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Abstract

A microscopic phase field (MPF) model is formulated to describe quantitatively the core structure and energy of dislocations using ab

initio data as input. Based on phase field microelasticity theory implemented in the slip plane using Green’s function to describe the long-
range elastic interaction, the MPF model is a three-dimensional generalization of the Peierls model. Using the same generalized stacking
fault energy as input, the core structure and energy predicted for straight dislocations by the MPF model show complete agreement with
those predicted by the Peierls model. The ability of the MPF model to treat dislocations of arbitrary configurations is demonstrated by
calculating the structure and energy of a twist grain boundary in aluminum. After discrete lattice sampling a la Nabarro, the grain
boundary energy manifests Read–Shockley behavior for low-angle boundaries as well as deep cusps for high-angle special boundaries,
indicating a “Peierls torque friction” effect for grain boundaries that has the same physical origin as the Peierls lattice friction for
dislocation cores.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Dislocations and grain boundaries (GBs) are fundamen-
tal structural defects that dictate the physical and mechan-
ical properties of crystalline solids [1,2]. Defect engineering,
where dislocation configurations and grain boundary
characters are optimized to achieve specific properties or
functionalities, relies on knowledge of the fundamental
properties of these defects. Even after decades of research
since the discovery of dislocations in the 1930s, predicting
their basic properties (e.g. structure, energy and chemistry
of a dislocation core) still poses a great challenge [3–13].
While ab initio calculations and MD simulations are
powerful tools for studying GBs and dislocations, they
http://dx.doi.org/10.1016/j.actamat.2014.03.065
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are limited by the size scale (for example, the low-angle
GBs studied in this paper have very large unit cells) and
by the complexities of the interactions that they can handle,
including chemical composition and timescale. For
example, empirical interatomic potentials are typically
hard stretched to handle more than two element types.
Ab initio calculations, while not limited in the element
types, are much more limited in size scale, and would also
be hard pressed to describe finite-temperature behavior
because of timescale limitations.

Because of these limitations, the most widely used
methods today in studying dislocations are still based on
continuum elasticity. There are two classes of approach
to dislocations: the Volterra model [14] and the Peierls
model [15] (see also Ref. [16] for a recent review). In the
Volterra model, a dislocation is treated as a geometrical
line singularity in a linear elastic continuum, so dealing
eserved.
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with atomic displacements at the very core of the disloca-
tion is avoided. As a result, the size (cut-off radius) and
energy associated with a dislocation core are inputs rather
than outputs of the model. Discrete dislocation (DD) sim-
ulations [17–24], which are mostly based on the Volterra
framework, require the definition of the cut-off radius for
dislocation cores and the rules for core–core reactions
and junction formation. In the Peierls model, on the other
hand, a dislocation core is treated by two competing ener-
getic terms: a non-quadratic energy from materials residing
in the slipped region, described by the generalized stacking
fault (GSF) energy [25–28], which has non-convex parts,
and a quadratic elastic energy from materials in the
remaining crystal volume. The elastic energy term alone
favors an infinitely extended dislocation core, while the
inelastic non-convex energy term favors an infinitely con-
tracted core. The interplay of the two yields an equilibrium
core structure with a finite size and the associated core
energy. The inelastic energy in the Peierls model is a much
reduced (1-D [29] or 2-D [25]) section of a general potential
energy surface defined in a 3N-dimensional configurational
space (where N is the total number of atoms). In principle,
the critical information about core–core interactions
required by the DD simulations can be obtained from the
Peierls model. The calculation of the elastic energy in the
Peierls model, however, employs a dislocation density infi-
nite ribbon to infinite ribbon interaction kernel of log r
type, which limits its applications to straight dislocations.

The phase field model for dislocations [30] employs
the Khachaturyan–Shatalov (KS) microelasticity theory
[31–33], implemented using the exact 3-D Green function,
to describe the long-range elastic interaction. The volume
element to volume element interaction kernel of 1=r3 type
is more general than the previous log r-type interaction
kernel. For straight dislocations, these two integrals give
exactly the same elastic energy. However, when the symme-
try is broken in the dislocation line direction, the log r kernel
no longer works, but the phase field energy functional
continues to work as demonstrated [30,34].

