respectively. �∗ can be explicitly written out as

�∗ = (
(I + ∇u)−T ∇) · (

(I + ∇u)−T ∇)
≡ aij (x)

∂2

∂xi∂xj

+ bi(x)
∂

∂xi

, (13)

where aij (x) and bi(x) are given by

aij (x) = (I + ∇u(x))−1
im (I + ∇u(x))−T

mj , (14)

bi(x) = (I + ∇u(x))−1
nm

∂

∂xn

(I + ∇u(x))−T
mi . (15)

Above, ∇u is the deformation gradient matrix (field) whose
elements are given by (∇u)mn = ∂um/∂xn. I is identity
matrix. The superscript −1 denotes matrix inversion;
−T denotes matrix inversion and transposition. Einstein
summation applies when an index is repeated. It can be
checked that when u(x) = 0, i.e. the crystal is undeformed,
aij (x) = δij , bi(x) = 0, leaving the Laplacian untransformed.

2.2. Strain-parametrized expansion basis

To proceed with our envelope function expansion for
inhomogeneously strained crystals, we first imagine a series
of homogeneously strained crystals with different strain
tensors ε, all of which are then mapped back to undeformed
coordinates following the same coordinate transformation
elaborated in the previous section. Figure 1 illustrates this
procedure. For a homogeneously strained crystal, we can
choose the reference unstrained crystal such that the rotation
component of the displacement field is zero, which allow the
displacement u(x) to be be written as u(x) = εx, namely
ui = εikxk . It then follows from equations (12) and (13) that
the Schrödinger equation for homogeneously strained crystals
transforms into undeformed coordinates as[
−1

2
(I + ε)−1

im (I + ε)−T
mj

∂2

∂xi∂xj

+ U ∗(x; ε)

]
�∗ = E�∗,

(16)

Here, to distinguish the crystal potential of homogeneously
strained crystal from that of inhomogeneously strained crystal,
we have used the symbol U ∗(x; ε) to represent the mapped

(a)

(b)

(c)

(e)

(d)

Figure 1. Schematic of strained crystals mapped back to
undeformed coordinates. After mapping, the atomic coordinates of
a strained crystal will be the same as those of a undeformed crystal,
but the crystal potential will be different. (a) Inhomogeneously
strained crystal. The local strain εn are labeled. (b) Unstrained
crystal. (c)–(e) Homogeneously strained crystals. The mapped
Bloch functions u∗

n0(x; ε) are written alongside.

crystal potential of homogeneously strained crystal with strain
tensor ε. From now on, U and V will be used to represent
the crystal potentials of homogeneously strained crystals and
inhomogeneously strained crystals respectively.

Given a reference crystal momentum k0 for unstrained
crystal, for each of the homogeneously strained crystal with
strain tensor ε, their Bloch functions at corresponding strained
crystal momentum k = (I + ε)−T k0 can be written as

ψnk(x′; ε) = eik·x′
unk(x′; ε). (17)

ψnk(x′; ε) can then be mapped back to undeformed coordinates
and denoted by

ψ∗
nk0

(x; ε) = eik0·xu∗
nk0

(x; ε). (18)

Without loss of generality, hereafter we chose the reference
crystal momentum k0 = 0, in which case only the periodic
part of the Bloch functions u∗

n0(x; ε) will be retained.
For any value of strain ε, the mapped Bloch functions

u∗
n0(x; ε) are periodic functions of the original, undeformed

lattice translation vectors. Therefore, each of them can be
expanded in undeformed coordinates in terms of a complete
and orthonormal basis set ϕm(x), which for example can be
plane waves:

u∗
n0(x; ε) =

∑
m

Cn
m(ε)ϕm(x). (19)

The expansion coefficients Cn
m(ε) will be dependent of the

strain value ε. After this expansion, the strain ε dependence of
the Bloch functions u∗

n0(x; ε) is separated into the expansion
coefficients Cn

m(ε). In the absence of strain-induced phase
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transition, and choosing the same gauge [36] for different
strained Bloch functions, these expansion coefficients should
be continuous functions of strain ε. We then can define
a strain-parametrized basis set u∗

n0(x; ε(x)) ≡ u∗
n0(x; ε =

ε(x)), which means that at position x, the values of the
expansion coefficients Cn

m in equation (19) take the values of
Cn

m(ε = ε(x)). Mathematically, this can be written out as

u∗
n0(x; ε(x)) =

∑
m

Cn
m (ε(x)) ϕm(x), (20)

u∗
n0(x; ε(x)) are named ‘strain-parametrized Bloch functions’,

since they are parametrized to the strain field ε(x) in
an inhomogeneous strained crystal. In analogy with the
conventional envelope function method [12], we can use
u∗

n0(x; ε(x)) to expand the mapped global wavefunctions
�∗(x) of inhomogeneously strained crystals,

�∗(x) =
∑

n

Fn(x)u∗
n0(x; ε(x)). (21)

The summation is over the band index n, but will normally
be truncated to include only bands within certain energy
range of interest, as far-away bands have smaller contributions
to the electronic states under consideration. Here, Fn(x)

are, as in conventional envelope function method, considered
to be smooth functions on unit-cell scale. This envelope
expansion is, in essence, a continuous generalization of
Bastard’s envelope expansion method for semiconductor
heterostructures [13], where the wavefunctions in the barrier
and well regions of heterostructures are expanded in the Bloch
functions of respective region.

