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Cubic yttria-stabilized zirconia is widely used in industrial electrochemical devices. While its fast oxygen
ion diffusion is well understood, why cation diffusion is much slowerdits activation energy (~5 eV) is 10
times that of anion diffusiondremains a mystery. Indeed, all previous computational studies predicted
more than 5 eV is needed for forming a cation defect, and another 5 eV for moving one. In contrast, our
ab initio calculations have correctly predicted the experimentally observed cation diffusivity. We found
Schottky pairs are the dominant defects that provide cation vacancies, and their local environments and
migrating path are dictated by packing preferences. As a cation exchanges position with a neighboring
vacancy, it passes by an empty interstitial site and severely displaces two oxygen neighbors with
shortened Zr-O distances. This causes a short-range repulsion against the migrating cation and a long-
range disturbance of the surrounding, which explains why cation diffusion is relatively difficult. In
comparison, cubic zirconia's migrating oxygen only minimally disturbs neighboring Zr, which explains
why it is a fast oxygen conductor.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Zirconia ceramics have important applications such as structural
components, thermal barrier coating, solid electrolytes and gas
sensors. They are used in the tetragonal or cubic form, stabilized by
aliovalent cations such as Y3þ and Ca2þ. These cations are
compensated by oxygen vacancies that make stabilized zirconia a
good O2� conductor. However, cation transport at 1000 �C is more
than one-trillion-fold slower than O2� [1], and it is the diffusion of
cations being the slowest-moving species that determines the total
mass flow, which is central to microstructural control in processing
(e.g., sintering and grain growth) and high temperature service
(e.g., in thermal barrier coating and fuel cell). In cubic yttria-
stabilized zirconia (YSZ), cation lattice diffusivity inferred from
dislocation loop shrinkage [2], creep [3,4] and tracer migration [1,5]
is ~10�14 cm2/s at 1500 �C with apparent activation energy of
4.5e6.1 eV. Such activation energy is consistent with the common
experience that zirconia sintering is usually performed at
cience and Engineering, Uni-
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1300e1550 �C [6,7]. It is also consistent with grain growth kinetics
in tetragonal zirconia (2 mol% yttria-stabilized zirconia, 2YSZ) [7],
which has activation energy of 4.6 eV that is attributed to cation
lattice diffusion since 2YSZ's grain boundary mobility is controlled
by solute-cation drag in the lattice [8]. On the other hand, all pre-
vious theoretical and computational studies have consistently
found an activation energy >10 eV, of which 6.5 eV or more is for
forming a cation defect [9e12] and 5 eV for the defect to migrate
[11e13]. Such activation energy is undoubtedly too high as it will
rule out any kinetic possibility at all temperatures up to zirconia's
melting point, 2750

�
C. (To reach a diffusion distance of 1 mm after

1000 s or 10�17 m2/s in diffusivity at temperature T, the activation
energy cannot exceed 25kBT.) Thus, a much better computational
study and understanding is needed to align with the experimental
observations.

This study will address the above need. As we already noted in
the companion paper (hereafter referred to as Paper I) [14], all the
previous computational studies on cation defect and diffusion in
YSZ employed empirical potential calculations [9e13,15]. This is not
surprising because YSZ contains not only two types of cations but
also many anion vacancies, which generate an astronomically large
number of configurations even for a small supercell. In Paper I, we
have conducted ab initio and empirical-potential calculations for a
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Fig. 1. Crystal structures of monoclinic, tetragonal and cubic ZrO2. The unit cell con-
tains 4 Zr and 8 O for monoclinic and cubic ZrO2, and 2 Zr and 4 O for tetragonal ZrO2.
Symbols: Zr in green, O in red and interstitial sites in purple. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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number of supercell configurations, and found the latter always
overestimate the energy by a factor of two or so primarily because
they grossly overestimate the electrostatic energy. Therefore, this
study will only use ab initio calculations to compute defect's for-
mation and migration energies. These computations will mainly be
performed with the “ground” state of YSZ (established in Paper I),
in which we shall find activated cation defectsde.g., Schottky pairs
and cation Frenkel pairsdand study their motion. We will also
assess the diffusion contribution of metastable states in the glassy
energy landscape of YSZ (see Paper I).

The paper is organized as follows. After describing the simula-
tion and calculation methods in Section 2, we calculate in Section 3
the formation energies of a Schottky pair, a cation Frenkel pair and
an anion Frenkel pair for three forms of zirconia to provide a
reference frame and preliminary insight. In Section 4, the formation
energies of a Schottky and a cation Frenkel pair in the YSZ ground
state and some metastable states are calculated to ascertain cation
vacancies as the dominant cation defect species. In Section 5, their
migration barriers are calculated for Zr and Y, some with nearby
oxygen vacancies. In Section 6, the migration barrier for serial
random-walk events is computed to compare with experimental
diffusivity. This is followed by discussions in Section 7 and con-
clusions in Section 8. The work is focused on 8 mol% yttria stabi-
lized zirconia (8YSZ), which has attracted much theoretical and
practical interest.

2. Methodology

We used the projector augmented-wave (PAW)method [16] and
the Perdew-Burke-Ernzerhof (PBE) [17] generalized gradient
approximation (GGA) implemented in the Vienna ab initio simu-
lation package (VASP) [18]. The PAW potentials include the
following electrons: 5s24d2 for Zr, 4s24p65s24d1 for Y and 2s22p4 for
O. We chose a plane-wave cutoff energy of 500 eV to reach a
convergence criterion of 1 meV for the total energy and sampled
the Brillouin zone using the Monhorst-Pack scheme with a
2 � 2 � 2 k-point mesh. These results will be referred to as ab initio
calculated data in the following. Where appropriate, empirical
potential calculations [19] using General Utility Lattice Program
(GULP) [20], as described in Paper I, was too performed. For ZrO2 in
its monoclinic, tetragonal or cubic form, a supercell containing 108
Zr and 216 O was used, corresponding to a 3 � 3 � 3 supercell for
the monoclinic and cubic phase and a 3 � 3 � 6 supercell for the
tetragonal phase. For YSZ, a similar 3 � 3 � 3 supercell with 92 Zr,
16 Y and 208 O was used, simulating 8YSZ of the same stoichiom-
etry. When the supercell contains a point defect, such defect is
assigned a formal charge with respect to the reference state ac-
cording to the Kr€oger-Vink notation (�4 for Zr vacancy VZr, þ4 for
Zr interstitial Zri,�3 for Y vacancy VY,þ3 for Y interstitial Yi, andþ2
for oxygen vacancy VO; all in electron unit). An opposite charge was
applied as a uniform background to ensure (a) cations and anion are
not reduced or oxidized and (b) the supercell remains neutral. For
defect migration in YSZ, the nudged-elastic-band (NEB) method
[21] implemented in VASP was used to determine the diffusion
path and migration barrier under a fixed supercell volume and
shape. Here, we used the same 3 � 3 � 3 supercell, and conver-
gence was considered achieved when the residue atomic forces are
less than 0.1 eV/Å. To help accurately evaluate the saddle point
energy, we employed 7 climbing images between the initial and
final configurations. All calculations were performed under peri-
odic boundary conditions.

