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Migration of phase boundaries in crystalline solids eliminates one set of lattice sites and establishes
another. Using a combination of phase field crystal modeling and crystallographic analysis, we present
here a complete atomistic description of the migration mechanism of a high-index planar interface
during a diffusional hexagon to square phase transformation. In particular we show that a terrace-step
interface advances macroscopically in the form of growth ledges, while microscopically its migration
occurs by opposite shearing on the terraces and a one-to-two splitting of lattice sites, giving a new class of
lattice site correspondence and superabundant vacancies. In addition, a new approach capable of finding
a critical nucleus with atomic resolution is developed by combining the phase field crystal energetics
with the free-end nudged elastic band algorithm.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

When people invoke “atoms” to describe plasticity or phase
transformation of crystalline materials, they very often really mean
“atomic sites” (lattice site or site in this paper). The distinction
between “site” and “atom” is parallel to the distinction between the
governmental structure of a country and who is occupying which
office at the moment. “Site” can be enduring, for instance a
particular lattice site in bronze may be occupied by Cu atom, Sn
atom or vacancy at different times. However, in plasticity and in
phase transformations, the site lattice may necessarily change.
Unlike atoms which cannot be created/annihilated and therefore
must satisfy local conservation, there is no conservation rule of
lattice sites, so concepts like “lattice correspondence”, “ledge mo-
tion” and “transformation strain” need to be carefully considered in
light of this [1]. Here we examine the creation/annihilation/motion
dynamics of lattice sites in amodel hexagon-to-square lattice phase
cience and Engineering, The
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transformation, and try to address the fundamental question of
“where, when and how does lattice site arise?”

Interfaces play essential roles in microstructural evolution [2,3].
Compared to crystallographic theories of interface structures
[4e13], how these interfaces migrate in plasticity and phase
transformation is less clear. The structure of a phase boundary
dictated by the invariant plane strain (IPS) condition consists of
terraces and steps, referred to as structural ledges (SLs) or discon-
nections. It is often assumed that a collective motion of SLs within
the terrace plane accounts for the advance of the macroscopic
interface [3,10,13]. Chiao and Chen [10] reported that the steps/
ledges of the orthorhombic/monoclinic interface move synchro-
nously as an entity. This view has been followed by Pond and Hirth
[13] and is also accepted in the Book by Sutton and Balluffi [3]. But
the Moir�e ledge (ML) approach suggests that, an extrinsic ledge,
defined as the ML between two adjacent Moir�e planes, could be
responsible for the migration of a terrace-step interface [14e16].

Moreover, the practice of one-to-one lattice site correspon-
dence, which is implicitly assumed in all ledge-wise migration
mechanisms [17,18], may not be satisfied. This is where the
confusion between “site” and “atom” tends to cause trouble. While
an atom can only be at one place at a time, a “site” can move, split
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into two, or be eliminated when a phase boundary sweeps across.
This is because a site is just the location where there is significant
probability of finding an atom, so an atom occupying an old site,
when that old site is eliminated, can find itself presented with two
new sites nearby (in the one-to-two splitting case) with certain
probability to migrate to, like in quantum mechanics. For example,
if there is a significant molar volume difference between the
product and matrix phases, the number of lattice sites before and
after the transformation might be different. In order to accommo-
date the molar volume change, creation or annihilation of lattice
sites becomes necessary, such as the formation of a large amount of
excess vacancies observed in the ordering processes of Ni3Fe and
Cu3Au [19]. “Superabundant vacancies” is therefore one way to
reconcile the conservation of mass with the non-conservation of
sites when the phase boundary sweeps across. Crystal displace-
ments u(r) like in the Kirkendall effect [20] or elastic strain ε(r) (and
stress s(r)) are other ways of accommodating the large molar
volume change.

In this paper, combining the phase field crystal (PFC) method
[21e24], theory of crystallography [6,8,11,14] and nudged elastic
band method (NEB) [25,26], we investigate the atomistic mecha-
nisms of interface migration during a model diffusional phase
transformation from hexagon lattice to square lattice with large
molar volume differences. Relying on a properly time-averaged
atomic density field [27], PFC can capture lattice site movements
at diffusional time scale [28e30]. Theories of O-line, SL and coin-
cidence site lattice (CSL) are used to analyze the structure of in-
terfaces. In order to obtain a complete picture of the phase
transformation including nucleation and growth, a new approach
capable of capturing the critical nucleus configuration with atomic
resolution is developed by combining the free-end NEB algorithm
[25,26] with PFC energetics.

Note that as a general phenomenon of pattern formation and
evolution, the square to hexagon transformation has been studied
extensively in the literature [31e37], but the focus of the current
study is completely different, with particular emphases on (i) when
the orientation relationship between the parent and product pha-
ses is formed (e.g., during nucleation or growth), (ii) detailed
atomic arrangement at the interface including steps, terraces and
dislocation structures, (iii) how a high-index terrace-step interface
moves (e.g., via structural ledge or ML), (iv) whether the commonly
assumed one-to-one lattice site correspondence holds, and (v) how
the large volume change is accommodated.
Fig. 1. Phase diagram constructed by using the free energy model presented in the
text, showing phase equilibria among the liquid (L), square (S), and hexagon (H)
phases. The yellow circles denote the system and temperatures considered in the
simulations. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
2. Methods