2.3. Local approximation of strained crystal potential and
envelope function equation

Our next natural step is to substitute �∗(x) into the mapped
Schödinger equation for inhomogeneously strained crystal, the
equation (12), which for convenience is rewritten here as[

P∗ + V ∗(x)
]
�∗(x) = E�∗(x), (22)

where P∗ is an operator given by

P∗ = −1

2

[
aij (x)

∂2

∂xi∂xj

+ bi(x)
∂

∂xi

]
. (23)

aij (x) and bi(x) have been defined earlier. Replacing �∗(x)

by the strain-parametrized envelope function expansion in
equation (21), the above Schrödinger equation becomes∑

n

P∗ [
Fn(x)u∗

n0(x; ε(x))
]

+
∑

n

Fn(x)
[
V ∗(x)u∗

n0(x; ε(x))
]

= E
∑

n

Fn(x)u∗
n0(x; ε(x)). (24)

The potential energy operator V ∗(x) is the unknown term in
the Hamiltonian, which in ab initio calculation is determined
self-consistently. As we have argued earlier, such self-
consistent calculation of V ∗(x) is usually impractical for an
inhomogeneously strained crystal due to the large system

size. Hence, we introduce here an important approximation in
our method: for a slowly-varying inhomogeneously strained
semiconductor, the crystal potential V ∗(x) at position x
can be well approximated by that of a homogeneously
deformed crystal with same strain tensor ε(x) if: (a) the
applied elastic strain field ε(x) is sufficiently slowly-varying at
atomic scale and (b) long-range electrostatic effects [37] are
negligible. This locality principle for the electronic structure of
insulators/semiconductors has been proved by E et al [32–34].
It is also implicitly implied in the treatment of strain in the
EPM method [11]. We also note that, the limitation of
local approximation to the effective potential in the envelope
function method has been studied by other authors [38–41].

Mathematically, the locality principle translates into
V ∗(x) = U ∗(x; ε(x)) + O(b|∇ε(x)|), where U ∗(x; ε(x)) is
the strain-parametrized crystal potential of homogeneously
strained crystals, b is the average magnitude of lattice
constants, and ∇ε(x) is the gradient of strain field. b|∇ε(x)| is
thus a measure of how fast strain varies at atomic scale. Clearly,
the smaller this measure, the better the locality approximation
will be. In the case ε(x) goes to zero, the approximation
becomes exact. Since we are concerned with slowly-varying
inhomogeneously strained crystals in this article, in what
follows we will only keep the term U ∗(x; ε(x)), which is the
zeroth-order term in strain gradient, or the first-order term in
displacement gradient.

Adopting this locality principle greatly facilitates the
solution of the electronic structure problem, as we can now use
the local electronic structure information of homogeneously
deformed crystals, obtained from unit-cell level ab initio or
semi-empirical calculations, to eliminate the unknown crystal
potential term V ∗(x) in equation (24). Specifically, we can
write down the local Schrödinger equation for the strain-
parametrized expansion basis[
P∗

0 + U ∗(x; ε(x))
]
u∗

n0(x; ε(x)) = εn0(ε(x)) u∗
n0(x; ε(x)),

(25)

with P∗
0 being

P∗
0 = −1

2
(I + ε(x))−1

im (I + ε(x))−T
mj

∂2

∂xi∂xj

∣∣∣∣
ϕ(x)

. (26)

In equation (25), εn0(ε(x)) is the strain-parametrized energy
eigenvalues for band n at the reference crystal momentum,
defined as εn0(ε(x)) ≡ εn0(ε = ε(x)). The subscript
ϕ(x) in P∗

0 denotes that, when the partial derivatives
operate on the strain-parametrized expansion u∗

n0(x; ε(x)) =∑
m Cn

m (ε(x)) ϕm(x), they act on the position dependence
coming from ϕ(x), but not on the x dependence coming
from Cn

m(ε(x)). To better understand equation (25), one
can look at the limit when the strain field ε(x) is uniform
throughout the crystal. Equation (25) then simply becomes
a normal Schrödinger equation for homogeneously strained
crystal mapped to undeformed coordinates.

We will now use the local Schrödinger equation to
eliminate the potential energy operator V ∗(x) in global
Schrödinger equation. Rearranging equation (25), we have

U ∗(x; ε(x))u∗
n0(x; ε(x)) = [−P∗

0 + εn0(ε(x))
]
u∗

n0(x; ε(x)).

(27)
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We then replace V ∗(x) in equation (24) by U ∗(x; ε(x)) based
on the locality principle, and replace U ∗(x; ε(x))u∗

n0(x; ε(x))

by the right-hand side of equation (27). Finally, we reach
the following coupled differential equation for the envelope
functions Fn(x):∑

n

P∗ [
Fn(x)u∗

n0(x; ε(x))
] −

∑
n

Fn(x)P∗
0

[
u∗

n0(x; ε(x))
]

=
∑

n

Fn(x) [E − εn0(ε(x))] u∗
n0(x; ε(x)). (28)

This coupled differential eigenvalue equation is the central
equation we need to solve in our envelope function method.
The unknowns in the equations are the global energy
eigenvalues E and their associated envelope functions Fn(x).
The strain-parametrized Bloch functions u∗

n0(x; ε(x)) and their
energy eigenvalues εn0(ε(x)), can be constructed using ab inito
or semi-empirical calculation of homogeneously strained
crystals at unit-cell level, using the procedures described
in section 2.2. The coupled differential equation can be
solved numerically by expanding the envelope functions in
an appropriate basis, and then turned into a matrix eigenvalue
equation. The expansion basis can be judiciously chosen to
reflect the symmetries that the envelope functions could have.
The most general expansion basis, however, are plane waves:

Fn(x) =
∑

k

Bnke−ik·x. (29)

Plugging the above equation into equation (28), it will turn into
the following equation∑

n

∑
k

Bnk
{
P∗ [

eik·xu∗
n0(x; ε(x))

] − eik·xP∗
0

[
u∗

n0(x; ε(x))
]}

=
∑

n

∑
k

Bnkeik·x (E − εn0(ε(x))) u∗
n0(x; ε(x)).

