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Abstract

Initial condition dependence is the key to understanding the difference between ideal strength and actual strength of both crystalline
and amorphous materials. Besides intrinsic structural heterogeneities in metallic glasses (MGs), a class of “extended defects” based on the
“connected atomistic free volume” (CAFV) is proposed to define the microstructure (initial condition), which is crucial to understanding
the strength. To explore these concepts and theories, deformation of finite-sized MG samples with different populations of pre-existing
extended defects (damages) are simulated using a nanometer-scale shear transformation zone (STZ) model based on microelasticity and
the kinetic Monte Carlo method. A “smaller is stronger” effect on the peak stress of simulated true stress–strain curves is seen in samples
with pre-existing damage introduced as post-activated STZ clusters. Samples with “chemically contaminated” surface STZs also exhibit a
size effect on the peak stress, and depending on whether the surface STZs are softer or harder than the bulk STZs, smaller can be either
weaker or stronger.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It was the striking difference between Frenkel’s predic-
tion of ideal shear strength and the experimentally
measured yield strength that inspired Orowan, Polanyi
and Taylor to predict the presence of dislocations in real
crystals [1]. This has led to significant advances in physical
metallurgy based on controlling dislocation/grain bound-
ary populations and activities in alloys. Realizing that the
strength of a solid depends on its current microstructure,
which is a function of past processing and service history,
has revolutionized the way of thinking in materials science.
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To predict the mechanical behavior of a material, knowing
just the crystal structure and chemical composition, is usu-
ally not sufficient. It is equally vital to know the initial con-
dition (IC) of the defect populations such as the grain size
distribution and dislocation density. For instance, by pro-
ducing crystals with fewer and fewer pre-existing disloca-
tions, their low-temperature local strength will eventually
converge to Frenkel’s theoretical prediction of
rideal � 0:1G where G is the shear modulus [2].

This microstructure dependence of materials properties
is also true in computer simulations. For instance, in order
to simulate plastic yielding of a crystalline metal by ramp-
ing up the stress of a simulation supercell in a large-scale
molecular dynamics (MD) simulation, one needs an IC
for the atomic positions x3N , where N is the number of
atoms. While it is very easy (and therefore tempting in
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practice) to build a perfect single-crystal supercell as ICA, it
takes significantly more effort to add a dislocation loop to
this supercell (ICB), as one needs to arrange the atoms
properly according to dislocation theory and anisotropic
elasticity. In the subsequent MD simulation these two
ICs would give very different results, involving different
physics. With ICA, one will get the impression from the
simulation that plastic yielding occurs near the ideal
strength rideal as Frenkel predicted, and the expressed phys-
ics is homogeneous dislocation nucleation. With ICB, the
obtained yield strength may be 10- to 1000-fold smaller
than rideal, depending on the size of the initial dislocation
loop that one puts in, and the expressed physics would be
dislocation line tension and perhaps Peierls stress of the
dislocation core, and dislocation multiplication, intersec-
tion and junction formation. Thus, the same MD simula-
tion code and the same boundary conditions (stress
ramp-up at the same temperature, with the same periodic
boundary condition) will paint quite different physical pic-
tures. The famous experimentalists’ mantra “microstruc-
ture determines properties” simply translates to expecting
large “initial condition sensitivity” in computer simulations
of strength, ductility and other mechanical properties. The
fundamental cause for the above is that defects such as dis-
locations do not have a thermal equilibrium distribution:
they exist only in strongly driven, out-of-thermal-equilib-
rium dissipative situations, and thus are strongly history
dependent.

Our adventure with simulating and understanding
metallic glass (MG) strength is likely to follow a similar
route, even though identifying/describing the “microstruc-
ture” of a glass is still a semantically complex and experi-
mentally unsolved problem. We use words such as “shear
bands” to describe what little we can see with microscopy
and spectroscopy of these extended defects in MGs, but
we do not yet have experimental characterization tech-
niques approaching the precision and resolution of
"g-dot-b" analysis and direct STEM-EELS imaging of dis-
location core for crystals. Temporally extended flow defects
emerge in stressed MGs in a totally unstable manner
(explosive growth in a very short time), at least in bulk
samples, further hampering stable experimental observa-
tions. As a flip-side to the experimental difficulties of
“microstructural characterization” in MGs, in simulations
the aforementioned IC sensitivity issue is quite often simply
ignored. The present work aims to explore this initial con-
dition sensitivity in MG numerically by properly defining
“extended defects”, “microstructure” and “ideal strength”

for glasses, and to show that the strength of a glass sample
is really an IC- and size-dependent quantity, just like in
crystals.

So far, experiments on various bulk metallic glasses
(BMGs) have revealed a peak shear stress limit of
rBMG

peak � 0:036G at T ¼ 0 K [3]. But this may not be the
“ideal strength” rideal of MG, if we heed the story of crys-
tals. Obviously � 0:036G is still � 3 times less than
� 0:1G, the usual ideal shear strength of simple metallic
crystals without surfaces [2]. For reference, rideal of a crys-
tal is defined at temperature T ¼ 0 K as the maximum
stress that a perfect crystal without any defect—even sur-
faces—can sustain indefinitely without losing homogeneity
of the lattice or undergoing phase transformation. (Such
perfect crystal configurations without surfaces exist in
computer simulations only, under the periodic boundary
condition (PBC), also known as the Born–von Karman
boundary condition.) However, should a MG also have
a similar normalized “ideal strength” akin to that of sim-
ple crystals? Even more fundamentally, should MGs have
an “ideal strength”? And what would be the meaning of
such a concept atomistically for a material that has intrin-
sic (as well as possible extrinsic) heterogeneities? This is
the first conceptual question that this paper aims to
answer.

If one takes a pragmatic approach, and defines rideal as
the lowest “upper bound” to the measurable strength of
a MG at T ¼ 0 K, then empirical evidence [4,5] suggests
that submicron-sized MGs may sustain higher measurable
rpeak than BMGs of the same chemical composition, and
thus rideal > rBMG

peak . This, if true, would agree with the
“smaller is stronger” trend in crystals, where rideal can be
approached, but never overtaken, by reducing the size of
the sample or the size of the stressed region as in spherical
nanoindentation of a half-space [2]. This possible “size
dependence” of MG strength is the second conceptual
question that this paper aims to address. As it turns out,
the question of “size dependence” is deeply entangled with
the question of initial condition sensitivity (this is also true
for crystals [6]). Depending on the statistical specification
of the IC of MG samples, one may or may not obtain
size-dependent strength. This will be borne out by our sim-
ulations. In particular, we will explore different initial
defect/flaw/damage populations in a MG sample, includ-
ing, but not limited to, surface softening/hardening layers
due to chemical implantation (e.g. from focused ion beam
(FIB)), surface notches, pores and pre-existing internal
shear bands [7]. These heterogeneous features (defects/
flaws/damage) are called extended defects (a more formal
definition will be given later), as they are above and beyond
the intrinsic heterogeneities of the glass structure, and must
be created extrinsically during thermomechanical process-
ing, such as surface roughness due to casting, FIB and/or
corrosion, shear bands due to unintentional impact in han-
dling and/or previous mechanical service, or irradiation. In
fact, contradicting conclusions [8] on the size dependence
of the strength of MG nanosamples may imply that these
laboratory-made samples could be far away from a “flaw-
less” IC [9].

To address the above questions we will take a commonly
accepted picture of how MGs deform, namely by shear
transformation zones (STZs) that couple to each other by
microelasticity [10,11]. The STZs are � 1 nm in size for
common MGs based on atomistic simulations [12], and
are the smallest units of inelastic deformation. They are
inherently heterogeneous, with different shear options
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(event menus) even before any macroscopic deformation is
applied, reflecting the intrinsic heterogeneity and structural
randomness (lack of long-range order) that define a glass
[13]. In STZ dynamics simulation, unlike traditional con-
tinuum meshing approaches, the STZ size is fixed and
not arbitrarily changeable like the finite-element meshes.
For each individual STZ, one defines history-dependent
local shear event menus that list random shear options even
before thermal fluctuation is added, with effects such as
damage accumulation, shear-softening (rejuvenation),
damage repair (aging), dilation, heat generation, tempera-
ture diffusion and extreme-damage-induced cavitation.
One then runs kinetic Monte Carlo (kMC) simulations
on these spatially randomized STZs, where each STZ
may be activated by the local stress and temperature, with
the global stress and temperature fields satisfying contin-
uum conservation laws. In STZ dynamics simulation, while
one is mindful of atomistics, the atomistic details are
coarse-grained and abstracted. We believe that such an
STZ dynamics model provides sufficient basis to address
the two conceptual questions posed above.