3. Defect formation energy in pure zirconia

We first describe the formation energies of a Schottky pair and a
cation/anion Frenkel pair in pure ZrO2 of the monoclinic, tetragonal
and cubic structures as shown in Fig. 1. For monoclinic ZrO2 (space
group P 21/c), Zr and O occupy different 4e sites and interstitials are
at 2c sites at (0 1/2 0) and (0 0 1/2). For tetragonal ZrO2 (space group
P 42/nmc), O occupies 4d sites, Zr at 2a sites at (0 0 0) and (1/2 1/2
1/2) and interstitials at 2b sites at (0 0 1/2) and (1/2 1/2 0). (Alter-
native arrangements may be made by interchanging 2a and 2b
sites, which are related by a (1/2 1/2 0) translation.) For cubic ZrO2
(ideal fluorite structure, space group Fm3m), O occupies 8c sites at
(1/4 1/4 1/4) and (1/4 1/4 3/4) adopting simple cubic packing, while
Zr occupies 4a sites at (0 0 0) and interstitials at 4b sites at (1/2 1/2
1/2), both adopting a face center cubic packing. (Alternatively, Zr
can occupy 4b sites while the interstitials occupy 4a sites, which
differs from the above arrangement by a (1/2 1/2 1/2) translation.)
Since all lattice vacancy/interstitial locations are equivalent, any of
themmay be chosen for calculating defect formation energies after
allowing for relaxations of supercell's shape, volume and atomic
positions.

In the Kr€oger-Vink notation, the defect reactions to form a cation
Frenkel pair and a Schottky pair and are, respectively.

Zr�Zr ¼ V
00 00
Zr þ Zr

����

i (1)

Nil ¼ V
00 00
Zr þ 2V

��

O (2)

Thus, the energy to form a cation Frenkel pair, Ef ; cation Frenkel, is

Ef ; cation Frenkel ¼ EVZr
þ EZri � 2Eref (3)

where EVZr
denotes the energy of a supercell that containing one

VZr, and likewise EZri is the supercell energy with one Zri, whereas
Eref is the energy of a reference ZrO2 supercell without any defect.
The energy to form an anion Frenkel pair is similarly obtained. To
form a Schottky pair, Ef ; Schottky, we also need to consider the energy
of (a) removing one Zr and two O, and (b) depositing them in a
reservoir that holds the chemical potential of ZrO2, which is set as
mZrO2

¼ Eref=108 by referring to the defect-free supercell where
there are 108 pairs of ZrO2. Thus,

Ef ; Schottky ¼ EVZr
þ 2EVO

� 3Eref þ N$mZrO2

¼ EVZr
þ 2EVO

� 323
108

Eref (4)

where N ¼ 1 and EVO
is the energy of a supercell that contains one

VO.
For each ZrO2 polymorph in a 3� 3� 3 supercell, we performed

ab initio calculations to find the supercell energies with and
without various defects, then used Eqs. (3) and (4) to obtain the pair
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formation energies listed in Table 1. Without exception, Ef ; Schottky is
less than Ef ; cation Frenkel, and the difference increases from mono-
clinic to tetragonal to cubic. This is mainly due to a corresponding
decrease of Ef ; Schottky since Ef ; cation Frenkel is almost the same in all
three polymorphs. Interestingly, the much more open monoclinic
structure (its unit cell volume is 4% larger) that should help
accommodate an interstitial does not make Ef ; cation Frenkel smaller.
The different Ef ; Schottky may stem from two related causes: (a) As
the structure changes frommonoclinic to cubic, Zr4þ is coordinated
with more oxygens, which is unfavorable because of the small size
of Zr4þ, and (b) as Zr becomes overbonded in the tetragonal and
cubic ZrO2, the Zr-O bond strength weakens. Therefore, oxygen
removal and VO formation, which plays a dominant part in a
Schottky pair that contains two VO, is easiest in the cubic structure
and most difficult in the monoclinic structure. In this connection, it
is interesting to note that, in cubic zirconia, the Schottky pair re-
action creating three defectsdone VZr and two VOdprovides the
lowest formation energy per defect, Ef ;Schottky=3 ¼ 0:91 eV; the
anion Frenkel pair reaction (creating two defectsdone VO and one
Oi) gives Ef ;anion Frenkel=2 ¼ 1:54 eV. Thus, in an undoped cubic ZrO2,
VO is mainly created by the Schottky pair reaction rather than the
anion Frenkel pair reaction.

Since a Schottky pair requires less energy to form in all three
polymorphs, VZr is the main cation defect species, especially in
tetragonal and cubic zirconia. While this conclusion agrees with the
previous computational studies [9e11], our Ef ; Schottky for cubic
zirconia (2.84 eV) is much smaller than the ones previously
calculated (11.6 eV by Mackrodt et al. [9] and 6.52 eV by Kilo et al.
[11]). Similarly, our Ef ; cation Frenkel (8.56 eV) is much smaller
(24.4 eV by Mackrodt et al. [9] and 20.4 eV by Kilo et al. [11]). Since
there is no structural ambiguity about cubic ZrO2, the difference can
only come from the computational method itself. This trend par-
allels a similar one established in Paper I: Empirical potential cal-
culations consistently produced >2 � supercell energies of what
the ab initio calculations produced. The cause of this error is also
known: It is primarily due to an overestimate of the electrostatic
interaction [14].
Fig. 2. Comparison of supercell energies containing one VZr (in red) or one VY (in blue)
by ab initio and empirical potential calculations. The lowest energy in each set is set as
zero. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
4. Defect formation energy in YSZ

4.1. Formulation of the problem

Unlike in ZrO2, defect pairs in YSZ include partial defect pairs of
different constituents. The defect reactions forming a Schottky pair
and a cation Frenkel pair in Zr1-xYxO2-x/2 are, respectively,

Nil ¼ ð1� xÞV 00 00
Zr þ xV 000

Y þ
�
2� x

2

�
V

��

O (5)

ð1� xÞZr�Zr þ xY�
Y ¼ ð1� xÞV 00 00

Zr þ ð1� xÞZr����

i þ xV 000
Y þ xY

���

i (6)

where the reference cation sublattice includes both Zr's and Y's in
their stoichiometric proportion. Referring to the energies of
supercells that contain various point defects in the above reactions,
we can express the formation energies of a Schottky pair and a
cation Frenkel pair as
Table 1
Formation energies of Schottky pair, cation Frenkel pair and anion Frenkel pair in ZrO

Crystal type Schottky pair (eV)

Monoclinic 7.06
Tetragonal 3.98
Cubic 2.84
Ef ;Schottky ¼ ð1� xÞEVZr
þ xEVy

þ
�
2� x

2

�
EV0

�
�
3� x

2

�
Eref þ N$mYSZ

¼ ð1� xÞEVZr
þ xEVy

þ
�
2� x

2

�
EV0

�
�
323
108

� x
2

�
Eref

(7)

Ef ; cation Frenkel ¼ ð1� xÞEVZr
þ ð1� xÞEZri þ xEVY

þ xEYi
� 2Eref

(8)

In the above, EVY
denotes the energy of a supercell that contains

one VY, and likewise EYi
is the energy of a supercell of one Yi, etc.