(30)

We then multiply the both sides of equation (30) by[
eik′ ·xu∗

m0(x; ε(x))
]†

(dagger denotes complex conjugation),
and then integrate both side over the whole crystal volume V .
This results in N × Mk independent linear equations, where
N is the number of bands included in the envelope function
expansion in equation (21), Mk is the number of plane waves
used to expand the envelope functions Fn(x) in equation (29).
The system of linear equations are written below as:∑
nk

Bnk (Wmk′
nk − Rmk′

nk + Smk′
nk ) = E

∑
nk

Bnk T mk′
nk , (31)

where

Wmk′
nk =

∫
V

dx
[
eik′ ·xu∗

m0

]†
P∗ [

eik·xu∗
n0

]
,

Rmk′
nk =

∫
V

dxei(k−k′)·x(u∗
m0)

†P∗
0 u∗

n0,

Smk′
nk =

∫
V

dxei(k−k′)·x(u∗
m0)

†u∗
n0

T mk′
nk =

∫
V

dxei(k−k′)·xεn0 (ε(x)) (u∗
m0)

†u∗
n0.

u∗
n0 is short for u∗

n0(x; ε(x)). The system of linear equations can
be solved numerically as a generalized eigenvector problem to
obtain the eigenvalues E and eigenvectors Bnk.

3. Application to 1D models

3.1. General framework

To demonstrate the effectiveness of our envelope function
method, we will apply the method to one-dimensional (1D)
inhomogeneously strained crystals. We will first lay out
the general mathematical framework of the method in 1D,
followed by a specific example in the next section. Most
equations in this section are just 1D special cases of equations
in the previous section.

Suppose a slowly varying inhomogeneous strain ε(x) is
imposed on a 1D crystal. The strain field corresponds to a
displacement field u(x) = ∫ x

ε(x ′)dx ′. The operators P∗ and
P∗

0 defined in the previous section will have the following form

P∗ = − 1

2[1 + ε(x)]2

d2

dx2
+

ε′(x)

2 [1 + ε(x)]3

d

dx
, (32)

P∗
0 = − 1

2[1 + ε(x)]2

∂2

∂x2
, (33)

where ε′(x) denotes the derivative of strain with respect to
x. The partial derivative in P∗

0 implies that, for a strain
parametrized function f (x; ε(x)), the derivative will not act
on the x dependence coming from ε(x).

The Schrödinger equation mapped back to undeformed
coordinates will be[

P∗ + V ∗(x)
]
�∗(x) = E�∗(x), (34)

where V ∗(x) and �∗(x) are mapped crystal potential and
energy eigenfunction in undeformed coordinates. E is energy
eigenvalue. �∗(x) will be expanded in terms of envelope
functions and strain-parametrized Bloch functions:

�∗(x) =
∑

n

Fn(x)u∗
n0(x; ε(x)) (35)

The strain parametrized Bloch functions u∗
n0(x; ε(x)) satisfies

the local Schrödinger equation for homogeneously strained
crystal[
P∗

0 + U ∗(x; ε(x))
]
u∗

n0(x; ε(x)) = εn0(ε(x))u∗
n0(x; ε(x)).

(36)

We then adopt the local approximation of crystal potential
V ∗(x) ≈ U ∗(x; ε(x)), which allows us to use the above
local Schrödinger equation to transform equation (34) into the
following envelope function equation∑

n

{
P∗ [

Fn(x)u∗
n0(x; ε(x))

] − Fn(x)P∗
0

[
u∗

n0(x; ε(x))
]}

=
∑

n

Fn(x) [E − εn0(ε(x))] u∗
n0(x; ε(x)). (37)

Using the explicit forms of P∗ and P∗
0 in equations (32) and

(33), the above equation can be further written as∑
n

[
pn(x)F ′′

n + qn(x)F ′
n + gn(x)Fn

] = E
∑

n

hn(x)Fn,

(38)

6
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with pn(x), qn(x), gn(x) and hn(x) given by

pn(x) = u∗
n0(x; ε(x))

qn(x) = 2
d

dx
u∗

n0(x; ε(x)) − ε′(x)

1 + ε(x)
u∗

n0(x; ε(x))

gn(x) = d2

dx2
u∗

n0(x; ε(x)) − ∂2

∂x2
u∗

n0(x; ε(x))

− ε′(x)

1 + ε(x)

d

dx
u∗

n0(x; ε(x))

−2[1 + ε(x)]2εn0(ε(x))u∗
n0(x; ε(x)) (39)

hn(x) = −2[1 + ε(x)]2u∗
n0(x; ε(x)).

After constructing the strain parametrized Bloch func-
tions u∗

n0(x; ε(x)) and εn0(ε(x)) through unit-cell level cal-
culations of homogeneously strained crystals and strain-
parametrization, described in section 2.2, the coupled differen-
tial eigenvalue equation (38) can be solved numerically using
the method described in the previous section.

3.2. Example

Consider a 1D crystal with lattice constant a0 and the following
model crystal potential

U(x) = −U0 cos

(
4π

a0
x

)
. (40)

This crystal potential has the following attractive features:

(1) A direct bandgap of magnitude Eg ≈ U0 will open
up between the second and third energy band at crystal
momentum k = 0, as shown in figure 2. Assuming
that the first and second band are completely filled by
electrons while those bands above are empty, the 1D
crystal corresponds to a direct bandgap semiconductor for
which the second band (n = 2) is the ‘valence band’ and
the third band (n = 3) is the ‘conduction band’. We
will use this designation from now on. The bandgap is
Eg ≡ Ec − Ev ≈ U0, where Ec is the energy of the
conduction band minimum, and Ev is the energy of the
valence band maximum.