This paper is organized as follows. In Section 2.1 we
introduce the numerical scheme of STZ dynamics simula-
tion [13], now allowing elastic modulus inhomogeneity so
that free surfaces, voids, etc., can be present in the simula-
tions. In Section 2.2 different types of possible pre-existing
defects/flaws/damages are described, and geometrical pre-
scriptions and statistical models are established, which
are closely related to the size dependence. In Section 3
the results of the simulations are described. In Section 4
we discuss the meaning of our results and address the
two conceptual questions.
2. Theory and simulation methods

2.1. STZ dynamics model and inhomogeneous elasticity

solver

The basics of our model are illustrated in Fig. 1. Each
voxel (volume element) is considered as a potential STZ
which could undergo certain inelastic transformation
selected from a specific event catalog. Once a transforma-
tion occurs, we say that this voxel is undergoing a genera-
tion change g ! g þ 1, meaning that there is an internal
structural change among atoms of this cluster, even after
the “trivial” thermal vibrations and elastic displacements
are filtered out [13]. Due to the disordered nature of
glasses, voxels sit at different locations, e.g. A and B in
Fig. 1 will have different event catalogs as indicated by
the first two generation changes, i.e. 0 ! 1 and 1 ! 2
for both A and B. Each transition path, indicated by an
arrow pointing to a potential transition state (dotted
parallelogram) from the current generation, is described
in our mesoscale model by a characteristic stress-free

transformation strain (SFTS) tensor [14] �
ðmÞ
g!gþ1 and

the corresponding activation energy barrier QðmÞg!gþ1. The
“state-to-state” transition rate associated with this
thermally activated STZ transformation is then given by

kðmÞg!gþ1 ¼ m0 expð�QðmÞg!gþ1=kBT Þ; m ¼ 1; 2; . . . ;M, where

m0 is the attempt frequency of the order of the Debye
frequency, kB and T are the Boltzmann constant and
temperature, respectively, and M is the total number of
transformation modes one generation change can have.
(This is essentially a topological parameter of the
potential energy landscape and its determination would
ultimately rely on atomistic simulations [13]. Here we
use M¼ 60 in our current 3-D simulations.) Then the
kMC algorithm will evolve the system according to
these defined transition rates and simulate the dynamics
over a much longer time scale than atomic simulations.
The key procedure in all kMC STZ models [10,11,15] is

thus reduced to formulating the activation energy QðmÞ.
In our model, this is given as:

QðmÞg!gþ1 ¼ DF � expð�ggÞ �
1

2
V grg : �

ðmÞ
g!gþ1; ð1Þ

where DF � is the Helmholtz free energy difference between
the initial and the saddle-point configuration, and is mod-
ified by a scalar gg which represents the amount of local

softening at generation g and serves as a state variable to
describe the local structure of the glass. (gg essentially

serves as local “free volume” in the voxel. See Section 4.6
for free-volume connectivity analysis using fggg of voxels.)

V g is the atomic volume at the generation-g configuration.
rg represents the local stress due to the heterogeneous plas-
tic strain distribution and will bias the subsequent STZ
transformations. Reciprocally, the transformations will
alter the local stress by the Eshelby formalism [14], and it
is through such dynamic interactions that the system
reaches a macroscopic deformation pattern, e.g. shear
localization or homogeneous deformation.

The configuration at generation-g Sg is then completely
defined by [13]:

SgðxÞ  f�ðmÞg!gþ1g
M

m¼1
; �gðxÞ;rgðxÞ; ggðxÞ; telap

g ðxÞ
n o

; ð2Þ

where x represents the spatial position and e is the accumu-
lated inelastic transformation strain field. telap is another
structural order parameter indicating how much time has
elapsed since the last STZ transformation at x. The sub-
script g indicates the current generation count. Defining
IC for a MG sample in our model then involves prescribing
Sg¼0.

The simplest Sg¼0 may correspond to setting the inelastic
transformation strain field eg¼0 and the local stress field
rg¼0 to zero, and the softening parameter gg¼0 to zero with

a well-annealed history, i.e. telap
g¼0 � s, where s represents a

characteristic relaxation such as b relaxation [16].

However, because the prior f�ðmÞ0!1g
M
m¼1 is heterogeneously

randomized, there is still an inherent randomness built into
our model.



Fig. 1. Illustration of the heterogeneously randomized STZ model (cf. Fig. 1b of Ref. [10]). QðmÞ is the activation free energy for a voxel to transform in the
mth mode.
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In 3-D simulations, we need to assign 3� 3 matrices
with the trace being zero to SFTS �

ðmÞ
g!gþ1. The SFTS is

the model input which is drawn from certain numerical dis-
tributions confirmed by MD simulations [17]. The inherent
structural isotropy of glass is preserved by drawing SFTS
in a way such that the distribution of any strain component
is invariant under arbitrary rotations. A detailed discussion
and proof of the isotropic distribution is presented in
Appendix A. We also want to study finite-sized samples
by applying our previous transformation elasticity solver
to an elastically inhomogeneous system. This is done fol-
lowing the approach of phase-field microelasticity theory
[18] where a one-to-one mapping between a given inhomo-
geneous system and a virtual homogeneous system is
uniquely established. Based on a recursive algorithm in
Fourier space, we can solve the elastically inhomogeneous
problem by essentially solving a homogeneous one. How-
ever, there could be an efficiency issue and we can use a
Fourier-space filter to achieve faster convergence. A
detailed derivation and a test of our solver are presented
in Appendix B.

2.2. Pre-existing damage and extended defects

The main difficulty that prevents us from establishing
a quantitative theory for MGs as a counterpart of dis-
location theory in crystalline materials is the lack of
experimental and theoretical characterizations of “micro-
structures”, or mesoscale defects/flaws/damages, in MGs
(what we called ICs in the Introduction). These micro-
structures are hereinafter called extended defects, which
are heterogeneous features above and beyond what
may be considered as the intrinsic heterogeneities of
the glass structure. As “extended defect” is the central
conceptual construct of this paper and is closely tied
to the definition of ideal strength, which pertains to
the so-called “reference glass” configuration, a more
careful definition based on atomistic geometry is given
below.

Let us first consider a definition scheme of extended
defects in crystalline materials, using an atomistic construct
of “free volume”. We will not delve into the details of how
an atomistic “free volume” may be defined, e.g. by con-
structing a Voronoi polyhedron around each atom. We
are simply going to assume that we can define such a scalar
for each atom. Since a defect in crystal may be 0-D (point
defect), 1-D (dislocation), 2-D (grain boundary, crack) or
3-D (void), the connectivities between the atomistic free
volumes are important. We may thus define the “connected
atomistic free volume” (CAFV) to characterize the extent
of percolation of free volume. Again, let us not delve into
the details of how this may be done, given the atomic posi-
tions x3N . Methods already exist to label vacancies, intersti-
tials, dislocation cores, etc., in crystalline metals if the
atomic positions are given [19].

Free volume can be either positive or negative. Near
vacancies (lower atomic coordination number than usual),
free volume is positive. Near interstitials (higher atomic
coordination than usual), free volume is negative. Atoms
in a perfect crystalline region, by definition, should have
zero free volume. Experimentally, free volume may be mea-
sured by positron annihilation spectroscopy [20]. Free vol-
ume distribution could also give rise to a degree of image
contrast in transmission electron microscopy [21,22],
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enabling shear bands in MGs to be experimentally identi-
fied [23].