However, because of the coarse-grained (10–100b; b as
Burgers vector) nature of the method, there has been no rig-
orous treatment of dislocation cores in these approaches.
The incorporation of the GSF energy into the phase field
model [34,35] has made it possible to treat dislocation core
structures at the sub-Burgers vector resolution, as in the
Peierls model, but the predicted core structure by the phase
field model [35] still does not converge exactly to the Peierls
model. In this paper we formulate a new approach, called
the microscopic phase field (MPF) model, taking full
advantage of the KS microelasticity theory mentioned
above, and show its equivalence to the Peierls model when
describing straight dislocations. We then demonstrate the
ability of the MPF model to treat more complex dislocation
core configurations, such as those seen in GB dislocation
networks. Being a 3-D generalization of the Peierls model,
the MPF model offers a general quantitative means of
predicting the defect size, energy and activation pathway
associated with defect nucleation, as well as treating dislo-
cation core–core interactions using ab initio electronic struc-
ture calculations as input.

In previous phase field dislocation models [30,34,35], the
inelastic displacement or strain fields are defined and
relaxed in the 3-D space. The local energy density in any
volume element is composed of an elastic energy and a
crystalline (or GSF) energy. Since, by definition, the crys-
talline energy reduces to the elastic energy at a small strain
value, there is a possible overcounting in the total energy.
The Peierls model, on the other hand, does not have this
ambiguity since it treats the two energies in separate space:
an atomic-layer thin slip plane, where the displacement is
inelastic and is treated by a non-convex (the GSF) energy,
and the remaining space as a linear elastic body fully
described by the quadratic elastic energy. In the present
model we formulate a new elasticity expression that, similar
to the treatment in the Peierls model, confines the inelastic
displacement strictly to the slip plane and resides the elastic
energy in the two infinite half spaces. This, together with
further removal of the gradient energy term, allows the
MPF model to converge to the Peierls model.

The MPF model has a spatial resolution of dislocation
core size, similar to the Peierls model. At such a length
scale, as discussed earlier, the equilibrium core width is bal-
anced by the elastic energy and the inelastic misfit energy.
This is different from the mesoscale phase field dislocation
models, where a conventional gradient energy is required
to produce a smooth (though artificially wide, mesoscale
size) dislocation core. However, a gradient term with dis-
tinct physical meaning could still be present at the micro-
scopic scales. For example, a typical gradient form was
shown in a continuum transition from a lattice Greens
function formulation for Peierls dislocation [36]. Such a
form was also found in the transition of a discrete spinodal
decomposition model [37] to a continuum one [38] in phase
transformation theory. More discussions may be found in
Ref. [16].
2. Microscopic phase field dislocation model

In the Peierls model, a dislocation is described by a 1-D
spatially continuous distribution of (inelastic) slip displace-
ment traversing a dislocation core. The displacement, mostly
local to the core, results in an atomic misfit energy to the
crystal, due to local disregistry of atomic positions above
and below the slip plane, and a long-range elastic energy.
Such a picture can be generalized to a field description of
strain field. This results in the basic order parameter in the
MPF dislocation model, �ijðrÞ, defined as an inelastic strain
field with reference to a perfect crystal. It is expressed as

�ijðrÞ ¼
XN

p¼1

�p
ijgpðrÞ ð1Þ

over all active slip systems, each characterized by a phase
field gp and an associated unit (slip type) strain tensor
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�p
ij ¼

np
i bp

j þ np
j bp

i

2dp ð2Þ

Here p is the index for each of the N slip systems, and bp, np

and dp are the respective Burgers vector, slip plane’s
normal vector and interplanar distance of the slip planes.