Here, Eref is the energy of a reference defect-free supercell of Zr1-
xYxO2-x/2, N ¼ 1 refers to one set of Zr1-xYxO2-x/2 “molecule”, and
mYSZ ¼ Eref=108 is the chemical potential of such “molecule”. To
apply it to 8YSZ, we let x ¼ 16/108 z 0.148.

To compute EVY
, etc., we must recognize that unlike in ZrO2,

there is no translational invariance in YSZ; e.g., the local environ-
ments of any two ZrZr are generally different, etc. So, starting with a
configuration of defect-free YSZ, there are many distinct choices for
placing a point defect, say Yi, and each choice gives a different
supercell energy EYi

. In a 3 � 3 � 3 supercell of 8YSZ, there are 108
choices each for placing a Zri or Yi, 92 choices for placing a VZr, 16 for
VY, and 208 for VO. This gives 532 in total, which is too many to be
handled by ab initio calculations. To keep the computational task
tractable, we first examined all these choices by empirical potential
calculations and ranked them in the order of the lowest supercell
energy. We next selected a certain number of the lowest energy
configurations, 10 each for VZr and Zri, 5 each for VY and Yi, and 20
for VO, and computed their supercell energies using ab initio cal-
culations to obtain EVY

, etc. They do show good correlationwith the
values obtained by empirical potential calculations, as shown in
Fig. 2, with the magnitude of the latter more than twice larger,
which was also noted in Paper I when the two calculations were
compared. Substituting thus ab initio calculated EVZr

, EZri , EVY
, EYi

and EVO
in various combinations into Eqs. (7) and (8), we obtained a

distribution of Ef ; Schottky and Ef ; cation Frenkel, which spans certain
ranges reflecting the combinations of different point defects at
different sites. In Paper I, a similar hybrid strategy combining
2.

Cation Frenkel pair (eV) Anion Frenkel pair (eV)

8.75 4.26
8.14 3.45
8.56 3.09
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empirical potential calculations for screening and ab initio calcu-
lations for final results was used to assess the stability of supercells.
Although the two calculations returned rather different values for
the supercell energies, the two sets of energies do track with each
other with a scaling factor of 2 or so (see Fig. 5 in Paper I). So we
believe it is highly likely that the above strategy will capture the
least energetic Schottky and cation Frenkel pairs: These pairs is
likely to be represented in the low-energy-tail of the above distri-
butions. Specifically, the least energetic Schottky pair must consist
of the least energetic VZr, VY and VO, and the least energetic cation
Frenkel pair must consist of the least energetic VZr, VY, Zri and Yi.
Another way to state the same is that the least energetic Schottky
pair must come from removing the most energetic ZrZr, YY and OO,
etc.
4.2. Schottky pairs and cation Frenkel pairs in the ground state

Starting with the “ground” state configuration (Fig. 3a) and its
energy (which gives Eref and mYSZ) identified in Paper I, we obtained
a set of distributions of formation energies shown in Fig. 3bec. The
large spread of the pair energies comes from the energy spreads
of E's of individual defects in the pair. For example, since the 10
lowest EVZr

spread over 0.96 eV, and likewise 5 EVY
over 0.69 eV

and 20 EVO
over 1.55 eV, the spread of Ef ; Schottky is

ð1� xÞ � 0:96þ x� 0:69þ
�
2� x

2

�
� 1:55 ¼ 3:90 eV. Applying

Boltzmann statistics to these distributions over the temperature of
1400e1700 K, we calculated the effective formation energies to be
1.91 eV for a Schottky pair and 5.77 eV for a cation Frenkel pair
(Fig. 3d). Therefore, as in pure cubic ZrO2, a Schottky pair in YSZ is
much easier to form, making cation vacancies the dominant cation
defects and Schottky pair reaction their dominant source. (Using
the law of mass action, the concentration of cation interstitials is
Fig. 3. (a) “Ground” state YSZ configuration identified in Paper I and the energy distributions
averages of defect formation energy between 1400 and 1700 K. Data from ab initio calculat
estimated to be 9e10 orders smaller than that of cation vacancies.)
Lastly, since Y doping introduces a large population of VO, the
concentration and chemical potential of VO in YSZ are fixed (i.e., YSZ
is in the extrinsic regime). So the concentration of cation vacancy
can be obtained from the law ofmass action for Eq. (2), the Schottky
defect reaction with a reaction energy Ef ; Schottky, giving

½VZr� � 1
½V��

O�2
exp

�
� Ef ;Schottky

kBT

�
.

4.3. Schottky pairs and cation Frenkel pairs in metastable states

To examine the influence of the reference state on defect for-
mation energies, we studied twometastable configurations that are
(1) 1.16 eV and (2) 5.23 eV (in the unit of eV per supercell) above the
“ground” state in their supercell energies. (In reality, (2) is unlikely
to exist.) The same hybrid calculations were performed giving the
results in Fig. 4aeb for (1) and Fig. 4ced for (2). In each case,
Ef ; Schottky is smaller than Ef ; cation Frenkel in both the lowest and the
mean energies of the distribution. Comparing Fig. 4 and Fig. 3, we
note that the values of Ef ; Schottky and Ef ; cation Frenkel of the meta-
stable states are smaller than their counterparts of the “ground”
state. Moreover, the less stable the metastable configuration, the
lower the Ef ; Schottky and Ef ; cation Frenkel. Indeed, the lowest
Ef ; Schottky in (2) is negative (Fig. 4c), indicating (2) is not even
metastable if the species are allowed to exchangewith the chemical
reservoir to spontaneously form a Schottky pair. On the other hand,
the handicap of a higher-energy metastable state is always more
severe than the advantage of a lower formation energies of defects,
the more so the less stable the state. (In (1), the formation energy of
a Schottky pair is 0.28 eVe1.63 eV in Fig. 4a vs. 1.91 eV in
Fig. 3ddlower than that in the “ground” state, but state (1) is
1.16 eV more energetic than the “ground” state. The gap is even
larger between (2) and the “ground” state.) Therefore, unless the
to form (b) a Schottky pair or (c) a cation Frenkel pair in the structure. (d) The assemble
ions.



Fig. 4. Energy distributions to form a (a) Schottky pair or (b) cation Frenkel pair in a metastable YSZ having 1.16 eV higher supercell energy than the “ground” state; likewise for
forming a (c) Schottky pair or (d) cation Frenkel pair in a metastable YSZ having 5.23 eV higher supercell energy. Their assemble averages between 1400 and 1700 K are listed at the
upper-left corners. Data from ab initio calculations.

Fig. 5. (a) Bond valence energy and (b) electrostatic energy correlates with the energy of supercell that contains one VZr (blue bars) or VY (red bars). The lowest such energies are
used as the energy references (i.e., zero energy) for comparison within the same set, blue or red. Also compared with the supercell energy are (c) O-1NN and (d) O-2NN of VZr, and
(e) O-2NN of VY. The VY in this set all have 8 O-1NN. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Cation migration energetics and local atomic arrangements at several inter-
mediate states.
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metastable state is energetically very close to the “ground” state, it
is thermodynamically and kinetically unrealistic to expect them to
provide Schottky pairs that contribute cation vacancies for
diffusion.