Now imagine that we take a crystalline metal—not a
perfect crystal but a “realistic” crystalline metal—and cool
it down to 0 K. We obtain the so-called inherent structure
[24] configuration, where thermal vibrations are excluded.
If one performs CAFV analysis on this configuration,
and count the occurrence of atoms by their closest CAFV,
one expects a distribution like that shown in Fig. 2. Most
of the atoms have zero CAFV nearby, and thus are repre-
sented by the delta-function peak at 0 Å

3
. Some atoms are

adjacent to vacancies, and some atoms are adjacent to
interstitials, so there can be some counts at, say,
� �12 Å

3
, which is one atomic volume. Note that the equi-

librium concentration of vacancies or interstitials at 0 K is
zero, but real metals tend to be out-of-equilibrium, with
quenched-in vacancies and/or interstitials. Atoms in dislo-
cation cores and grain boundaries are adjacent to even lar-
ger percolating free volume, and are labeled by the other
peaks in Fig. 2. The reason why ideal strength is easy to
define for crystalline materials is that there is a distinct
gap between the 0 Å

3
sharp peak and the nearest �12Å

3

sharp peaks, and there is no other CAFV possibility in
between. In other words, it is very obvious where the point
defects and extended defects are in a crystal. There is no
continuum of metastable atomic geometries between 0 Å

3

and �12 Å
3
, which then allow us to unambiguously define

a “reference” configuration: the perfect crystal. The ideal
strength is defined based on when this theoretical reference
crystal can be made unstable at 0 K.

The difficulty with defining the ideal strength of glass
stems from the uncertainty of how to define a “reference
glass” configuration, or glass configurations with only
“intrinsic” but no “extrinsic” heterogeneities. To clarify
the issue at hand, we illustrate the CAFV spectrum of a
Fig. 2. Schematic results of “connected atomistic free volume” (CAFV)
analysis on crystalline metals and MGs at 0 K.
real MG in Fig. 2. We know that glass by definition has
an out-of-equilibrium structure and lacks long-range order.
Therefore atomic structural fluctuations reflected by either
positive or negative CAFV exist intrinsically, which also
has a smooth distribution instead of a sharp delta-func-
tion-like peak [25]. However, we expect the range of this
“natural” or intrinsic CAFV distribution during a well-
controlled cooling process from liquid melt to be limited
to the level of the atomic volume (� � 12 Å

3
). Extended

defects, on the other hand, characterize something signifi-
cantly bigger than mere atomic-volume-scale CAFV and
are much more collective structural alterations. Without
external mechanical–chemical driving forces much more
potent than kBT strongly driving the system (e.g. surface
roughness due to casting, FIB, corrosion, shear bands
due to previous mechanical service, high-energy irradia-
tion), such large CAFV should never exist in the configura-
tion. This origin of “extrinsic” heterogeneities in MGs is
similar to dislocations which are essentially mechanically
driven, out-of-thermal-equilibrium defects (the thermal
equilibrium population of extended dislocation lines in
crystals should be zero at zero stress due to infinite forma-
tion energy). Also, because of such a large percolating free
volume, atoms near the extended defects possess signifi-
cantly softer vibrational “modulus” and may be under sig-
nificant residual stress as well as an external stress
amplification factor. Atoms near extended defects are
therefore much easier to dislodge by applying an external
stress to the entire system. The above descriptions, though
still not as quantitative as we would like, provide a more
concrete definition of “extrinsic” heterogeneities of glasses,
hereinafter called extended defects in glasses.

If there is a true gap in the CAFV spectrum that allows a
clean separation between the intrinsic heterogeneities and
the extended defects, then our job is easier. In the worst
case of no absolute gap, such as that illustrated in Fig. 2,
we nonetheless can pick a reasonable cutoff in CAFV,
e.g. tens of atomic volume, to separate what is considered
intrinsic from extrinsic heterogeneities. The cutoff should
be chosen such that with a well-administered cooling sche-
dule from liquid melt, under the PBC in all three directions
without free surfaces, a CAFV of this magnitude cannot be
produced even in a macroscopic volume of MG. (In other
words, to create CAFV above this magnitude, some other
mechanical-chemical driving force or thermal gradient
must be applied.) With the CAFV cutoff thus chosen, we
then have a definition of atomic regions containing
extended defects, and atomic regions without any extended
defect. Thus a definition of “reference glass” is provided,
which is a macroscopic volume of glass without any
extended defect, including surfaces. This is a reference
material that is very difficult to obtain in reality. But so
is the perfect crystal on which Frenkel developed his con-
cept of ideal shear strength. Ideal strength, or theoretical
strength, is just a theoretical construct, the result of a
thought experiment, that can have bearing on real experi-
ments in the limiting sense [2]. Let x3N

ref , where N is the total
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number of atoms, denote the “reference glass” configura-
tion above. x3N

ref is a T ¼ 0 K inherent structure [24], a meta-
stable point on the potential energy landscape Uðx3N Þ. We
should also consider the large-size limit in all three direc-
tions for the PBC supercell, N !1. Consequently, the
intensive properties that pertain to x3N

ref should have no T
or N dependence. However, x3N

ref is produced by a hypothet-
ical MD procedure under PBC (liquid cooling to 0 K in a
large PBC supercell) that depends on the cooling rate
� _T . Hence, x3N

ref is a function of the cooling rate used to
produce it:

x3N
ref ¼ x3N

ref ð� _T Þ: ð3Þ
This macroscopic “perfect glass” or “reference glass”

x3N
ref without any extended defect, where atomic-level struc-

tural variations and residual stresses [13,25] exist but are
not yet collective or extended, then allows us to define
the ideal strength rideal of the glass. Imagine a thought
experiment where stress r on a macroscopic “reference
glass” x3N

ref is ramped up from zero, and the temperature
is maintained at 0 K such that no thermal activation is pos-
sible. At some point there will be a bifurcation instability,
where a particular lattice vibrational eigenmode turns
imaginary. However, unlike in perfect crystals, where the
first lattice instability most often leads to large-scale stress
relaxation by dislocation loop or crack nucleation followed
by ballistic motion along crystallographic directions [26], in
MGs such instabilities are often arrested in a local region
due to rapid decay of residual stress, and may not have
much consequence at the macroscopic stress–strain level.
Thus, using the very first vibrational instability to define
rideal may not lead to a very useful concept. A better defini-
tion of rideal could be to allow the first, second, third, etc.,
local instabilities to develop and arrest if they can be
arrested in MD, as r on the macroscopic “reference glass”

x3N
ref is ramped from 0 to rideal quasi-statically, at T ¼ 0 K.

With each local instability that arrests, the MG lands in
a different inherent structure [24], and then the stress
continues to ramp up (while maintained at 0 K) until at
rideal the local instabilities percolate and go global. Thus,
rideal is defined by the point of the first global instability,
with stress ramping from zero on the macroscopic
“reference glass”. What we expect to happen at 0 K is that
at rideal, an extended defect (flow defect) nucleates out of
the “perfect glass” or “reference glass” and finally breaks
into the macroscale. In other words, rideal is defined by
CAFV!1 from a starting sample that initially does
not have any larger-than-intrinsic CAFV (the “reference
glass” initial condition) with a quasi-static stress-ramp at
0 K. We call such a definition scheme of the ideal strength
of glass the “percolation threshold” definition for rideal.
From now on we will use the term “perfect glass”,
“reference glass” or x3N

ref interchangeably. rideal pertains to
x3N

ref , and since x3N
ref depends on the cooling rate used to

produce it, rideal is also a function of the cooling rate:

rideal ¼ rideal x3N
ref ð� _T Þ

� �
¼ ridealð� _T Þ: ð4Þ
If pre-existing defects/damage/flaws exist in a MG, the
CAFV spectrum extends beyond the cutoff labeled in
Fig. 2. Unlike crystalline metals, where different types of
extended defects, e.g. dislocations and grain boundaries,
have been meticulously studied experimentally, the
extended defects in MGs are less well characterized exper-
imentally. They are illustrated on the CAFV spectrum by
the broad peaks, which should depend on processing and
service history. For instance, larger pores should corre-
spond to a peak with larger characteristic CAFV. In
Fig. 3(a) two types of extended defects, A and B (with dif-
ferent characteristic CAFVs illustrated as the differently
shaded defect volumes), are assumed in a MG. An average
defect spacing, i.e. LA and LB, is also defined in Fig. 3(a),
which is inversely proportional to the density of the corre-
sponding defect, i.e. qA 	 L�3

A and qB 	 L�3
B .