The inelastic strain field fully describes the configuration
of dislocations. It gives rise to the total energy as a
functional

E ¼ E½�ijðrÞ� ¼ Em þ Eel þ W ð3Þ
The elastic energy

Eel ¼ 1

2

Z
-- Cijkl~�ijðgÞ~��klðgÞ � ni~rijðgÞXjkðnÞ~r�klðgÞnl

� � dg

ð2pÞ3

ð4Þ
with g the reciprocal vector, n � g=jgj its direction and
½X��1

ik ðnÞ ¼ Cijklnjnl. The tilde � designates a Fourier trans-
form, and the asterisk a complex conjugation. rij � Cijkl�kl.
The principal value integral

R
-- excludes a small volume

2p=V at g ¼ 0, with V the volume of the system in the real
space. With Eq. (1), the elastic energy becomes

Eel ¼ Eel½gðrÞ� ¼ 1

2

XN

p;q¼1

Z
--BpqðnÞ~gpðgÞ~g�qðgÞ

dg

ð2pÞ3
ð5Þ

where BpqðnÞ ¼ Cijkl�
p
ij�

q
kl � nir

p
ijXjkðnÞrq

klnl. The crystalline
energy is

Em ¼
Z

f mð�ijðrÞÞdr ð6Þ

and the mechanical work is

W ¼ �
Z

rappl
ij ðrÞ�ijðrÞdr ð7Þ

with applied stress rappl
ij .

We now consider that gðrÞ is only distributed in a plane
z ¼ zs, which coincides with the slip plane, i.e.

gpðrÞ ¼ /pðx; yÞdðz� zsÞd ð8Þ

with d the inter-planar spacing, and /pðx; yÞ � gpðx; y; zsÞ.
The elastic energy (5) becomes

Eel ¼ 1

2

XN

p;q¼1

Z Z
Kpqðgx; gyÞ~/pðgx; gyÞ~/�qðgx; gyÞ

dgxdgy

ð2pÞ2
ð9Þ

with

Kpqðgx; gyÞ � d2

Z
BpqðnÞ

dgz

2p
ð10Þ

Note that, while Bpq is only a function of direction n in
the reciprocal space, Kpq is generally not. The crystalline
energy becomes

Em ¼
Z

cðuðrÞÞ
d

dr ¼
Z

cðuðrÞÞdxdy ð11Þ

with c the GSF energy [25]. In the plane, the independent
variable �ij reduces to the inelastic displacement vector

uðrÞ �
PN

p¼1bp/pðrÞ. It follows that
dE
d/p
¼ ddðz� zsÞ

dE
dgp

¼ @c
@/p
� drappl

ij ðrÞ�0
ij

þ
XN

q¼1

ZZ
Kpqðgx; gyÞ~/qðgx; gyÞeiðgxxþgy yÞ dgxdgy

ð2pÞ2
ð12Þ

The dislocation dynamics is characterized by a linear-
ized dissipative law:

@/p

@t
¼ �Lp

dE
d/p

ð13Þ

The special condition, dE=d/p ¼ 0, corresponds to an
equilibrium state of a dislocation (or dislocations).

Eqs. (1)–(13) are analytically similar to common phase
field microelasticity for alloy precipitates [33], with one
important distinction: the order parameter fields reside in
a plane (the crystallographic slip plane) instead of a 3-D
space. Therefore, it is particularly efficient to employ a
numerical scheme based on 2-D spatial discretization and
fast Fourier transform (FFT), rather than the more general
3-D discretization and FFT for treating precipitates. In
essence, because a general dislocation loop may be
regarded as an infinitely thin precipitate, one can employ
2-D FFT to resolve the area element to area element elastic
interaction mediated by a 3-D elastic half space (the bot-
tom elastic half space is anti-symmetric to the top elastic
half space, and the two half spaces are “glued” together
by the nonlinear, nonconvex GSF). This linear elastic inter-
action is long ranged, but is convex and additive, and
therefore best handled in 2-D reciprocal space (although
the Green’s function itself is derived from 3-D elasticity).
The nonlinear nonconvex GSF that glues the two half
spaces together provides the nonlinearity in this problem
for “phase transformation” in the slip order parameter; it
is local and therefore best handled in 2-D real space.