This study of metastable states reaffirms our conclusion in
Section 3 that Schottky pairs always dominate over cation Frenkel
pairs and cation vacancy is the dominant cation defect. Moreover,
since the search for the lowest energy state in Paper I was not
exhaustive and the de facto “ground” state we used may not be the
true ground state, we should regard the Ef ; Schottky value in Fig. 3d,
1.91 eV, as a lower bound. (The de facto ground state is statistically
valid up to a sample size of ~109 random configurations, which is
still small compared to the 1042 configurations available in a
3 � 3 � 3 supercell; see Section 6 of Paper I.) However, we expect
the formation energy difference to be less than the energy differ-
ence between the true ground state and the de facto ground state if
we can extrapolate the comparison between Fig. 4a and Fig. 3d: The
difference of 0.28 eV in formation energy is much less than the
difference of 1.16 eV in the supercell state energy.

4.4. Local structure of cation vacancies

Since least energetic vacancies are likely to be predominant, it is
instructive to interrogate the correlation between EVZr

(and EVY
) and

the local structure within the framework of packing preferences
established in Paper I. For this purpose, we studied the 10 least
energetic VZr, and correlated their ab initio supercell energies EVZr

with supercell's bond valence energy (Fig. 5a, blue bars) and elec-
trostatic energy (Fig. 5b, blue bars). (See Part I on the method of the
required calculations. Here, the electrostatic energy is obtained by
treating the vacancy-containing supercell as having a set of point
charges made of Zr4þ, Y3þ and O2�, in addition to a negative charge
of, say �4 if the supercell contains a VZr, and surrounding the
supercell by a uniform background charge of þ4 in total.) Since
these vacancies are likely to form by removing the most energetic
ZrZr in the ground state, we also studied how the vacancy-
containing supercell energy correlates with Zr's environmentdits
numbers of O-1st nearest neighbors, denoted as O-1NN (Fig. 5c),
and 2nd nearest neighbors, O-2NN (Fig. 5d).

Because of the small sample size and the considerable structural
heterogeneity of different defects in the sample, correlations were
relatively weak but still enough to recognize the following trend. A
less energetic VZr is in a supercell of a lower bond valence energy
and electrostatic energy, and it originates from a Zr site that has an
unfavorably high O-1NN number (fewer oxygens are preferred, see
Paper I) and unfavorably low O-2NN number (more oxygens are
preferred). According to Paper I, the cation-O-1NN preferences
mainly originate from size consideration (Zr being undersized
relative to Y) while the cation-O-2NN preferences mainly from
electrostatic charge consideration (Y3þ being �1 relative to Zr4þ).
Since VZr is highly negative, it introduces another charge consid-
eration that favors placing positively charged VO near VZr, i.e., VZr
originating from a Zr site of fewer O-1NN and O-2NN. This new
consideration does not contradict the packing rule established in
Paper I for O-2NN, but it does contradict the size consideration of
Paper I for O-1NN. Yet the correlation in Fig. 5ced is fully consistent
with the rules of Paper I. Therefore, the additional charge consid-
eration for VZr is not as important as the size-dominated packing
consideration for the O-1NN environment.

We similarly examined the 5 least energetic VY, their EVY
, bond

valence (Fig. 5a, red bars) and electrostatic energies (Fig. 5b, red
bars), and again found some correlations. Regarding oxygen coor-
dination, we note that our “ground” state only contains Y that has 8
O-1NN, which conforms to Y's packing preferenceddictated by the
size consideration for 1NN. Regarding O-2NN, we shall follow two
charge considerations. (a) According to Paper I, Y3þ being �1
relative to Zr4þ prefers more VO, hence fewer O-2NN; conversely,
the least energetic VY should originate from a Y site with the
highest O-2NN. (b) VY being highly negative �3 prefers more VO,
hence fewer O-2NN; conversely, the least energetic VY should
originate from a Y site with the lowest O-2NN. Apparently, (b),
which is a new consideration, overrides (a), which came from Paper
I, so that the trend in Fig. 5e is manifest. (Fig. 5e has less scattered
data than Fig. 5ced since Y always has 8 O-1NN.)

In summary, as in Paper I, we find for cation vacancies that their
O-1NN preferences mainly originate from size consideration while
their O-2NN preferences mainly from electrostatic charge consid-
eration. The majority VZr prefers to have VO as 2NN, not 1NN; the
minority VY prefers to have VO as both 1NN and 2NN.

5. Migration barrier in YSZ

5.1. Migration barrier in the “ground” state

To calculate the migration barrier for a cation vacancy in YSZ, we
again considered the multiple possibilities of where migration may
begin and end in a supercell, which is not invariant in translation.
To keep the computational task tractable, we started with the least
energetic VZr created at the most energetically unfavorable Zr site,
termed A, and find the barriers for Zr to enter A from 6 out of the 12
neighboring sites. After two neighboring Zr with the lowest bar-
riers left their sites, B and C, we again calculated 6 migration paths
for Zr to enter B or C following the same scheme. (Having Zr
returning from A to B or C was one of the 6 paths.) The energy
profiles (one shown in Fig. 6) along the above paths in a 3 � 3 � 3
supercell were obtained using the ab initio-NEB method, and their
migration barriers in the forward and backward directions are lis-
ted in Table 2. (The average of the forward and barrier barriers is
designated as the “equivalent” migration barrier of the path.) The
barriers in two directions differ because of lack of symmetry in YSZ.
For example, since A is the most stable state, the backward barrier
to return to A is always lower than the forward barrier in Table 2.
The barriers from A vary from 1.78 to 4.43 eV with the average at
2.92 ± 0.58 eV. (The forward average is 3.22 ± 0.70 eV, the back-
ward 2.62 ± 0.56 eV)

5.2. Migration kinematics

A glimpse of migration kinematics is afforded by snapshots
taken along the path. One set of snapshots is shown as insets in



Table 2
Migration barriers in 8YSZ for six forward/backward paths each from A, B, and C. The equivalent barrier (E) is the average of forward (F) and backward (B) barriers. The locations
of VO as indexed in Fig. 9 are listed under P(VO). *Same as 4 from A, #Same as 5 from A.