We will address the effect of size on the actual strength
and connected-free-volume spectral evolution using kMC
simulations in the remainder of the paper. Before doing
the simulations, however, we build a toy model to illustrate
the size dependence. Since mechanical behaviors such as
yielding and failure depend on the extended defect popula-
tion, which fluctuates considerably, especially in submicron
samples where the total number of these extended defects is
small, a statistical approach such as that used in Ref. [27] is
needed. For illustration, let us assume a finite-sized MG
with volume V, which could be on the submicron scale, will
be tested under just two sequential stresses, rbulk and rideal,
where rbulk is the bulk strength (measured for V !1 with
the same CAFV spectrum). If the finite-V sample survives
the first rbulk test, it certainly will not survive the second
rideal test. We look at the failure/yielding statistics of an
ensemble of finite-V samples, and define the ensemble-
average strength to be:

ravgðV Þ ¼ ridealP ðV Þ þ rbulkð1� PðV ÞÞ; ð5Þ
where P ðV Þ is the probability that a finite-V sample sur-
vives the first rbulk-test.

Consider the following hypothesis: a single defect A
means “fatality” at rbulk. In other words, under externally
applied rbulk, a single defect A appearing anywhere in the
sample would cause the entire sample to fail. The survival
probability due to possible presence of A is then (based on
Poisson statistics):

P A ¼ expð�qAV Þ: ð6Þ
Clearly, as long as qA > 0, the bulk sample (V !1)

always fails at rbulk because it will always contain at least
one A. We can define the concept of critical count, N c

A,
which is the total count of a certain defect in the entire
sample volume to cause global failure. The physical basis
for N c

A ¼ 1 (independent of volume) is that a single defect
of sufficiently large CAFV could cause an entire sample
to fail. For instance, A could be a sufficiently long crack
to exceed the fracture toughness of this MG at rbulk.

Not all damages act like A, however. If A symbolizes the
penultimate “crack”-like behavior, there is also a



Fig. 3. (a) Illustration of two types of extended defect, A and B, with the corresponding characteristic defect spacing LA and LB, respectively. Three
extended defects characterizing different failure behaviors are considered, and (b) the survival probability and (c) ensemble-averaged strength are obtained
based on our statistical model.
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penultimate “ductile” failure behavior, to be symbolized by
B, with N c

B / V . In other words, global failure would not
occur unless the volumetric density (not the total number)
of B-type damage exceeds a critical threshold. In this case,
the critical count for B would be:

N c
B ¼ qc

BV
� �

; ð7Þ

where d
e rounds a real number to the nearest integer
above. The physical meaning of B is that damages such
as a small STZ or void cannot fail the entire material on
its own; they need to reach a critical damage density at
rbulk to cause global failure.

We can also model the intermediate behavior between
penultimate “crack” and penultimate “ductile” failure, by
fitting the critical count to a power-law:

N c
C ¼

V
V C

� �aC
� 	

; ð8Þ

where V C and aC are two parameters characterizing the
fatality of defect C population. As intermediate between
the two extreme behaviors of A (aA ¼ 0) and B (aB ¼ 1),
we should have the exponent 0 6 aC 6 1. Based on this
general fitting form, the survival probability due to C is:

P C¼
XN c

C
�1

i¼0

expð�qcV ÞðqcV Þ
i

i!
¼ 1�

X1
i¼Nc

C

expð�qcV ÞðqcV Þ
i

i!
: ð9Þ

according to Poisson statistics.
Assuming that different defect populations do not inter-
act (in reality they do), the total survival probability can be
written as:

P ðV Þ ¼
Y

s

P sðV Þ; ð10Þ

where s = A, B,C, . . ., labels the extended defect type, and

P sðV Þ ¼
XVV sð Þ

asd e�1

i¼0

expð�qsV ÞðqsV Þ
i

i!
: ð11Þ

In Fig. 3(b), if we assume N c
A ¼ 1 (aA ¼ 0), LA ¼ 1 lm;

LB ¼ 2 lm, qc
B ¼ 1:2qB (aB ¼ 1); aC ¼ 0:5; LC ¼ 0:8 lm;

V C ¼ 10L3
C, the ensemble-averaged strength ravgðV Þ given

by Eq. (5) is plotted as a function of V 	 L3.
Three regimes may be divided based on the probability

shown in Fig. 3(b). In R1 the sample size is large enough
such that it can always have sufficient extended defects to
facilitate failure/yielding, e.g. shear bands may be heteroge-
neously nucleated from pre-existing defects with a moder-
ate amount of applied stress. In R2 the probability of
having defects decreases “significantly” as the sample size
shrinks. This implies that the nucleation of shear bands is
not as easy as in R1. Thus we might expect “smaller is
stronger” with more stochastic scattering on the measure-
ment. When sample sizes reduce down to the region of
R3, the probability of having sufficient initial extended
defects that facilitate yielding becomes very low. The



Table 1
Different initial conditions used in simulations.

Simulation initial condition Meaning/method

IC1 The simplest glass
IC2 Pre-strain and relaxation
IC3 Surface STZ “softening”

IC4 Surface STZ “hardening”
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majority of samples in R3 are “damage free” and the yield
strength is bounded by that required for nucleation of
shear bands in the “reference glass”. Based on Eq. (5),
we can preliminarily propose a size-dependent strength as
shown in Fig. 3(c), where error bars indicate scatter of
the measured strength with certain (e.g. 90%) confidence
intervals.

The above division may not be quantitative. However,
the main basis for such dividing is the survival probability
of the possible extended defects. The R1 and R3 simply
correspond to the two extreme cases with the probability
approaching 1 and 0, respectively. Experiments performed
within these two regions will show a specific strength with
relatively little scatter, while in between the data will exhi-
bit large scatter. This is especially the case for crystals,
where rbulk and rideal are hugely different. For MGs, in
principle, this should also be the case, but may not be that
obvious as in crystals, since rbulk and rideal are only � 3�
different at most.

2.3. Sample preparation and initial conditions

Each voxel in our 3-D Cartesian computational grid has
a physical size of 1.5 nm � 1.5 nm � 1.5 nm, a characteris-
tic size of a STZ [3,28,29]. We can either apply PBC in all
three directions to obtain the bulk samples, or designate
several outermost layers of y- and z-dimensions as “air”

(by assigning zero elastic modulus) to generate finite-sized
samples that exhibit a “nanobar” geometry with the x-axis
being the longitudinal direction along which uniaxial ten-
sion will be applied.

The simplest IC we can consider has local inelastic
strain, stress and softening fields zero everywhere:
eg¼0 ¼ 0, rg¼0 ¼ 0; gg¼0 ¼ 0 and telap

g¼0 � s in Eq. (2). We
label this state as IC1. Note that IC1 does not correspond
to the aforementioned “reference glass” configuration
x3N

ref ð� _T Þ, since x3N
ref likely involves significant residual stress

fluctuations [25] even for experimental cooling rate of pro-
ducing glasses. But IC1 is something simple enough that we
can start with. See the end of Section 5 for discussions
about this issue.

The introduction of extended defects requires careful
consideration, since we have no direct experimental infor-
mation about the exact damages/flaws in realistic MGs cor-
responding to the CAFV spectrum beyond the cutoff, as
experimental characterization of extended defects is far less
developed as compared to that in crystals. For simulations,
even though it is reasonable to expect groups of activated
STZs as a candidate, we still need to consider how they
should be populated spatially. Apart from this, the internal
stress field should satisfy the self-equilibrium condition such
that the initial sample is macroscopically stress-free. Analo-
gous to what some modelers do for crystals when they do
not want to deal with placing atoms according to aniso-
tropic elasticity theory of dislocations explicitly, we apply
a certain amount of pre-strain (� 3% elongation along the
x-axis at a strain rate 10�4 s�1) to IC1 finite-sized samples
and then remove the external load. If the pre-strain is suffi-
cient to induce plastic deformation, we would expect some
STZs have been locally activated, or even percolated
through to form a connected cluster, resulting in an internal
residual stress field that may promote STZ transformations
subsequently at finite temperature. We then use the kMC
method to “anneal” this pre-strained sample at room tem-
perature to ensure that thermally activated STZs at zero
external stress would require a sufficiently long waiting time
as compared to the duration of our following tensile test
simulations (up to 6% total elongation with a strain rate
10�4 s�1). Samples prepared according to such a “pre-
straining and relaxation” scheme are labeled as IC2.