We apply Eq. (13) to calculate dissociation of a h110i dis-
location in Ni3Al that Schoeck et al. [7] did with a Peierls
model. The same GSF energy c and anisotropic elastic con-
stants are used. As shown in Fig. 1, the core structures cal-
culated from Eq. (12) (smooth curves) agree with those from
the Peierls model (open and filled circles). It is also seen that,
as Schoeck et al. had shown, the core configurations do not
strictly pass the planar faults CSF and APB on the GSF
energy surface because of the elastic stress, with the screw
core deviating further due to the greater self-stress.
3. Pure-screw twist boundary

With a field description of inelastic displacement uðrÞ, a
dislocation is seen not as a singular line with a unit Burgers
vector, but as a distributed configuration; nor is this
description restricted to simple geometries such as straight
lines. With the latter, the model is superior for treating
complex dislocation configurations, for example, a pure-screw
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twist boundary. Construction of a twist boundary from a
perfect crystal may be done in two consecutive steps:
(a) a rigid-body rotation of the top half crystal with
respect to the bottom half. The displacement due to the
rotation is uR (Fig. 2) and (b) local relaxation of both half
crystals: an original point P in the boundary plane moves
to T in the top crystal and to B in the bottom crystal, with
displacements of vT and vB, respectively. The relaxation dis-
placements produce no macroscopic rotation of the crystal
and, like the Peierls model, are assumed to be inelastic in
the boundary plane and linear elastic in the remaining
Fig. 2. Displacements in construction of a twist boundary.
crystal. The total relative displacement between the two
half crystals after the two steps is uBTðrÞ ¼ vBTðrÞ þ uRðrÞ.

Similar to the dislocation model, the energy of the twist
boundary consists of a misfit energy (from the inelastic
force in the boundary plane in 2-D),

Em ¼ Em½uBT� ¼ Em½vBTðrÞ þ uRðrÞ� ð14Þ
and an elastic energy (from the two linear elastic half
spaces in 3-D),

Eel ¼ Eel½vBTðrÞ� ð15Þ
The displacement of the rigid-body rotation is

uRðrÞ ¼ ½Rðh=2Þ � Rð�h=2Þ�r ð16Þ
with R the rotation matrix

RðxÞ ¼
cos x sin x

� sin x cos x

� �

uR is subtracted from the elastic energy (Eq. (15)) because a
rigid-body rotation does not contribute to the elastic strain.
Note that the remaining local relaxation displacement, vBT ,
is periodically varied on the grain boundary plane and can
be solved by Eq. (9).

We apply the formulas (Eqs. (9), (11), (14) and (15)) to
simulate the (111)-twist boundary of aluminum. The GSF
and elastic constants of aluminum are from ab initio calcu-
lations. Each calculation is performed by imposing a fixed
macroscopic rotation angle h. The initial condition is



Fig. 3. Misfit energy plot of the (111) pure-screw twist boundary of Al
(h ¼ 1�). The bottom left box (size 57:3b� 99:2b) shows the periodic cell
of computation.
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uBTðrÞ ¼ uRðrÞ (or vBTðrÞ ¼ 0 and a twist angle h). Relaxa-
tion takes place until the variation of the total energy
dE=dvBTðrÞ reaches zero. A fully relaxed pure-screw twist
boundary with twist angle h ¼ 1

�
is shown in Fig. 3. The

grain boundary energy is calculated for different twist
angles up to 60�, plotted in Fig. 4.