# Hopping from A Hopping from B Hopping from C

F (eV) B (eV) E (eV) P(VO) F (eV) B (eV) E (eV) P(VO) F (eV) B (eV) E (eV) P(VO)

1 3.36 3.30 3.33 15 3.42 2.54 2.98 None 2.84 3.26 3.05 11
2 4.43 3.01 3.72 11 4.16 3.19 3.68 None 3.37 2.79 3.08 12
3 3.16 2.76 2.96 17 4.18 3.41 3.80 6, 17 2.67 2.75 2.71 1
4 3.01 2.73 2.87 17 2.73* 3.01* 2.87* 17* 4.34 3.73 4.04 None
5 2.26 1.78 2.02 1 3.14 2.81 2.98 3 1.78# 2.26# 2.02# 1#

6 3.10 2.15 2.63 11 3.45 3.17 3.31 3, 12 3.88 2.81 3.35 None

Fig. 7. (Left) Schematic of 1 � 1 � ½ slab with one Zr and one VZr exchanging sites along the red dotted path. Oxygen sites indexed from 1 to 18, two interstitial locations marked as
I, and the center of the slab marked as M. (Right) Schematic of cation plane showing a checkerboard arrangement of grey ZrO8 polyhedra. Cation can either migrate via M (black
dash line) or on a detour via an interstitial site (red dash curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6, and another in Fig. S1. Here, the migrating Zr is in yellow, and
the VZr with which it exchanges locations is marked by a cross. The
kinematics have the following features. (a) Except for the migrating
Zr and VZr, other ions only experience minor local relaxations. (b)
Migration is not along a straight line from the initial site to the final
site (its midpoint marked as M in Fig. 7). Instead, the saddle point
veers toward the vacant cation interstitial site (marked as I in
Fig. 7). (c) While two nominally equivalent cation interstitial sites
are marked in Fig. 7, long range interactions originating from ions
outside the ones in Fig. 7 led the NEB-calculated path to prefer one
site over the other. (d) The saddle-point Zr has fewer oxygen
neighbors than the initial/final-site Zr, 4 oxygens (3, 8, 9 and 10, as
marked in Fig. 7) in Figs. 6 and 5 oxygens (3, 4, 8, 9 and 10) in Fig. S1
in the former compared to 8 oxygens in the latter. (e) To compen-
sate for the lower coordination number, the saddle-point Zr-O
polyhedron has shorter (1.9e2.0 Å between saddle-point Zr and
oxygen 9/10 vs. normally ~2.2 Å) hence stronger Zr-O bonds than
the ones in a normal 7- or 8-coordinated polyhedron. (f) To make
room for Zr passage, oxygen 9 and 10 are pushed out. (g) If we
construct a triangular prism of oxygens {3, 4, 7, 8, 9, 10}, then the
migration path enters the prism from one side 3-4-10-9 and leaves
from the other side 7-8-10-9.
5.3. Charge transfer and long-range disturbance

Closely related to the coordination change is charge transfer
during migration. Since our calculations did not allow redox re-
actions, any charge transfer must be caused by either ion motion
that drags the surrounding electron cloud or electron redistribution
between neighboring ions, and it should be mostly reversible once
cation migration has passed. In crystal chemistry terms, this cor-
responds to a “bond-valence” change due to the changing coordi-
nation number and bond distance. In the example shown in Fig. 8,
the ab initio-calculated charge density difference between the
saddle-point state and the initial state is plotted in Fig. 8a, and
similarly, the difference between the final state and the saddle-
point state is plotted in Fig. 8b. Here, the migrating Zr is marked
in purple, electron surplus is represented in blue, and electron
deficit is in yellow. As Zr migrates toward the saddle point in Fig. 8a,
it attracts oxygen O2, O3 and O4 and draw in more bonding elec-
trons. Meanwhile, another surrounding oxygen O1 is left behind
and drawn away by a nearby cation, which happens to be Y in
Fig. 8a. As Zrmigrates away from the saddle point in Fig. 8b, it sheds
the bonding electronwith O2 but simultaneously draws in bonding
electrons from O3, O4, O5 and O6, which are retained in the final
state. Comparing Fig. 8a and b, we can see numerous oppositely
pointing “dipoles”, directing from yellow to blue, several shown by
black arrows. Remarkably, such bonding changes have propagated
across the entire length of the 3 � 3 � 3 supercell as shown in
Fig. 8c, suggesting very slow attenuation against the drastic
bonding perturbation that accompanies cation migration. This may
be taken as another evidence of the compliant cation sublattice first
noted by Li et al. [22e24], who also cited its relatively soft acoustic
phonon that is consistent with YSZ's relatively low Young's
modulus (200 GPa) and shear modulus (80 GPa) despite the high
melting point.



Fig. 8. Electron charge density transfer (a) from the initial state to saddle point, and (b) from saddle point to final state, drawn as surfaces of iso-charge-transfer of 0.02 electron/
Bohr3 around the migrating Zr. Electron surplus is represented in blue and deficit is in yellow. (c) Same as (a) shown for the entire 3 � 3 � 3 supercell at a smaller magnification. The
iso-charge-transfer drawn is 0.05 electron/Bohr3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Correlations between static and dynamic local structure at saddle point and migration energetics. (a) LZr-M vs. LO9/O10, (b) migration barrier from ab initio-NEB calculations vs.
LZr-O9/O10, (c) same barrier vs. short-range repulsions between migrating Zr and neighboring oxygens up to 3.0 Å, and (d) same barrier vs. short-range repulsions between migrating
Zr and O9/O10. LZr-M: the distance between M and Zr at the saddle point; LO9/O10: the total displacements of O9 and O10 during the migration process (see text for more detail); LZr-
O9/O10: the average bond length of Zr-O9 and Zr-O10 at the saddle point.
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5.4. Correlating barrier height to saddle-point's local structure

We next seek to correlate barrier height with the local structure
when the cation is passing through the saddle point. As shown in
Fig. 7, ZrO8 polyhedra (in grey) are arranged in a checkerboard
pattern, and the empty space (in white) provides interstitial sites.
To take advantage of the empty space, Zr during migration deviates
from the straight-line path through M in Fig. 7 to follow the
schematic dotted curve nearby. Naively, onewould expect less need
for such detour if there is more space between O9 and O10 to allow
a direct passage, or if O9 and O10 can move out of way to make
room for Zr. The latter is indeed the case as illustrated in Fig. 9a by
the inverse correlation between LZr-M, the distance between M and
Zr at the saddle point, and LO9/O10, the total displacements of O9 and
O10 calculated in the following way. When Zr moves from the
initial point to the saddle point, O9 moves by L1 and O10 by L2;
when Zr moves from the saddle point to the final point, O9 moves
back by L3 and O10 by L4. The sum of these four displacements, all
taken as positive numbers, is LO9/O10.

The interplay between LZr-M and LO9/O10, expressed in LZr-O9/O10,
which is the average bond length of Zr-O9 and Zr-O10 at the saddle
point, has a decisive influence on the migration barrier as shown in
Fig. 9b with a correlation factor of �0.76. Since a shorter bond
distance implies a higher short-range repulsion, we also expect a
positive correlation between the migration barrier and such
repulsion. This is demonstrated by Fig. 9c, (correlation factor: 0.78)
in which the Buckingham potential in the empirical potential
[14,19] was used to calculate the short-range repulsions between
the migrating Zr and nearby oxygens up to 3 Å. It is a reasonable
result since the less repulsion the neighboring ions exert on the
migrating cation, the less migration barrier the migrating ion
should experience. The most important differentiator that causes
the total repulsion to vary is the short-range repulsion from O9 and
O10, which has a correlation factor of 0.75 with the migration
barrier as shown in Fig. 9d. This is not surprising because, at the
saddle point, the Zr-O9 and Zr-O10 distances are significantly
shortened, from normally ~2.2 Å before migration to 1.9e2.0 Å at
the saddle point. Therefore, size consideration is of pivotal impor-
tance in determining the ease of cation migration in YSZ.