Free surface is also an important class of extended
defects [30]. MD simulations have found lower potential
energy barriers for STZs at surfaces [31], suggesting an
inherent difference in transformation energetics compared
to the bulk. In addition, techniques used to prepare nano-
scale samples may also introduce chemical and structural
heterogeneities that are mainly localized near surfaces.
For instance, FIB milling can alter the defect content and
defect chemistry of crystalline samples by introducing dis-
locations, implanted ions and amorphization [32], resulting
in local hardening [33] in a layer adjacent to the milled sur-
face, but it could be softening as well depending on the
details of the ion beam milling. Recently, the influence of
gallium contamination from FIB milling on shear band
formation in nanoscale MGs has also been considered
experimentally [9,34]. To simulate the surface contamina-
tion, we assume that the activation barriers for STZs near
surfaces could be different from that in the bulk. In partic-
ular, as a parametric study, we consider two opposite cases
where the stress-free activation barrier DF � is either 3 or
7 eV (the bulk value is 5 eV) for the outermost STZ layer,
the so-called “surface softening” (IC3) or “surface harden-
ing” (IC4) IC, respectively.

The material properties used in the following simula-
tions are listed in Table 2. The Young’s modulus and Pois-
son ratio are taken from amorphous alloy
Zr52:5Cu17:9Ni14:6Al10Ti5 [35]. Detailed physical meanings
of the simulation parameters listed in Table 2 can be found
in Ref. [13].

3. Results

We first present the result of IC1 bulk, serving as a com-
parison with cases of finite-sized samples. Fig. 4(d) shows
the stress–strain curve obtained in the simulated tensile test



Table 2
List of simulation parameters [13].

Parameter Value Meaning

E 88:6 GPa
[35]

Young’s modulus

m 0:371 [35] Poisson ratio
m0 1� 1013 Hz Trial frequency of STZ
DF � 5 eV Stress-free activation energy barrier of STZ
Qact 0:37 eV [36] Activation energy barrier for local relaxation
jp 10 Permanent softening coefficient
jt 30 Temporary softening coefficient
c� 0:1 [37,38] Characteristic shear transformation strain of

STZ
T 300 K Temperature
_�e 1� 10�4 s�1 Applied strain rate
d�e 1� 10�4 Strain increment of each simulation step
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with a computational supercell of 192 nm� 96
nm� 96 nm. Fig. 4(a) and (b) plots, in surface and con-

tour representations, respectively, the distribution of von
Mises strain after 10% elongation, showing a dominant
shear band being formed in one of the maximum shear
stress planes. We point out that our model, for simplicity,
prescribes a finite softening without local heating or cavita-
tion, and therefore does not consider an ultimate failure
scenario [39,40]. This leads to indefinite continuation of
the stress–strain curve, as shown in Fig. 4(d). If we do
Fig. 4. Tensile test simulation on a IC1 bulk sample: von Mises strain distributi
Mises stress distribution in contour representation after 10% elongation; (d) t
allow the local softening to go to infinity by heating beyond
the glass transition temperature T g and/or cavitation, the
shear band will “run wild” after the stress drop at the peak
stress rpeak, and eventually develop into a genuine shear
crack [39,40].

To investigate the effects of sample size and IC, we per-
form tensile test simulations on samples with different sizes
and ICs. The obtained stress–strain curves are shown in
Fig. 5. It is obvious that the peak stress rpeak shows differ-
ent size dependence in samples with different ICs. Here we
employ the term “peak stress” instead of “yield strength”

because for small-volume MGs it is difficult to define the
yield point unambiguously and the peak stress rpeak is
one of the principal parameters that characterize the
strength of MGs [41]. For IC1 samples, rpeak is independent
of sample size, and is actually the same as that of the IC1

bulk (Fig. 5(a)). However, IC2 samples exhibit a “smaller
is stronger” trend, and the peak stresses of all these
“realistic” samples are below that of the IC1 bulk. In addi-
tion, samples of IC3 and IC4 exhibit a “smaller is weaker”

or “smaller is stronger” trend, respectively. These results
show that the strength of a MG sample is determined by
its initial condition as well as its size. If we extract the peak
stress of the “more realistic” IC2 samples and plot them
against the size, the result (Fig. 6) exhibits a size depen-
dence that is similar to our preliminary proposal in
on in (a) surface representation and (b) contour representation and (c) von
he stress–strain curve.



Fig. 5. Stress–strain curves for finite-sized samples with initial condition (a) IC1 (“ideal”), (b) IC2 (with pre-existing extended defects), (c) IC3 (with
“surface softening”) and (d) IC4 (with “surface hardening”).

Fig. 6. Peak stress vs. sample size for IC2 finite-sized samples.
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Fig. 3(c). To fully understand such a “smaller is stronger”

phenomenon, the correlation between ICs and sample sizes
needs to be clarified. This will be done in Section 4.

On the other hand, the flow stress rflow, defined as the
stress required to sustain deformation after the peak stress
has been reached, depends on the sample size for all ICs. In
experiments (at room temperature), the time it takes from
the peak stress to catastrophic failure is so short that the
flow stress is difficult to measure. However, if the local
stress could be measured and plotted against the local
strain inside a shear band, there could be a significant
stress–strain plateau (i.e. the flow stress) that is similar to
our simulation results. Indeed, because of the inhomoge-
neous deformation, it is suggested that strain within the
shear band could go to a much larger value (e.g.
� 1000%) than the overall strain [38].

Despite the serrated features shown in Fig. 5, the
ranking of rflow can still be identified. For IC1 and IC2,
smaller samples generally require higher rflow, while for
IC3 and IC4, the trend is controlled by the nature of surface
STZs. Since the properties of IC3 and IC4 samples are
expected to be largely determined by the fraction of
“contaminated” surface layers, we will analyze them sepa-
rately in Section 4.

In order to understand the “smaller is stronger” trend in
the simulated flow stress of IC1 and IC2 samples (Fig. 5(a)
and (b)), we need to analyze the collective deformation
mechanism underlying the flow. In Fig. 7 we plot the von
Mises strain distribution at the applied strain of 3% (left
column), 4% (middle column) and 6% (right column), for
IC1 samples of 87 nm (top row), 21 nm (middle row) and
15 nm (bottom row), respectively. It is clear that the abrupt
stress-drop for the 87 nm sample at � 2:5% applied strain
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in Fig. 5(a) is associated with the nucleation of a shear
band, as shown in Fig. 7(a). Because of strain-induced soft-
ening, deformation afterwards is carried out by STZ activa-
tion localized within and ahead of this nucleated shear
band. Subsequently, the shear band grows along its own
plane, which is one of the maximum shear stress planes
under the applied tension. However, the surfaces place a
geometric limit which prevents the runaway growth of
shear band as in the bulk. This can be seen by comparing
Fig. 7(a) with (b). In addition, we see that a secondary
shear band, which intersects with the first one, is also
formed in another maximum shear stress plane as the
deformation continues, shown in Fig. 7(c).

The 21 nm sample also exhibits an abrupt stress-drop at
the peak stress, as in the case of the 87 nm sample. However,
the relatively smaller stress-drop suggests that the nucleated
shear band could not reach the same level of “maturity” (i.e.
runaway growth) as in the 87 nm sample, in the sense that
the shear band is now confined to a much smaller spatial
region and the corresponding CAFV is smaller than that
of the shear band in larger samples. The resulting flow stress
is thus maintained at a higher level as shown in Fig. 5(a). To
accommodate further deformation, a secondary shear band
needs to be formed, as in the case of the 87 nm sample.
However, it is shown in Fig. 7(f) that the secondary shear
band is spatially uncorrelated with the first one. This is
attributed to the fact that the first “immature” shear band
Fig. 7. Von Mises strain distributions plotted in contour representation at 3%

IC1 samples with cross-sections of 87 nm� 87 nm (top row), 21 nm� 21 nm (m
for the first two rows and 0.12 for the last row.
has not grown to a sufficient level (in terms of local
softening and stress field) that could influence the nucle-
ation of the secondary shear band in its vicinity, indicating
a homogeneous nucleation scenario with a secondary
abrupt stress-drop that is comparable to the initial one on
the stress–strain curve in Fig. 5(a).