(2) If we fix U0, the value of bandgap Eg will almost have no
change even when the lattice constant a0 is varied. The
change of lattice constant a0 is natural when we apply
strain ε to the system, namely a0 becomes a0(1+ε). While
Eg ≡ Ec−Ev ≈ U0 does not change when lattice constant
a0 is changed, the absolute energy values of the conduction
band edge Ec and valence band edge Ev , however, do
shift, mainly due to the change of kinetic energies for
electrons in the system when enlarging or shrinking the
crystal. we can therefore model the strain-induced energy
level shifting without incurring bandgap change in this
model crystal potential.

(3) If we want to model bandgap change when strain is
applied, we can simply write U0 as a function of strain
ε. For example, to model the linear change of bandgap
as a function of strain, we can write U0(ε) = U0 + Kε,
where K denotes the rate of bandgap change as a function
of strain.

Figure 2. Calculated energy band structure of the model 1D crystal
before and after applying homogeneous strain (see main text for
details of the 1D crystal). Only the first three bands are presented.
Solid and dashed line denote the first three energy bands of
unstrained crystal and homogeneously strained crystal with
ε = 0.05, respectively. The axis label ka denotes the product of
crystal momentum k and lattice constant a = a0(1 + ε).

Hence, the 1D crystal potential is an excellent model
system for 1D semiconductor, whose band edge energy
levels (Ec, Ev) and bandgap Eg can be independently
tuned. The crystal potential can therefore model deformation
potential [23] while being mathematically simple and
transparent.

In the spirit of the above discussion, we now assume
that, after applying homogeneous strain ε to the model 1D
semiconductor, its crystal potential has the following form:

U(x ′; ε) = −(U0 + Kε) cos

[
4π

a0(1 + ε)
x ′

]
. (41)

This implies that both the energy levels and bandgap of the 1D
crystal will change after applying strain. Comparison of the
band-structures of the 1D crystal before and after deformation
for a specific set of parameters U0 = 0.2, K = −0.5, and
ε = 0.05 is shown in figure 2.

The crystal potential of homogeneously strained 1D
crystal, U(x ′; ε), is up to now defined in strained coordinates
x ′. As discussed earlier, we can map the strained crystal
potential back to undeformed coordinates x based the mapping
relationship x ′ = x + u(x) = (1 + ε)x. The mapped crystal
potential becomes the following

U ∗(x; ε) = −(U0 + Kε) cos(4πx/a0). (42)

Suppose now a continuous strain distribution ε(x) is defined in
the x coordinates. We can define a strain-parametrized crystal
potential U ∗(x; ε(x)) such that at position x, we first calculate
the strain ε(x) at x, then assign U ∗(x; ε(x)) a value equal to

7
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Figure 3. Potential of the model 1D crystal after applying
Gaussian-type inhomogeneous strain.
V (x ′) = U ∗(x; ε(x)) = − [U0 + Kε(x)] cos(4πx/a0). x is related

to x ′ via x ′ = x +
√

πL

8 εmax

[
erf

(
x−L/2

L/4

)
− erf(−2)

]
. The values of

model parameters U0, K , L and εmax are given by U0 = 0.2,
K = −0.5, L = 25a0 and εmax = 0.1.

U ∗(x; ε = ε(x)). Namely,

U ∗(x; ε(x)) ≡ U ∗(x; ε = ε(x))

= −(U0 + Kε(x)) cos(4πx/a0). (43)

With the above model set-up, we now apply a Gaussian-type
inhomogeneous strain on the 1D crystal. The strain distribution
is given by

ε(x) = εmax exp

[
− (x − L/2)2

(L/4)2

]
, (44)

where εmax is the maximum strain value in the strain field
ε(x), occurring at x = L/2. L denotes the size of crystal.
After applying the inhomogeneous strain, a position x in the
undeformed crystal will map to a new position x ′ in deformed
coordinates given by

x ′ = x +
∫ x

0
ε(v)dv

= x +

√
πL

8
εmax

[
erf

(
x − L/2

L/4

)
− erf(−2)

]
, (45)

where erf(x) denotes error function.
Denote by V (x ′) the crystal potential of the 1D crystal

after applying the Gaussian inhomogeneous strain, we then
adopt the local approximation of crystal potential as described
in section 2.3, which says that the inhomogeneously strained
crystal potential at point x ′ can be well approximated by the
crystal potential of a homogeneously strained crystal with the
same strain value. This can be mathematically written out as

V (x ′) ≈ U ∗(x; ε(x)), x ′ = x +
∫ x

0
ε(v)dv. (46)

The as-constructed strained crystal potential V (x ′) is
visualized in figure 3.

We have thus, for demonstration purpose, explicitly
constructed the strained crystal potential V (x ′) using the local
approximation of crystal potential. This allows us to solve
the energy eigenstates of an inhomogeneously strained crystal
using two distinct methods:

Method 1: direct numerical diagonalization of strained
Hamiltonian. Since the explicit expression for the
inhomogeneously strained crystal potential V (x ′) has been

constructed, we can solve the Schrödinger equation for the
inhomogeneously strained crystal in deformed coordinates,[

−1

2

d2

dx ′2
+ V (x ′)

]
�(x ′) = E�(x ′), (47)

by diagonalizing the Hamiltonian H = − 1
2

d2

dx ′2 + V (x ′) using
plane wave basis set in Fourier space. More straightforwardly,
we can discretize the wavefunction �(x ′) into a N × 1 matrix
vector in real space,

�(x ′) = [
�(x ′

1) �(x ′
2) · · · �(x ′

N)
]T

, (48)

and then write the Hamiltonian as a matrix operator H acting
on the wavefunction H = −L/2 + V, where L and V are
the matrix operators for the differential operator d2

dx ′2 and the
potential operator V (x ′) respectively:

L = 1

(�x ′)2




−2 1 1
1 −2 1

1
. . . 1

1 1 −2


 , (49)

V =




V (x ′
1)

V (x ′
2)

. . .