4. Discussion

The twist boundary (Fig. 3) reproduces the well-known
alternating contracted and extended nodes on a (111)
plane of a face-centered cubic (fcc) crystal. However, this
is now done quantitatively in a Peierls framework, without
assumptions of the size of the nodes or the spacing and ori-
entation of the constituent dislocation segments. On the
other hand, since the present model is still formulated in
a continuum space, the resultant grain boundary energies
along the twist angle (Fig. 4) only reproduce the envelop
of the actual curve without showing cusps that correspond
to special boundary orientations. At small angles (<4�), the
grain boundary may be considered as a structure formed by
three distinctive arrays of 1=2h110i screw dislocations
related by a threefold rotation. The dislocation density
increases with the twist angle, as do the specific (i.e. per
area) elastic energy and misfit energy. However, with fur-
ther increasing angle, the specific elastic energy starts to
decrease because of the overlapping of strain fields from
neighboring dislocations, while the misfit energy continues
to increase monotonically. At small angles, the grain
boundary energy may be fitted with the Read–Shockley
equation, cs ¼ c0hðA� ln hÞ, with c0 ¼ 1:0183 J m�2;A ¼
�1:0868. The latter corresponds to a cut-off radius
r0=b ¼ 1:28. It is seen that the Read–Shockley equation fits
up to only about 4�.

Real grain boundaries obviously consist of discrete
atoms. Although the present model is formulated on a con-
tinuum basis, it is easy to see that, at small twist angles,
because the period of the grain boundary structure (or
the spacing between dislocations) L is much greater than
the fcc lattice spacing, the grain boundary energy obtained
by counting over discrete lattice (individual atomic bonds)
is almost the same as by integrating continuously. At large
angles, however, the difference will become significant. To a
first approximation, we may take a grain boundary relaxed
in the continuum model, but count the misfit energy only
on fcc lattice points on the slip plane, and assume that
the elastic energy is the same as in the continuum model.
This is similar to the method Nabarro used to investigate
the Peierls stress of a dislocation [1]. The resultant grain
boundary energy is plotted in Fig. 5. It is interesting to
see that, at h ¼ 60�, the grain boundary energy by Nabar-
ro-style discrete lattice sum [39] is very low. This is indeed
physically reasonable, since h ¼ 60� is a coherent twin (R3)
boundary. We can understand this result by considering
the facts that: (a) the energy associated with a long-wave-
length, low-amplitude elastic strain field in the model is
small because of the fine continuum dislocation network
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spacing L on the boundary, which leads to rapid exponen-
tial decay of the stress field away from the boundary, with
decay length / L and (b) the discrete lattice sampling of
inelastic energy avoids the cores of the fine continuum dis-
locations. From Fig. 5, we see that a cuspy cðhÞ appears as
soon as the Nabarro-style continuum integral ! discrete
lattice sum mapping is performed.

Thus, our modeling results demonstrate explicitly that
the cuspy grain boundary energy cðhÞ seen experimentally
has exactly the same physical origin as the Peierls lattice
friction for dislocations. If one tries to continuously
increase the twist angle h of a grain boundary, one must
encounter “Peierls torque friction” due to encountering
the cðhÞ cusps, which exist at all crystallographic (integer
R) twist angles, but with greatly varying magnitudes. The
only difference from the Peierls stress for dislocations is that
the former is for a rotational defect while the latter is for a
translational defect, on a 2-D crystallographic plane.

5. Summary

By partitioning the total energy of a dislocation-contain-
ing crystal in the same way as in the Peierls model, we have
shown that the MPF predictions of the core structure of
straight dislocations agree well with the Peierls model. At
the same time, we have demonstrated that the MPF model
is a 3-D generalization of the Peierls model, and that it is
able to predict the structure and energy of more compli-
cated dislocation substructures formed, for example, at
grain boundaries or inter-phase interfaces, using solely ab
initio calculation inputs. The application of the MPF
model has generated immediately non-trivial results. It
shows that, for a pure-screw twist boundary that has a
well-defined dislocation substructure, the Read–Shockley
equation is valid up to only 4�. It predicts cusps for high-
angle special grain boundaries and Peierls torque friction
for grain boundary sliding that has the same physical origin
as the Peierls–Nabarro lattice friction for dislocation glide.
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