When the sample shrinks down to 15 nm, the spatial
extent along the maximum shear stress plane is only
� 20 nm. Considering that shear bands usually have a
characteristic thickness of � 10–20 nm [42], the nucleated
shear band will possess an aspect ratio of � 1. From our
simulation, the initially activated STZs are indeed more
“spherically” distributed in space instead of forming a
large-aspect-ratio planar region, as shown in Fig. 7(g).
Another distinct feature is that at 3% applied strain, there
have already been two clusters of activated STZs formed.
Due to limited sample size, they can only grow in width in
a more diffusive manner as shown in Fig. 7(h) and (i).
Because of this essentially “diffusive spread” of STZ opera-
tions rather than a collective shear-banding, the flow stress
decreases gradually in a continuous fashion without abrupt
stress relaxations, contrasting previous cases (Fig. 5(a)).

The ranking of rflow for IC2 samples are similar to those
discussed above. In fact, comparing the stress–strain curves
for IC1 and IC2 in Fig. 5(a) and (b), apart from a shift-
down of the flow stresses due to the pre-existing extended
defects of IC2, the stress–strain curves closely resemble
(left column), 4% (middle column) and 6% (right column) elongation, for
iddle row) and 15 nm� 15 nm (bottom row). The strain threshold is 0.14
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each other for samples with the same size, implying similar
deformation kinetics in the flowing regime.

4. Discussions

Our kMC simulation results contain rich information
about MG deformation kinetics that needs to be mined
and discussed. Below we will address shear band thickness,
extreme value statistics [43], intersections of shear bands,
and finally return to the connected-free-volume (CAFV/
CFV) analysis that is the conceptual foundation of this
paper.

4.1. Shear band thickening

The thickness of shear bands has been reported by pre-
vious experiments and simulations. In order to determine
this fundamental structural feature, we plot the spatial var-
iation of von Mises transformation strain along lines paral-
lel to the tensile axis. (One such line is drawn in Fig. 4(b).)
Fig. 8(a) shows such variations along lines intersecting with
the shear band at different locations. All plots show that
there is a region within which the von Mises strain is always
larger than the average applied strain (10% in Fig. 8(a)).
We may thus define the extent of such a region, wherein
the von Mises strain of all voxels have exceeded the average
applied strain, as the thickness of our simulated shear
bands. Fig. 8(b) also shows the spatial variations at both
3% and 10% applied strain along the same line. The
increase in von Mises strain in terms of both intensity
and spatial extent indicates the growth of the shear band.
Since experiments under uniaxial tension usually end
around � 3% elongation due to the sudden failure of
MG samples, we take the measurement at 3% applied
strain as a characteristic thickness w for our simulated
shear bands in the bulk. Measurements are carried out
for supercells of different sizes and are reported in Table 3.
It is seen that w � 20 nm, which agrees with most experi-
mental measurements and atomistic modeling [42], and is
also consistent with our previous 2-D simulations [13].
The fact that shear band thickening saturates at 20 nm
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Fig. 8. Spatial variations of von Mises strain along the tensile axis: (a) at diffe
strains.
and w does not increase much with further straining indi-
cates significant softening inside due to free-volume-perco-
lation, so much so that further deformation involves
mostly atoms in the center and at the front, and not on
the periphery side edges, of the existing shear band. A very
rough estimate of the order of magnitude of the percolat-
ing-free-volume is:

CAFV > ð20 nmÞ3 � 1% � 100 nm3; ð12Þ
where the� 1% dilation is estimated from atomistic simula-
tion [39] and experiments [21]. This is about 10,000 atomic
volumes, which can never be the natural or “intrinsic” kind
of atomic structural heterogeneities.

4.2. Size-dependent deformation mode transition

Given a spatial constraint due to sample size or second-
ary phases that have a characteristic length scale l0, it is
expected that l0 � w should be a point for deformation
mode transition, since shear bands with a high aspect ratio
will never be able to develop under this geometric con-
straint, and plastic deformation is carried out by “diffusive
spread” of STZ operations as shown in Fig. 7. Experiments
[44,45] have suggested that a brittle-to-ductile transition
could occur when samples shrink down to a critical size of
l0 � 100 nm, which is 5� the shear band thickness
w � 20 nm. This may be understood by the notion that a
shear band with aspect ratio larger than 1 could still be sta-
ble even under moderate far-field stress, rather than acting
like a runaway shear crack. In fact, MD simulations have
revealed a critical aspect ratio of � 5 that an embryonic
shear band could have before it becomes an unstable run-
away [12]. This implies that as long as the maximum aspect
ratio l0=w does not exceed� 5, the sample could still sustain
certain stable plastic deformation, and the ductility may be
improved by proliferation of these short shear bands.

4.3. Extreme value statistics

In analyzing deformation of MGs at the STZ level,
extreme value (EV) statistics [43] is expected to be crucial,
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rent locations when applied strain is 10%; and (b) at two different applied



Table 3
The thickness of simulated shear band.

Supercell size (nm) 96� 48� 48 96� 96� 96 192� 96� 96
Thickness (nm) 17.8 21.1 18.4
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since a single STZ (� 1 nm) that has accumulated extreme
shear strain and bonding distortion could initiate internal
decohesion (irreversible loss of total metal–metal coordi-
nation, TMMC) that may lead to the final catastrophic
failure of the entire sample. In fact, Murali et al. have
recently identified a characteristic spatial correlation
�1 nm of plastic displacement that may be responsible
for the fracture mode in MGs [46]. Here, we collected
EV statistics by plotting the histogram of von Mises strain
after 6% applied strain to different finite-sized IC1 sam-
ples, shown in Fig. 9, where those long tails contains
EVs of interest. (Here EV refers to a net von Mises strain
exceeding 0.2, which is twice the characteristic shear of a
STZ.) It is shown that when subjected to the same
macroscopic strain, the bulk sample experiences much
more intense EVs than finite-sized samples, as indicated
by a longer tail in Fig. 9. Smaller samples, on the other
hand, tend to have more moderate EVs, and thus are
more failure resistant.
4.4. Intersections of shear bands

Apart from EVs, it would be beneficial to know where
those extreme sites (sites with EVs) are actually located in
the deformed samples. For the bulk, EVs should occur
within the dominant shear band, and the center of the
shear band experiences the most severe plastic deformation
[13]. This can be seen in Fig. 8, which also resembles the
thermal profile of a shear band [47]. Since a shear band is
approximately a planar defect, those extreme sites are
likely to be distributed uniformly in the shear plane, which
Fig. 9. Probability density distributions of von Mises strain of voxels after
6% applied strain in samples of Fig. 5(a).
is confirmed in our simulations. These extreme sites sustain
the largest bond reconfigurations, have the highest local
temperature, and are most susceptible to loss of TMMC
and initiation of cavitation under even a small local tensile
stress, which leads to the final catastrophic failure along the
dominant shear band plane.

What if there are multiple shear bands? Do we still expect
extreme sites to be uniformly distributed within each band?
The line of intersection between two shear bands is a likely
location of EV concentration and could be significant for
predicting subsequent failure processes. In Fig. 7(c) we see
that two shear bands nucleate one after the other and inter-
sect with each other. To inspect the corresponding EV dis-
tribution, we increase the plotting threshold value in
Fig. 7(c) to 0.23 in strain, which contains the full EV tail
in Fig. 9. The new contour plot is shown in Fig. 10. It is
now clear that extreme sites are localized in the intersection
region of the two shear bands. This gives rise to a 1-D (line)
“weak” region, which could be a major source of cavitation
[48]. While we have not seen it yet in our kMC simulations,
it is geometrically possible for three shear bands to intersect
at a point. We speculate that these 0-D “triple points” could
harbor the most extreme sites for damage and cavitation.