V (x ′
N)


 . (50)

�x ′ = x ′
i+1 − x ′

i is the distance between two real space
grid points. The Hamiltonian matrix H can then be
numerically diagonalized to obtain the energy eigenvalues E

and wavefunctions �(x ′).
Method 2: solving the energy eigenstates of inhomoge-

neously strained crystal using our envelope function method.
We can solve the Schrödinger equation (47), by first mapping
it back to undeformed coordinates, which becomes[

P∗ + U ∗(x; ε(x))
]
�∗(x) = E�∗(x). (51)

The explicit expression for the differential operator P∗ is given
by equation (32). The mapped wavefunctions �∗(x) will then
be expressed in terms of envelope functions Fn(x) and strain-
parametrized Bloch functions u∗

n0(x; ε(x)):

�∗(x) =
∑

n

Fn(x)u∗
n0(x; ε(x)). (52)

We then follow the procedures described in section 3.1
to eliminate the crystal potential term U ∗(x; ε(x)) in
equation (51) using strain-parametrized Bloch functions
u∗

n0(x; ε(x)) and the associated strain-parametrized energy
eigenvalues ε(x; ε(x)). Equation (51) can then be turned into
a coupled differential eigenvalue equation for the envelope
functions Fn(x) given by equation (38), and solved as a
generalized matrix eigenvector problem.

The solution of equation (38) requires the explicit
construction of strain-parametrized functions u∗

n0(x; ε(x))

and the associated strain-parametrized energy eigenvalues
ε(x; ε(x)). The construction of these functions involves
unit-cell level calculations of homogeneously strained 1D

8
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crystals. Only the Bloch functions and energy eigenvalues
of the electronic states at the reference crystal momentum
(k = 0 in this case) and a few bands close to the
valence/conduction band need to be calculated. The
homogeneous strain values ε are coarsely taken from the
inhomogeneous strain field (no more than one grid point per
unit cell). The calculated periodic Bloch functions of each
homogeneously strained crystal are then expressed in plane
wave basis as u∗

n0(x; ε) = ∑
m Cn

m(ε)ei2πmx/a0 , where Cn
m(ε)

are the expansion coefficients. The strain-parametrized Bloch
functions can then be constructed by letting ε = ε(x) at
position x, namely

u∗
n0(x; ε(x)) =

∑
m

Cn
m(ε(x))ei2πmx/a0 . (53)

It is easy to see that, at position x, the value of u∗
n0(x; ε(x)) is

the same as the value of periodic Bloch function u∗
n0(x; ε) at x

and ε = ε(x). It is in this sense u∗
n0(x; ε(x)) are named strain-

parametrized functions. Since Cn
m(ε) are smooth functions of

ε and ε(x) is a smooth function of x, we can use polynomial
fitting to obtain smooth functions for Cn

m(ε(x)). As only unit-
cell level calculations of homogeneously strained crystals at a
reference crystal momentum are involved, the construction of
the strain-parametrized functions u∗

n0(x; ε(x)) and ε(x; ε(x))

do not require much computational power in this 1D example.
Of the two methods discussed above, method 1, the

direct diagonalization of Hamiltonian, is a well established
method, therefore it can be used to benchmark method 2,
our envelope function method. To test the effectiveness of
our envelope function method, we have calculated the energy
eigenvalues and eigenfunctions of the 1D inhomogeneously
strained crystal using both methods. A special note is that
we are not testing here how good the local approximation of
crystal potential for inhomogeneously strained crystal can be,
but how accurate and fast our envelope function method can
achieve given the local approximation of crystal potential is
a sufficiently good approximation. Also note that, although
for the sake of benchmarking our envelope function method,
we have explicitly constructed the strained crystal potential
in this 1D problem, in practical application of our envelope
function method, such explicit construction of crystal potential
will not be performed. The information of local strained
crystal potential, at the level of approximation used in our
method, is reflected in the strain-parametrized Bloch functions
u∗

n0(x; ε(x)) and the associated strain-parametrized energy
eigenvalues εn0(x; ε(x)).

Choosing the following model parameters L = 100a0,
U0 = 0.2, K = −0.5, and εmax = 0.1 for the 1D
inhomogeneously strained crystal, we carry out numerical
real space diagonalization of the Hamiltonian by spatially
discretizing the wavefunction �(x) into a N × 1 matrix.
Periodic boundary condition �(0) = �(L) is adopted. As
the wavefunction oscillates rapidly even within a unit cell,
very large N , around 50 times the number of unit cell L/a0,
is needed to achieve convergence of energy eigenvalues near
valence or conduction band edge.