In the order of increasing importance, other weaker correlations
between migration barrier and local structure parameters are with
(a) LZr-M, the distance between Zr and M at the saddle point (cor-
relation factor: 0.15); (b) LO9/O10 (correlation coefficient: �0.23); (c)
O9-O10 distance in the initial/final configuration (correlation
coefficient: �0.25); and (d) cation size, which is related to the
charge state represented by the Bader charge (correlation coeffi-
cient: 0.42) [25]. Naturally, these weaker correlations are mostly
washed out by the noise (i.e., the configuration-to-configuration
variation of YSZ), but on the whole all of the above are consistent
with the idea that size consideration is of paramount importance: A
larger Zr separation from O9 and O10 at the saddle point, a longer
O9-O10 separation, more compliant O9 and O10, and a smaller
cation size all help lower the barrier. This is because it is the misfit
between the migrating cation size and the statically or dynamically
available space between O9 and O10 that determines the short-
range repulsions, which further extends to influences felt at
much longer distances via slowly converged elastic and electro-
static interactions as indicated in Fig. 8c.

5.5. Y migration

Similar ab initio-NEB calculations were performed for Y migra-
tion. Three migration paths were examined and they share the
samemigration kinematics as described above for Zrmigration. The
equivalent diffusion barriers are 3.28 ± 0.77 eV (forward:
3.16 ± 0.64 eV; backward: 3.39 ± 0.90 eV) They are slightly higher
than those for Zr, but the data scatter is large andwe only examined
3 paths.

Since a cation vacancy in YSZ can be used for both Zr and Y
diffusion (thus the same defect formation energy), any diffusivity
difference between the two must come from different migration
barriers. According to tracer diffusion data, Y diffusion is
2.5e4.3 � that of Zr between 1300

�
C and 1676

�
C [5,26], which

corresponds to a lower migration barrier by ~0.2 eV in Y. On the
other hand, such kinetic advantage should have led to Y segregation
at the cathode in electro-diffusion, yet Y3þ actually segregates at
the anode instead [27,28]. The latter observation places an upper
bound for Y3þ diffusivity at 4/3 � that of Zr4þ, suggesting a <0.1 eV
difference in migration barrier. Clearly, for a complicated structure
like YSZ, these differences in migration barrier are too small to be
resolved by ab initio calculations employed here. So we did not
pursue it further.

6. Comparison with experiments and past calculations

6.1. Diffusion as a random walk process

Atomic migration is a multi-step random-walk process that
must reach a long enough distance to become effective, or else the
vacancy and the atom may return to their original sites. A random
walk in YSZ sees myriad local structures and barrier heights, which
vary from step to step and from path to path. With many paths
available, the preferred one is the easiest one, and on this easiest
path it is the highest barrier that is rate controlling. This random-
walk problem is similar to the conduction problem of a network
circuit that has both serial and parallel elements. In the following,
we will apply this idea to evaluate the rate-controlling barrier for
Zr.

To proceed, we first postulate that three independent migration
steps are needed for Zr to “permanently” escape its original site and
not look back. This is a reasonable assumption: It can be shown
that, while after two steps the probability for the vacancy to return
to the original site is still 1/12, after three steps it drops to 1/36,
which seems quite small. (Here, we use the fact that each VZr has 12
nearest Zr neighbors.) We thus calculated the time required to
statistically sample all available three-step paths in the following
way. (a) Referring to Table 2, we consider taking one step each from
A, B and C to constitute a three-step path, thus obtaining 63 ¼ 216
such paths (6 available steps each from A, B and C). (b) Consider a
three-step migration as a serial process, we see the time tm
required to go through it to be proportional to

exp
�
Em;i

�
kBT

�
þ exp

�
Em;j

�
kBT

�
þ exp

�
Em;l

�
kBT

�
, where Em,k is

the barrier height of step k (k ¼ i, j, l) along the path m and we
assume the correlation factor and attempt frequency are the same
for each jump. (c) Since the probability of taking pathm to “escape”
within a unit time is tm�1, the total escape probability per unit time
when havingM such parallel paths available (M¼ 216 in our case) isPM

m¼1
1
=tm

. Therefore, the ensemble average of the migration bar-

rier for the random walk can be obtained from the slope of the

ln
P6

i;j;l¼11=½expðEm;i=kBTÞ þ expðEm;j=kBTÞ þ expðEm;l=kBTÞ� vs. 1/T
plot, where i is a path from A, j a path from B and l a path from C,
providing 216 three-step paths. Over 1400-1,700 K, the plot gives a
migration barrier of 2.88 eVe2.97 eV depending on whether the
equivalent or forward barriers in Table 2 are used.

6.2. Experimental data and past calculations

Diffusivity D may be theoretically estimated using its Arrhenius
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form

D ¼ D0 exp
��Ea
kBT

�
¼ fa2n

½V0�2
exp

��Ef þ Em
kBT

�
(9)

Here D0 is a pre-exponent factor, kB is the Boltzmann constant, T
is the absolute temperature, Ea is the activation energy, f is the
correlation factor, a is the jump distance, n is the attempt frequency,
[VO] is the fraction of vacant sites on the oxygen sublattice, and Ef
and Em are the defect formation andmigration energy, respectively.
(The law of mass action applied to the Schottky defect formation
reaction gives 1

½V0 �2
exp

�
�Ef
kBT

�
as the fraction of vacant cation sites on

the cation sublattice.) For cation diffusion in YSZ, f ¼ 0.783 for the
face-centered-cubic cation sublattice, a ¼ 3.64 Å, n is taken to be
1012-1014 s�1, [VO] ¼ 0.074, and Ef and Em are the calculated en-
thalpies, Ef ¼ 1.91 eV from the Schottky defect in Section 4 and
Em ¼ 2.97 eV in Section 6, giving an activation energy of 4.88 eV,
compared very well to the activation energy of 4.5e6.1 eV from
experimental data [1e5]. For n ¼ 1013 s�1, our theoretical estimates
shown in red in Fig. 10 are in very good agreement with the
experimental data (in black) of cubic zirconia [1e3,5] of compara-
ble compositions to 8YSZ over quite a wide range of temperature.