4.5. Surface contamination: size effect

Because of surface contamination, extended defects can
be initiated either near surfaces (IC3, surface softening) or
within the interior (IC4, surface hardening). It is then
expected that the fraction of the surface STZs could influ-
ence the actual strengths directly, giving another possible
size effect. Consider IC3: STZs near surfaces will be acti-
vated earlier than those in the interior. If the fraction of
surface STZs is relatively small, the majority of material
will not yield until the sample is stressed up to a level
approaching the strength of the interior, i.e. IC1. As the
sample size decreases, the fraction of the surface STZs will
Fig. 10. Same as Fig. 7(c) but with a strain threshold of 0.23.
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increase. At certain point, the yielding of surface layers,
which now possess a considerable volume fraction, will
result in a global stress relaxation.

Similar analysis also holds for the surface hardening case.
Note that the apparent strain hardening shown by the stress–
strain curves (Fig. 5(d)) of IC4 samples smaller than or equal
to 27 nm is due to the elastoplastic transition. Once this tran-
sition is over, the stress decreases in an overall sense as the
deformation continues. This is consistent with our expecta-
tion, as there is no intrinsic hardening mechanism for the
constitutive behavior of STZ in our model. The apparent
strain hardening is due to two-stage deployment of bulk
and then surface STZs before the former soften too much.
Eventually, as both populations are deployed and soften,
the overall response switches to softening.

Fig. 11 plots the peak stress in Fig. 5(c) and (d) against the
inverse of sample sizes, showing that smaller can be either
“stronger” or “weaker”. For large IC3 samples, the “weak”

region (i.e. the surface layer) possesses a small volume frac-
tion. This is actually similar to small IC4 samples, where the
“weak” region now becomes the interior. As IC3 samples
decrease in size or IC4 samples increase in size, the volume
fraction of the “weak” region will increase. This may explain
the similar slope changes in the two curves in Fig. 11 (from
left to right in IC3 and from right to left in IC4).

4.6. Connected-free-volume analysis and strengths of MGs

In Section 2.2 we have introduced two concepts, refer-
ence glass and CAFV spectrum. The reference glass is
defined to have a finite but limited tail in the CAFV spec-
trum, which is nearly impossible to extend beyond a critical
value (e.g. tens of atomic volume). Any CAFV that goes
beyond this is not “intrinsic” heterogeneity of the reference
glass, and is identified as an extended defect. We hypothe-
size that extended defects can only be created in the pres-
ence of external mechanical-chemical driving forces such
as FIB, corrosion, shear bands due to previous mechanical
service, or high-energy radiation. Here we want to illustrate
Fig. 11. The peak stress from Fig. 5(c) and (d) plotted against the inverse
of sample sizes.
these concepts with our kMC simulations. Because STZ
modeling is coarse-grained over atomistics, we do not have
atomistic free volume (AFV) information. However, we
may consider a similar “connected free volume” (CFV)
concept, which is the voxel-level free volume represented
by the degree of softening in each voxel. CFV examines
the topological connectivity of voxels with a large degree
of softening and essentially represents the volume of an
extended defect, times 1% which is the volume dilation in
a shear band (free volume) estimated from atomistic simu-
lation [39] and experiments [21]. Previous plots of Figs. 4
and 7 should already give us some hints of how the CFV
spectrum evolved over time, but below we show this evolu-
tion more explicitly.

In Fig. 12 we plot the von Mises strain distributions
immediately before (left column), at (middle column) and
after (right column) the peak stress for 87 nm (top row)
and 21 nm (bottom row) IC1 samples. Before the peak stress,
STZs are only activated locally. When rpeak is reached, local
STZ clusters start to connect to each other and span across
the whole sample, giving rise to a “sample-spanning cluster”

(a peak at the far right of the CAFV spectrum) and resulting
in a global instability. While we expect that in larger samples
a more explosive growth of the spanning cluster should fol-
low (see discussion about Fig. 7 in Section 3), rpeak in IC1

samples is more likely to be related to factors such as the
microelastic interaction between STZs and temperature,
and be hence insensitive to sample size, as shown in Fig. 5(a).

In the “more realistic” IC2 samples, extended defects
may or may not be nucleated, depending on the amount
of pre-straining. Consequently, the actual strength should
also depend on the amount of pre-strain. Fig. 13 shows
the relation between the peak stress and the amount of
pre-strain for a given finite-sized IC2 sample. Obviously,
there is a sharp change in the peak stress when the sample
is pre-strained above 0.025, which is close to the yield point
of IC1 sample. (Experiments by Bei et al. have also revealed
a similar relationship between the yield strength and pre-
strain in crystals [49].) Since the IC2 in Table 1 specifies a
pre-strain of 0.03, some extended defects are very likely
to be formed during pre-straining. The difference now is
the percolation level of those pre-formed extended defects,
which should be related closely to the sample size. To
understand the size-dependent strength results (Fig. 6),
quantitative representations of the initial IC2 samples are
required. Here we perform connectivity analysis on the
binarized von Mises strain distributions using a threshold
of 0.05 (half of the characteristic shear of STZ) and obtain
the CFV, which is measured by the voxel volume of the
identified connected clusters in the obtained binary
“image”, times 1% which is an estimated dilation (density
change) in mature shear band from atomistic simulation
[39] and experiments [21]. Fig. 14 plots the results for three
IC2 samples with different sizes. (Note that the peak corre-
sponding to the reference glass in the CAFV spectrum is
now reduced to a delta-function peak at CFV ¼ 0 and is
not included in the plot.) The initial CFV spectra shown



Fig. 12. Von Mises strain distributions plotted in contour representation immediately before (left column), at (middle column) and after (right column)
peak stress, for IC1 samples with cross-section of 87 nm� 87 nm (top row) and 21 nm� 21 nm (bottom row). The strain threshold is 0:1. The real times
from kMC are also indicated.

Fig. 13. Peak stress vs. amount of pre-loading strain for a given finite-
sized sample with a 51 nm� 51 nm cross-section.
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in Fig. 14(a) indicate clearly that under the same initial
treatment, i.e. pre-straining and relaxation, larger samples
tend to build up much longer CFV tails than smaller ones.
After the samples have undergone 3% elongation, the larg-
est CFV in all samples show explosive growth (one order of
magnitude increase) as shown in Fig. 14(b), suggesting the
evolution of CFV !1 post peak-stress.

Fig. 14 directly illustrates the central concept of this
paper, namely that extended defects are fundamentally dif-
ferent and thus distinguishable from intrinsic heterogene-
ities in the glass, based on their CFV’s raw magnitude
and tendency for runaway growth under uniform applied
stress, so much so that the horizontal axis of Fig. 14(b)
has to be plotted on a log-scale. The largest-CFV defect
can even dominate the deformation of the entire sample,
and directly cause its catastrophic failure. By this token,
the size effect on strength is closely tied to the specification
of the initial condition, i.e. what the CFV/CAFV spectrum
looks like before external stress is applied. In this regard,
i.e., an intimate relationship exists between size effect and
initial condition sensitivity, MGs are no different from
crystals [6].

4.7. Statistical treatment and data sampling

Apart from the more fundamental limitations and
approximations of our method, we also have some
pragmatic issues. In principle, we should show ensemble-
averaged results in addition to individual trajectories. That
is, we should perform simulations and analysis on an
ensemble of initial conditions with the same statistical
specification, but drawing different instances using different
pseudo-random number generator seeds. In the current
study a single simulation trajectory is carried out for each
case considered. In principle, multiple simulations should
be carried out for each case with the same IC but different
seeds for the random number generator used in the kMC
algorithm, and then report the average value of the peak
stress with an error bar. However, this is time consuming
at the moment and has not been done. Nevertheless, the
qualitative nature of the results and the conclusions from
the study should remain largely the same.

It also needs to be pointed out that, since we focus on
the spatial percolation during shear localization, the time
interval we used in analyzing yielding (Fig. 12) is � 3 s,
which is much larger than the suggested time of shear band
nucleation based on another STZ dynamics modeling [50]
and MD simulations [39,40]. As a result, if the very initial
stage of shear localization is to be studied, we need to



Fig. 14. “Connected free volume” (CFV) analysis on three IC2 samples at (a) initial and (b) 3% applied strain stages.
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record the consecutive strain distributions at a much higher
time-sampling frequency during the simulations.