Figure 4(a) shows the direct-diagonalization obtained
energy eigenvalues near the band edges. A 5000 × 5000

Hamiltonian matrix is involved in the numerical calculation.
For comparison, the energy eigenvalues of unstrained crystal
are shown together in the figure. The most distinct feature for
the energy spectrum of inhomogeneously strained crystal is the
appearance of bound states near the conduction and valence
band edges. These bound states, whose wavefunctions are
shown in figure 4(b), can be understood by plotting the local
valence and conduction band edges as a function of position in
the strained crystal, which is shown in figure 5. The alignment
of band edges is reminiscent of semiconductor quantum well,
except that in our case, the spatial variation of band-edge is
smooth and extended, while in semiconductor quantum well,
band edge usually jumps abruptly at the interface between the
barrier and well region of quantum well. Hence, the strain-
confined bound states in inhomogeneously strained crystal
bear resemblance to bound states in quantum well. We
want to emphasize that, the band edge alignment in our 1D
inhomogeneously strained crystal is not unique to this model.
Strain-induced band edge shift in semiconductor is a well-
known phenomenon [23]. In fact, the band-edge alignment
in our 1D model is similar to those calculated by Feng et al
for inhomogeneously strained MoS2 monolayer [6]. We can
therefore conclude that the existence of electron or hole bound
states is a general feature in an inhomogeneously strained
crystal.

We have also calculated the energy eigenvalues using
our envelope function method. As shown in figure 6(a),
very high accuracy of eigenvalues is achieved for the whole
valence and conduction bands using only one mesh grid
per unit cell representation of the envelope functions. The
lowest five bands are included in the summation over bands in
the envelope function expansion (equation (52)). Together,
the envelope function method involves the diagonalization
of an approximately 500 by 500 matrix, which is an order
of magnitude smaller than direct diagonalization. As zone-
center Bloch functions are used to carry out envelope function
expansion, naturally the error for energy eigenvalues near
the band edge is smaller, same as in conventional envelope
function method. Furthermore, if one is only concerned with
energy levels near the band edge, which in most practical
application is true, the expense of envelope function method
can be reduced by another order of magnitude by including
only the most relevant bands, and using coarser grids for
numerical representation of the envelope functions. In
figure 6(b), we show that more than 1/4 of energy levels in
valence and conduction bands can be calculated with very high
accuracy by including only the valence and conduction bands
in wavefunction expansion, and using one mesh grid every four
unit cells to represent the envelope functions. In this case, one
ends up diagonalizing a 50 by 50 matrix, which is two order
of magnitude smaller than direct diagonalization. Indeed, for
this 1D model, our envelop function method is much faster
than the direct diagonalization method.

The success of the envelope function method is because
the envelope functions Fn(x) are indeed slowly varying as
we conjectured. Figure 7 shows the amplitude square plot
of envelope functions for a few electron and hole bound
states. For the electron bound states, the envelope function

9
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(a)

(b)

Figure 4. (a) Energy eigenvalues of the unstrained (open circles) and inhomogeneously strained model 1D crystal (filled circles) obtained
by direct diagonalization. The energy levels are shifted horizontally with respect to each other to resolve energy levels which are very close
to each other. The energy range of hole and electron bound states in strained crystals are labeled. (b) Wavefunction probability amplitude
for hole and electron bound states, which are labeled in the figure as VBM, VBM − 1, CBM, and CBM + 1. VBM denotes valence band
maximum; VBM − 1 denotes one energy level below VBM; CBM means conduction band minimum, while CBM + 1 denotes one energy
level above CBM. The wavefunctions have rapid oscillation.

of conduction band is predominant, while the valence band
envelope function also contributes. The opposite is true for
the hole bound states. Other remote bands have negligible
contribution and are therefore not plotted. Comparing with
the full wavefunctions calculated from direct diagonalization
in figure 4(b), one can notice that the envelope functions are
indeed slowly-varying functions modulating the amplitude of
fast-varying Bloch functions.

4. Toward application to 3D real materials

We have demonstrated in the previous section that our envelope
function method can be successfully applied to a model 1D
slowly-varying inhomogeneously strained semiconductor. A
real semiconductor, however, is a three-dimensional (3D)

object, and its crystal potential and strain response will be more
complicated than the 1D model. Therefore, in this section we
discuss some of the issues that may arise when applying our
method to real 3D semiconductor crystals.

The procedures to carry out our envelope function method
in 3D are essentially the same as in 1D, which we summarize
in the flow chart of figure 8.

The first step in the flow chart is the determination of a
smooth displacement field u(x) which can map the unstrained
crystal (and the associated vacuum space, if any) to the strained
crystal. The corresponding strain field ε(x) needs to be
calculated as well. In 1D, displacement field u(x) is a one-
dimensional function and contains no rotational component.
Thus u(x) is related to the strain field ε(x) via a simple integral
relation u(x) = ∫ x

ε(v)dv. In 3D, the displacement field

10
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Figure 5. Valence and conduction band edge plotted as a function of
position in inhomogeneously strained crystal. The local band edges
are calculated from homogeneously strained crystal with the same
strain magnitude at position x.

u(x) is three-dimensional, and the strain field ε(x) is a tensor
field with six independent components. Due to the possible
existence of rotational components, the components of the
strain field are related to the displacement field u(x) (in the
small deformation limit) as:

εij = 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(54)

Hence, for a generic 3D inhomogeneously strained crystal,
finding and representing the smooth displacement field u(x)

and strain field ε(x) becomes more difficult than 1D.
Knowledge of solid mechanics will be helpful in this endeavor.
The increased complexity of the displacement field and strain
field in 3D also complicates the calculation and representation
of the differential operatorsP∗ andP∗

0 defined in equations (23)
and (26), which need to be determined in order to solve the
envelope function equation (28).