As mentioned in the Introduction, all previous theoretical and
computational studies, which used empirical potentials only, have
consistently found an activation energy >10 eV, of which 6.5 eV or
more is for forming a cation vacancy and 5 eV for it to migrate. (See
Table 3 for a summary of previous simulation results.) As also
mentioned in Part I, there is a systematic overestimate of the
supercell energy by the empirical potential calculations because of
their overestimate of the electrostatic energy. To interrogate
whether this is also the case here, we adopted the structures of the
saddle point and the initial/final state obtained by our ab initio-NEB
calculations, then used the empirical potential to calculate the
supercell energies of these states, and finally took their difference
as the migration barrier. The results are compared with the ab
initio-NEB barrier calculations in Fig. 11 for both the forward (blue)
and equivalent (red) migration barriers. As before, we find a posi-
tive >2 � correlation: The barrier calculated using the empirical
potentials is more than twice as high as from ab-initio method.
Since the same structure is used in the two calculations, the dif-
ference can only come from the computational method itself.
Therefore, without doubt, the empirical potential calculations that
overestimate the electrostatic interaction gave the wrong activa-
tion energies.
Fig. 10. Predicted cation diffusivity of this study (red) in agreement with experimental
data from tracer diffusion (Solmon's 9.5YSZ and 18YSZ [5], Kilo's 10.2YSZ and 18.3YSZ
[1]), creep (Dimos's 20YSZ [3]) and shrinkage of dislocation loop (Chien's 9.4YSZ and
18YSZ [2]). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
7. Discussion

7.1. Defect formation energy

While only the formation energies of the Schottky and Frenkel
pairs have been calculated in this work, one can also consider the
formation energies of individual charged defects [29,30]. For
example, Ef ;VZr

for VZr and Ef ;VO
for VO are defined as

Ef ;VZr
¼ EVZr

� Eref þ mZr � 4me (10)

Ef ;VO
¼ EVO

� Eref þ mO þ 2me (11)

where mZr and mO denote the chemical potentials of Zr and O,
respectively,me is the chemical potential (the Fermi level) of elec-
trons, and mZr þ 2mO ¼ mZrO2

under local equilibrium conditions.
Combining Eqs. (10) and (11), we obtain the formation energy of a
Schottky pair, Ef ;Schottky ¼ Ef ;VZr

þ 2Ef ;VO
, and recover Eq. (4). Using

these relations, we can also use the literature data of Ef ;VZr
, Ef ;VO

and
other interstitial defects in monoclinic zirconia [30] to calculate the
pair formation energies: A Schottky pair needs 6.95 eV, a cation
Frenkel pair needs 9.45 eV, and an anion Frenkel pair needs 4.11 eV.
These values are similar to the results listed in Table 1 within the
error expected for ab initio calculations.

For simplicity, our calculation has assumed fully ionized defects.
While this is empirically justified by the fact that YSZ is difficult to
reduce or oxidize, it contains onlyminimal amount of electrons and
holes [31] and it is an ionic conductor, it is also justified by referring
to the energy diagrams of cubic Y2O3 and monoclinic ZrO2 in Fig. 12
[29,30]. For an isolated insulator, which corresponds to normal
processing conditions of oxide ceramics, wemay set the Fermi level
at about halfway in the band gap. Indeed, all the defects are fully
ionized under this condition. The Fermi-level window within
which the above assumption holds is about 1.5 eV, or 2.2 eV if we
ignore Oi that is unimportant in YSZ. This value is comparable to the
commonly used electrochemical window, 2.1 V, the Nernst poten-
tial that causes ZrO2 to reduce to Zr.
7.2. The role of oxygen/oxygen vacancy

Paper I pointed out that 8YSZ with its complicated structure has
a glassy energy landscape, so the true ground state cannot be
reached without long-range relaxation of both cations and anions.
Full relaxation is difficult because the Zr-O and Y-O environments
are strongly intercorrelated, as evidenced by the distinct oxygen
(vacancy) population oscillations around Zr and Y that are long-
range (at least up to 5th NN) but out-of-phase with each other.
Interestingly, as illustrated by Fig. 8, a single exchange between Zr
and VZr already entails long-range relaxations involving essentially
all the ions (about 300) in the supercell. Thus, local atomic hopping
is additionally coupled to another set of long-range structural re-
laxations. Therefore, full relaxation is certainly impossible once
cation diffusion is frozen at below about 1150 �C. Nevertheless,
partial relaxation via much faster oxygen rearrangement may
persist: It is responsible for the apparent transition in oxygen
diffusivity at about 500 �C [32].

We believe oxygen diffusionwith a very lowactivation energy of
about 0.5 eV above 1000 �C [32] and a very high VO population
plays an important role in cation diffusion, which has a migration
barrier of about 3 eV. This is because the cation/cation-vacancy pair
must spend much time together before it executes a successful
exchange, and during the waiting period its local structure will
most certainly relax, by VO diffusion, to attain a lower overall sys-
tem energy. (In contrast, VO-mediated relaxation of the saddle-



Table 3
Summary for calculated cation formation and migration energies in zirconia literature. *Potential modulated to fit oxygen diffusion data.

Method Composition Formation energy (eV) Migration energy (eV)

Empirical potential [9] c-ZrO2 Schottky: 11.6 Zr: 8.5
Cation Frenkel: 24.4

Empirical potential [10] c-ZrO2 Schottky: 5.91 /
Cation Frenkel: 20.15

t-ZrO2 Schottky: 6.55 /
Cation Frenkel: 17.63

Empirical potential [11] t-ZrO2 Schottky: 6.52 Zr: 5.07
Cation Frenkel: 20.44 Y: 4.60

Empirical potential, molecular dynamics [13] 11YSZ / Zr: 4.8
Y: 4.7

Modulated potential*, molecular dynamics [15] 8YSZ / Zr: 2.58
Y: 2.61

Fig. 11. For the same set of initial, final and saddle-point atomic structures, the forward
(blue)/equivalent (red) migration barriers from ab initio calculations are smaller than
those calculated by using the empirical potential. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Energy levels of the charge state transitions of ionic defects in Y2O3 (upper
panel) and monoclinic ZrO2 (lower panel). (Data from Refs. [29,30].) In monoclinic
ZrO2, the O3 type of oxygen ions is coordinated with three Zr and the O4 type with four
Zr. Oxygen defects in monoclinic ZrO2 show negative-U behavior, so their charge states
disproportionate and change by 2.
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point state is unlikely because the jump is a very brief event.) In
Table 2, the forward jumps from A are from the “ground” state, so
no VO-induced relaxation is needed. But the backward jumps to A
and all other jumps to and from B and C must start from higher
energy states. With VO repositioning, these states will likely assume
a configuration that more resembles the “ground” state.

For the above reasons, the forward jumps from A in Table 2 are
more representative of the reality and thus deserve special atten-
tion. They all start from the identical initial state, with VZr sur-
rounded by 8 oxygens without any VO. Referring to Table 2, we see
the local environment within the 1 � 1 � ½ supercell of Fig. 6,
which surrounds the VZr and the migrating Zr, can be described by
the site(s) of VO: The VO at {11 or 15, which are equivalent sites} is
the 1NN of the migrating Zr and the 2NN of the starting VZr; the VO
at {1 or 17, which are equivalent} is the 2NN of both the VZr and the
migrating Zr. Note that the 3 paths involving one VO at 11/15 are all
fromVZrO8 to ZrO7, among them two paths having an identical VO at
11. Yet their migration barriers differ by more than 1 eV. This in-
dicates that substantial heterogeneity must have arisen from the
different long-range interactions due to the different environments
outside the 1� 1� ½ slab. The 3 paths involving a VO at 1/17 are all
from VZrO8 to ZrO8, among them two paths having an identical VO
at 17. Their migration barriers, though again different, are relatively
lower than those of the other 3 paths. This suggests a 2NN VO of
both the VZr and the migrating Zr may facilitate migration. Indeed,
in addition to the paths that originate from A, all other paths listed
in Table 2 that contain a single VO at 1/17 also have a relatively low
migration barrier. On the other hand, 3 of the 4 paths that contain
no VO at all have very high migration barriers (3.88e4.34 eV).
Returning to the paths from A, besides the 6 paths listed in Table 2,
4 out of the remaining 6 paths contain no VO and are likely to have a
high migration barrier. This is not unreasonable because, to be
representative of the composition of 8YSZ, a typical 1 � 1 � ½ slab
must have 2 Zr and 4 O. Thus on average it can only contain 2/3 of
an oxygen vacancy, i.e., 1/3 of the slabsmust have no VO. In this way,
we have analyzed 10 of the 12 paths from A and confirmed the
importance of VO to their migration barrier.