5. Conclusions

Based on the proposed CAFV concept that character-
izes the extent of percolation of free volume in MGs, we
define the perfect or reference glass, upon which the ideal
strength of glass is defined through the forced percolation
of atomistic free volume. The laboratory-made samples dif-
fer from the reference glass by the so-called “extended
defects” that are above and beyond inherent atomic heter-
ogeneities. The stochastic behavior of the experimentally
measured strengths is explained using a simple stochastic
model.

Different ICs are designed to simulate the starting
microstructure of different MG samples. In particular,
samples (i) free of extended defects and residual stresses,
(ii) with damage and residual stress introduced by a
“pre-straining and relaxation”, and containing (iii) soft-
ened or (iv) hardened STZs at surface layers, are produced
to perform tensile test simulations using a kMC STZ
dynamics model. Results show that the ideal MGs exhibit
the same “ideal” strength regardless of their sizes. “Smaller
is stronger” is observed in samples that initially contain
extended defects introduced by pre-straining. The CFV,
analogous to CAFV on the STZ scale, is analyzed to show
that under the same initial treatment larger samples tend to
build up larger CFVs than smaller ones. Samples with
“contaminated” surface layers exhibit either “smaller is
weaker” or “smaller is stronger”, depending on whether
the surface STZs are softer or harder than the bulk STZs.

Simulations also reveal a deformation mode transition
as finite-sized samples shrink down to a scale comparable
to the shear band thickness w, which is � 20 nm in our sim-
ulations. It is found that when samples are much larger
than w, plastic deformation occurs through the formation
of well-defined shear bands of large aspect ratios and the
shear bands of different orientations intersect with each
other. When the sample size becomes � w. However,
equiaxed and spatially independent shear bands are
formed. Extreme value statistics reveals that smaller sam-
ples are inherently more damage-tolerant, and the intersec-
tion of two shear bands is where the materials experience
the most severe plastic shear and are prone to extreme
bonding distortions and subsequent cavitation.

A glaring deficiency of the current STZ-level simulations
is that IC1 (which IC2 starts off with), IC3 and IC4 all have
zero STZ-level residual stresses, whereas MD simulations
have shown that atomistic residual stresses in the reference
MG state in both shear and hydrostatic components [25]
could be very significant even before deformation. IC2 does
have STZ-level residual stresses, which is, however, all
deformation generated and lacks the “intrinsic” contribu-
tion inherited from cooling the liquid. At the end of Ref.
[13] we have discussed how a self-balancing STZ-level resid-
ual stress field could be generated as part of the initial con-
dition, but we have not yet analyzed such as stress field in
this paper. While we aim to link our STZ-level simulations
to atomistic simulations, we are also hampered by the fact
that current MD simulations still lack the timescale reach
(the MD cooling rate is too high compared to the experi-
mental cooling rate) to generate the “reference glass” or
“perfect glass” state. As a result, the residual stress distribu-
tion obtained with MD simulations may not yet closely rep-
resent the reference glass state obtained with the
experimentally accessible cooling rate from the liquid.
Because of this timescale challenge, the reference glass state
with the experimental cooling rate is conceptually well
defined, but numerically unobtainable today with MD.
For this reason, we have limited our STZ-level simulations
to parametric studies in this paper. In the future, accelerated
timescale atomistic simulations should allow us to obtain or
approach the reference glass state with the experimental
cooling rate. This would then allow us to compute the ideal
strength atomistically, as well as giving a more realistic
starting point for carrying out STZ-level kMC simulations.

Acknowledgements

We acknowledge supports by NSF under Grants
DMR-1120901 (J.L.), DMR-1008349 (P.Z. and Y.W.),



Fig. A.15. The empirical cumulative distribution function of strain
component �13 and ~�13 in the original and rotated frames, respectively.
Note that the two curves almost perfectly coincide with each other. The
insets are the corresponding histograms.
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Appendix A. Randomized event catalogs for 3-D STZ

The randomized event catalog for a STZ, where the
glass nature resides in a mesoscale model, is the key ingre-
dient. More specifically the isotropy of glass structures sug-
gests that the overall transformations of each voxel should
also be statistically isotropic. We first write the SFTS ten-
sor for a 3-D STZ in the following form:

� ¼
�1 �6 �5

�6 �2 �4

�5 �4 �3

0
B@

1
CA; ðA:1Þ

with the constraint Trð�Þ ¼ �1 þ �2 þ �3 	 0, implying that
the plasticity is assumed to be shear-dominant and the vol-
ume change is thus ignored. To represent the inherent struc-
tural isotropy of MGs, we numerically generate e such that

~� ¼ RT �R; ðA:2Þ
where R is an arbitrary rotation matrix. The rotational
invariance can be verified by plotting the empirical cumula-
tive distribution function and the histogram for any gener-
ated component of � in original and rotated frames. In
Fig. A.15 the component �13 is shown as an example to ver-
ify the preserved isotropy under arbitrary rotation.

Appendix B. Inhomogeneous elasticity solver

From our previous work [13], the stress equilibrium
equation for a structurally and elastically inhomogeneous
system is:

ðcijpqðxÞðup;qðxÞ � �pqðxÞÞÞ;j ¼ 0; 8 i ¼ 1; . . . ; 3 ðB:1Þ

where cijpqðxÞ are the spatially varied elastic constants,
upðxÞ is the displacement field, and �pqðxÞ is the SFTS ten-
sors field. In Ref. [13] we solve Eq. (B.1) for an elastically
homogeneous system, i.e. cijpqðxÞ 	 cijpq. For issues such
as cavitation and free surface, one has to consider the elas-
tic inhomogeneity.

To solve Eq. (B.1) for a general case, we borrow the idea
from Ref. [18] that by introducing an appropriate reference
homogeneous system c�ijpq, solving the original inhomoge-
neous system becomes equivalent to solving this reference
homogeneous system. In other words, we can always tune
the virtual SFTS field ��pqðxÞ of the reference homogeneous
system such that:

cijpqðxÞðup;qðxÞ � �pqðxÞÞ ¼ c�ijpqðup;qðxÞ � ��pqðxÞÞ: ðB:2Þ

Since there are as many equations (stress components)
as unknowns (SFTS components that do not need to sat-
isfy compatibility [51]), Eq. (B.2) has a unique solution
for positive definite c�ijpq. Thus there is a one-to-one
mapping between a given inhomogeneous system and a vir-
tual homogeneous system, and vice versa. Then suppose we
know what ��ðxÞ should be used, it is easy to obtain the dis-
placement field, total strain field and stress field following
Ref. [13], i.e.

��ðxÞ ! uðxÞ; �ðxÞ; rðxÞ: ðB:3Þ
The above-obtained fields should be identical to those of

the original inhomogeneous system, and thus satisfy Eq.
(B.2), or equivalently:

c�ijpq�
�
pqðxÞ ¼ cijpqðxÞ�pqðxÞ þ ðc�ijpq � cijpqðxÞÞ�pqðxÞ; ðB:4Þ

where the symmetry of elastic constants has been
employed. If, however, the initial guess of ��ðxÞ is not
exact, Eq. (B.4) will not be satisfied. In this case, we can
simply invert the right-hand side to update the estimate
��ðxÞ, and repeat the process until convergence is reached.
As long as the system is not significantly far from an
elastically homogeneous state, the inhomogeneity can be
regarded as a perturbation and convergence should be fast.
As a result, our previous Fourier space solver for homoge-
neous systems can be easily adapted to solve the current
inhomogeneous system by iteration.

We test our solver by considering a spherical void in an
infinite, isotropic linear elastic solid subjected to a tensile
stress rzz ¼ r1zz , with all other far-field stress components
being zero. There exists an analytical solution [52] for this
problem and the comparison with our simulation result is
shown in Fig. B.16. To speed up the iteration, the so-called
“raised cosine filter” can also be employed to filter out
high-frequency waves. In Fig. B.16 the “filtered Fourier”

results correspond to calculations with the filter being used,
and it takes only 242 steps to achieve the same level of



Fig. B.16. The rzz component of the stress field along a line (a) going through and (b) outside the spherical void. d corresponds the distance between the
center of the void and the lines, which are both parallel to the x-axis.
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relative precision which would take 5000 steps for
calculations without using the filter.
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