The second and third steps in the flow chart are
the construction of strain-parametrized Bloch functions
and associated strain-parametrized energy eigenvalues at a
reference crystal momentum, usually at the Brillouin zone
center, through ab initio or semi-empirical electronic structure
calculation of a series of homogeneously strained crystal. The
strain values are coarsely taken from the inhomogeneous strain
field ε, which in principle is sufficient as the strain field is
slowly-varying in space. Nevertheless, in a generic 3D case
this step will be challenging as the number of calculations for
homogeneously strained crystal can become quite large if the
strain field is complex, as there are six independent components
of strain tensor in 3D. The construction of strain-parameterized
Bloch functions, described in section 2.2, might also become
non-trivial due to the complexity of electronic wavefunctions
in 3D. Proper choice of expansion basis ϕm(x) for the Bloch
functions in equations (19) and (20) will be essential.

The fourth step in the flow chart is the solution of
coupled differential equation for the envelope functions, the
equation (28). This step, having been discussed in section 2.3,

(a)

(b)

Figure 6. Relative difference of energy eigenvalues obtained by
direct diagonalization and envelope function method. The energy
eigenvalues from direct diagonalization of a 5000 by 5000
Hamiltonian matrix are served as reference to calculate the relative
difference. In (a), zone-center Bloch functions of the lowest five
bands are used to carry out envelope function expansion.
The envelope functions are represented numerically using one mesh
grid every unit cell. This leads to the diagonalization of an
approximately 500 by 500 matrix. In (b), only valence and
conduction bands zone-center Bloch functions are involved in
envelope function expansion. The envelope functions are
represented using one mesh grid every four unit cells. The resulting
matrix for diagonalization is of order 50 by 50.

should be straightforward once the differential operators P∗

and P∗
0 , strain parameterized Bloch functions u∗

n0(x; ε(x))

and the associated strain parameterized energy eigenvalues
εn0(ε(x)) have all been determined in the previous steps.
Nevertheless, the computational cost of solving the differential
eigenvalue equation will become larger as the dimensionality
of the problem increases, as more spatial or Fourier grids will
be needed to represent the envelope functions Fn(x), resulting
in larger matrices for numerical diagonalization.

In summary, the application of our envelope function
method to a generic 3D problem will be feasible but
challenging. We therefore believe that our method will
most likely find applications in cases where the 3D problem
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Figure 7. Amplitude square plot of envelope functions Fn(x) for states near valence and conduction band edges. The electronic states
plotted are VBM, VBM + 1, CBM and CBM − 1. For these band edge states, only valence band (n = 2) and conduction band (n = 3) have
significant envelope function amplitudes.

Figure 8. Flow chart to implement the envelope function method described in this article. The first step is the determination of a smooth
displacement field u(x) which can map the unstrained crystal (and the associated vacuum space, if any) to the strained crystal. The strain
field ε(x) can be calculated from the displacement field u(x). The second and third steps are construction of strain-parametrized Bloch
functions and energy eigenvalues at the reference crystal momentum (usually Brillouin zone center), through ab initio or semi-empirical
electronic structure calculations of a series of homogeneously strained crystal, using strain values taken from the inhomogeneously strained
crystal. The last step is the solution of the coupled differential equation for the envelope functions as a generalized matrix eigenvector
problem.
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is quasi-1D or 2D, namely when only one or very few
components of the strain tensor are varying slowly in space.

We also comment here a few issues related to the
central approximation adopted in our method, the local
approximation of crystal potential in strained crystal elaborated
in section 2.3. The approximation states that in a slowly-
varying inhomogeneously strained semiconductor or insulator,
the local crystal potential V (x′) can be well approximated
by that of a homogeneously strained crystal with the same
strain tensor ε(x′). This local approximation of strained
crystal potential is likely to be a good approximation only
for non-polar semiconductors such as silicon and germanium.
For polar semiconductors such as gallium arsenide, strain
could induce piezoelectric effect, which generates long-range
electric field in the deformed crystal and significantly increases
the error of this approximation. Furthermore, we note that for
certain materials with more than one atoms within a unit cell,
strain can induce internal relaxation of atoms relative to each
other on top of the displacement described by strain tensor, an
effect not included in our present method and must be carefully
checked in realistic calculations.

5. Envelope function equation for empirical
applications

In this section, we will cast the envelope function equation
(equation (28)) in a new form in which the strain-parametrized
Bloch functions u∗

n0(x; ε(x)) will not appear explicitly. They
will be replaced by a set of matrix elements involving their
integrals. Doing so allows the method to be used empirically,
where the matrix elements can be fitted to experimental data.
The connection to traditional k · p envelope function method
will also become clearer. For convenience, we rewrite the
relevant equations below∑

n

P∗ [
Fn(x)u∗

n0(x; ε(x))
] −

∑
n

Fn(x)P∗
0

[
u∗

n0(x; ε(x))
]

=
∑

n

Fn(x) [E − εn0(ε(x))] u∗
n0(x; ε(x)), (55)

where

P∗ = −1

2
aij (x)

∂2

∂xi∂xj

− 1

2
bi(x)

∂

∂xi

, (56)

P∗
0 = −1

2
(I + ε(x))−1

im (I + ε(x))−T
mj

∂2

∂xi∂xj

∣∣∣∣
ϕ(x)

. (57)

aij (x) and bi(x) are given by

aij (x) = (I + ∇u(x))−1
im (I + ∇u(x))−T

mj , (58)

bi(x) = (I + ∇u(x))−1
nm

∂

∂xn

(I + ∇u(x))−T
mi . (59)

P∗ [
Fn(x)u∗

n0(x; ε(x))
]

can be expanded out as

P∗[Fn(x)u∗
n0(x; ε(x))]

= [P∗Fn(x)]u∗
n0(x; ε(x)) + Fn(x)[P∗u∗

n0(x; ε(x))]

−aij (x)
∂Fn(x)

∂xi

∂

∂xj

u∗
n0(x; ε(x)). (60)

In above expansion, we have used the symmetry property of
aij (x), namely aij (x) = aji(x).