These observations provide the following picture of the most
energetically favorable course of cation diffusion. It involves an
exchange between a VZr in VZrO8 (themost stable VZr configuration)
and a Zr in ZrO8 (the most unstable Zr configuration.) It also in-
volves an environment with a 2NN VO at {1/2/17/18}. This is
because, according to crystal chemistry preferences of Fig. 3 and
Paper I, a 2NN VO further stabilizes VZr and destabilizes Zr. If the VO

is instead relocated to be next to Zr, providing ZrO7, it stabilizes Zr
making it more reluctant to jump. Alternatively, if the VO is relo-
cated to be next to VZr (Fig. 5c), then it so destabilizes VZr that such
configuration is not seen in the “ground” state at all. More broadly
speaking, to meaningfully contribute to migration, the starting
configurationsmust be relatively low in energy, or else theywill not
be thermodynamically accessible, thus irrelevant (even though
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they may have a lowmigration barrier). Such a low-energy starting
configuration, state A, is provided above. Interestingly and impor-
tantly, this state is also endowed with a low migration barrier
because of the opposite crystal chemistry preferences of VZr and Zr.

On a closer look, we found the 3 paths involving a VO at 1/17
from VZrO8 (i.e., the ground state A) to ZrO8 are not equivalent
because the migrating path (red broken curve in Fig. 7) veers to-
ward 1, not 17. If the electrostatic repulsion between positively
charged VO and the migrating Zr is the determining factor, then the
migrating Zr going closer to VO at 1 should experience a higher
barrier, which is opposite to what we found in calculation. (Other
data in Table 2 follow the same trend: VO at {3,4,7,8} is more
repelling than {11,12,15,16}, yet paths with these VO have lower
barriers.) So charge may not be the most important consideration.
On the other hand, the observation of higher barriers when no VO is
present suggests the importance of structure openness/softness,
which can facilitate neighboring oxygens to rearrange and to bond
the saddle-point Zr. This explains why VO at {1/17} can lower the
migration barrier: VO at {1,2} allows oxygen {3,4,7,8} to more easily
move around to facilitate Zr movement; likewise, an VO at {17,18}
makes Zr migration easier since oxygen {9,10} can move out of the
way toward site {17,18}.

The above discussion of individual case studies of oxygen va-
cancy and crystal chemistry preferences reaches the same conclu-
sion as from the statistical analysis of Fig. 9: What is important for
lowering the migration barrier is the structure openness/softness
that can facilitate neighboring oxygens to rearrange and to allow
cation passage, which is fundamentally a size consideration. This
oxygen openness/softness needs to involve both 1NN and 2NN in
order to satisfy the crystal chemistry requirement of cation-anion
coordination, which is again dominated by the size consideration.
In the following, we will seek to extend this conclusion to anion
migration.

7.3. Cation vs anion diffusion

It is remarkable that in 8YSZ the activation energy of cation
diffusion (4.8 eV) is almost 10 � that of anion diffusion (0.5 eV at
above 1,000 �C, which is the appropriate temperature to compare
with cation diffusion). One reason why oxygen diffusion is easier is
the presence of copious VO due to Y doping, which removes the
need for defect formation, hence formation energy. But it is still
remarkable that themigration energy of O (~0.5 eV) is only 1/6 of Zr
migration (~3 eV). This is despite a much larger size of O2�

compared to Zr4þ or Y3þ. Similarly, fast anion diffusion is seen in
other fluorite structured compounds (CaF2, SrF2, CeO2), so the
reason must come from the structure itself.

To understand why, we used the same setting of cubic ZrO2 and
calculated the migration barrier of Zr and O by ab initio-NEB cal-
culations. They gave 0.37 eV for O migration and 3.27 eV for Zr
migration, which like before, is smaller than the literature value of
5.07 eV obtained by empirical potential calculations [11]. By
inspecting the local structures at the saddle point, we identified a
Zr-O bond length of 1.95 Å for Zr migration and 1.98 Å for O
migration. The former value is comparable to that in YSZ
(1.9e2.0 Å), and is much larger than the half spacing between O9
and O10 (2.6 Å divided by 2). So direct passage of Zr between O9
and O10 is not feasible, forcing Zr to take a curved path in Fig. 7 (O9/
O10 are still displaced by 0.5 Å). In comparison, the latter value is
closer to the half spacing between the two Zr (3.6 Å divided by 2).
So a direct passage of O is much more feasible and only need to
displace the two Zr by less than 0.2 Å. Therefore, fluorite structure is
much more open for anion migration than for cation migration,
which accounts for its well-known property of faster anion
diffusion.
8. Conclusions

(1) Defect formation energies in zirconia polymorphs and 8YSZ
have been calculated using ab initio methods. Schottky pairs
are easier to form than cation Frenkel pairs, providing cation
vacancies as the dominant cation defect species. In 8YSZ,
cation vacancy formation requires about 2 eV.

(2) Cations migrate by exchange with a neighboring vacancy,
which encounters a barrier from 2.26 to 4.43 eV depending
on the local environment. The effective barrier for amultiple-
step random-walk is about 3 eV. The predicted cation diffu-
sivity is in good agreement with the experimental data of
8YSZ, with activation energy of about 5 eV.

(3) Cation hops by making a detour via an empty cation-
interstitial site. At the saddle point, the migrating cation
displaces two nearest oxygen ions withmuch shortened Zr-O
bonds, which raises the short-range repulsions and causes a
long-range disturbance of the surroundings. This explains
the relatively difficulty in cation diffusion. In contrast, oxy-
gen hopping minimally disturbs neighboring cations with
much longer Zr-O bond distances, which explains why cubic
zirconia is a fast oxygen conductor.

(4) A cation vacancy prefers to be surrounded by 8 oxygens;
some oxygen vacancy as the next nearest neighbor will
further stabilize it. Its easiest exchange is with a least stable
Zr neighbordthe one surrounded by 8 oxygens. The
migrating Zr prefers to travel through a neighboring empty-
interstitial subcell, a ½ � ½ � ½ subcell that contains seven
oxygens. Lastly, the more open and compliant the oxygen
environment, the easier cation migrates. These tendencies
are all fundamentally rooted in size consideration.

(5) Mobile oxygen vacancies play an important role in enabling
cation diffusion by providing the above preferred local en-
vironments and oxygen softness for the cation vacancy, the
Zr neighbor to be exchanged, and the oxygen vacancy in the
7-oxygen subcell surrounding the saddle point.
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