When strain variation ε(x) is varying slowly at atomic
scale, which is the premise of our envelope function
method, the strain-parametrized basis functions u∗

n0(x; ε(x))

for different bands n are approximately independent and
orthogonal:

1

V

∫
dx J (x)

[
u∗

n0(x; ε(x))
]†

u∗
m0(x; ε(x)) ≈ δmn. (61)

The integration is over the whole crystal, whose volume is
V . The Jacobian of deformation map J (x) = det(I + ∇u)

takes into account the change of volume elements during
coordinate transformation. We also note that, J (x) can be
absorbed into the basis functions by re-defining u∗

n0(x; ε(x)) as
J (x)1/2u∗

n0(x; ε(x)), and the whole formalism of our envelope
function method will not change. This can be sometimes
be more convenient for constructing strain-parametrized
basis set.

Using the above orthonormal relation, we can express
P∗ [

u∗
n0(x; ε(x))

]
, P∗

0

[
u∗

n0(x; ε(x))
]
, and ∂

∂xi
u∗

n0(x; ε(x)) in
terms of u∗

n0(x; ε(x)) as

P∗ [
u∗

n0(x; ε(x))
] =

∑
n′

Pnn′u∗
n′0(x; ε(x)),

P∗
0

[
u∗

n0(x; ε(x))
] =

∑
n′

P 0
nn′u

∗
n′0(x; ε(x)),

∂

∂xi

u∗
n0(x; ε(x)) =

∑
n′

Qi
nn′u

∗
n′0(x; ε(x)),

where Pnn′ , P 0
nn′ and Qi

nn′ are matrix elements given by

Pnn′ = 1

V

∫
dx J (x)

{
P∗ [

u∗
n0(x; ε(x))

]} [
u∗

n′0(x; ε(x))
]†

,

P 0
nn′ = 1

V

∫
dx J (x)

{
P∗

0

[
u∗

n0(x; ε(x))
]} [

u∗
n′0(x; ε(x))

]†
,

Qi
nn′ = 1

V

∫
dx J (x)

{
∂

∂xi

u∗
n0(x; ε(x))

} [
u∗

n′0(x; ε(x))
]†

.

Equation (55) can now be written in terms of
u∗

n0(x; ε(x)) as

∑
n

{
P∗Fn −

∑
n′

aij (x)Qi
n′n

∂Fn′

∂xj

+
∑
n′

(Pn′n − P 0
n′n)Fn′

}
u∗

n0

=
∑

n

Fn(x) [E − εn0(ε(x))] u∗
n0. (62)

Equating coefficients of u∗
n0 on both side [16], we arrives at a

new form of envelope function equation

−1

2
aij (x)

∂2Fn

∂xi∂xj

− 1

2
bi(x)

∂Fn

∂xi

−
∑
n′

aij (x)Qi
n′n

∂Fn′

∂xj

+
∑
n′

(Pn′n − P 0
n′n)Fn′ + εn0(ε(x))Fn = E Fn (63)

In the equation, aij (x) and bi(x) are related to deformation
mapping and can be calculated once the displacement field
u(x) is known. Qi

n′n and (Pn′n −P 0
n′n) can be calculated either
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by constructing the strain-parametrized basis set or by fitting
empirically to experimental data. As a sanity check, when a
crystal is undeformed, namely u(x) = 0, we have aij (x) = δij ,
bi(x) = 0, J (x) = 1, Pnn′ = P 0

nn′ , εn0(ε(x)) = εn0, and the
envelope function equation will become

−1

2
∇2Fn −

∑
n′

qi
n′n

∂Fn′

∂xi

+ εn0Fn = E Fn (64)

with qi
n′n being

qi
n′n = 1

V

∫
dx [un0(x)]† ∂

∂xi

un′0(x) (65)

Equation (64) recovers the envelope function equation for bulk
crystals [16].

6. Summary and conclusion

To summarize, we have developed a new envelope function
formalism for electrons in slowly-varying inhomogeneously
strained crystals. The method expands the electronic wave-
functions in a smoothly deformed crystal as the product of
slowly varying envelope functions and strain-parametrized
Bloch functions. Assuming, with justifications, that the lo-
cal crystal potential in a smoothly deformed crystal can be
well approximated by the potential of a homogeneously de-
formed crystal with the same strain value, the unknown crys-
tal potential in Schrödinger equation can be replaced by the
a small set of strain-parametrized Bloch functions and the
associated strain-parametrized energy eigenvalues at a cho-
sen crystal momentum. Both the strain-parametrized Bloch
functions and strain-parametrized energy eigenvalues can be
constructed from ab initio or semi-empirical electronic struc-
ture calculation of homogeneously strained crystals at unit-cell
level. The Schrödinger equation can then be turned into eigen-
value differential equations for the envelope functions. Due to
the slowly-varying nature of the envelope functions, coarse
spatial or fourier grids can be used to represent the envelope
functions, therefore enabling the method to deal with relatively
large systems. Compared to the traditional multi-band k · p
envelope function method, our envelope function method has
the advantage of keeping unit-cell level microstructure infor-
mation since the local electronic structure information is ob-
tained from ab initio or EPM calculations. Compared to the
conventional EPM method, our method uses envelope func-
tion formalism to solve the global electronic structure, there-
fore has the potential to reduce the computational cost. The
method can also be used empirically by fitting the parameters in
our derived envelope function equations to experimental data.
Our method thus provides a new route to calculate the elec-
tronic structure of slowly-varying inhomogeneously strained
crystals.
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