2.1. Phase field crystal model

The PFC model uses the Helmholtz free energy to describe an
inhomogeneous system in reference to a homogenous liquid state
of density rL and the dimensionless form of the Helmholtz free
energy is given as [23],
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where nðrÞ≡rðrÞ=rL � 1 is the dimensionless number density field.
Parameters h and n are the expansion coefficients and they are
assumed unity (i.e., h ¼ n ¼ 1) in the current study. The direct pair
correlation function C2(jr � r'j) is constructed by the envelope of
two Gaussian peaks in the reciprocal space as [23],
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where kc is the intersection point of the two peaks. The wave vector
k1 ¼ 2p, k2 ¼

ffiffiffi
2

p
k1, and other symmetry-related parameters ri and

bi (i ¼ 1, 2) are determined in accordance with a square lattice [23].
Depending on temperature T, the contribution from different peaks
varies, thus leading to the formation of a hexagon phase at high
temperature where the first peak dominates and a square phase at
low temperature where both peaks play a role.

The phase diagram is determined by common tangent con-
struction on the free energy curves of different phases at each
temperature. In particular, the free energy of the liquid phase is
calculated by imposing a constant density field with nliq ¼ n. For
the solid phases, the density field for the square lattice is repre-
sented using a two-mode approximation,
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and the density field for the hexagon lattice is represented by a one-
mode approximation,
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where thewave vectors ksq¼ k1 and khex ¼ 2=
ffiffiffi
3

p
k1. The amplitudes

A1
sq, A

2
sq and Ahex can be obtained by free energy minimization.

Analytic expressions of the free energy densities for all the phases
are presented in Appendix A, and the resultant phase diagram is
shown in Fig. 1.

The transformation and interface migration are characterized by
the time-evolution of the atomic number density field n(r) that is
governed by the conserved equation of motion,

vn
vt

¼ V2dFPFC
dn

þ x (5)

where x represents a colored Gaussian noise described by
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hxðr; tÞxðr0; t0Þi ¼ �aV2gðjr � r0j; lÞdðt � t0Þ (6)

where a is the noise strength and g(jr � r'j, l) is a high frequency
cutoff function for wavelengths shorter than the atomic spacing l

[24]. This equation is solved numerically using a semi-implicit
technique in the reciprocal space, assuming a periodic boundary
condition in 2D. Miller-Bravais index notation is used for the
hexagon crystal to preserve the permutation symmetry.

2.2. Free-end nudged elastic band method

As compared with the conventional nudged elastic band (NEB)
algorithm [38], the free-end NEB (FE-NEB) method chooses a
partially transformed state (instead of a fully transformed one) as
the end node, by which the efficiency and accuracy can be
improved significantly [25,26]. In the implementation of FE-NEB,
an elastic band consisting of K nodes, denoted as [R1, R2, … , RK],
is firstly constructed by linear interpolation between R1 and RK
states, where the microstructural configurations of the first node
and the end node are provided by PFC simulations. Then each node
is relaxed subject to a total force consisting of a spring-type force
and a potential force [25,26],

F i ¼ FS
i

���
jj
þ FP

i

���
⊥
; i ¼ 1; :::;K; (7)

where the subscripts jj and ⊥ represent the parallel and perpen-
dicular components of forces resolved on the local tangent of each
node, which is evaluated from the energy of the node and its im-
mediate neighbors along the chain [39]. The potential force, FP

i , in
the context of PFC is given by the first variation of the grand
potential,�dFPFC/dn, whereFPFC is constructed through a Legendre
transformation of the PFC free energy,

FPFCðm;V ; TÞ ¼ FPFCðN;V ; TÞ � m0C; (8)

where m0 is the chemical potential of the reservoir and C ¼ R
nðrÞdr

represents the constraint of mass conservation. The spring force is
defined as,
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i

���
jj
¼ kspðjRiþ1 � Rij � jRi � Ri�1jÞti; (9)

where ksp is the spring constant and ti defines the normalized local
tangent on node i. In FE-NEB, the end node is allowed to move
under the spring force projected on the potential energy iso-
surface,
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where FS
K;K�1 is the spring force that node RK-1 exerts on node RK.

Thus the last node is able to swing on an energy contour until it
rests on the minimum energy path (MEP). Subject to the force field
Fi, each node on the elastic band is relaxed iteratively until
convergence is reached. During every relaxation step, elastic con-
stant of the band and the force field are simultaneously updated as
well.

3. Results

In the simulations, a single hexagon crystal is prepared first at
high temperature (T ¼ 0.107) using the one-mode approximation,
and then quenched into the square phase field of the phase dia-
gram (T ¼ 0.05) as shown in Fig. 1. Relaxation using PFC dynamics
is performed at each stage. Colored noise term [24] is used to
initiate the transformation. For a better visualization, data gener-
ated from the PFC simulation are converted into discrete lattice
sites by extracting the peak positions in the density field n(r)
(Fig. 2). Sites at the interface in Fig. 2 are colored red, and three
variants of the square phase with misorientation q ¼ 0� (a), �30�

(b) and �60� (c) with respect to the matrix hexagon phase are
observed, leading to an orientation relationship of
<211> hex==<10> sq established between the hexagon and
square phases. For convenience, only the results associated with
the first variant shown in Fig. 2(a) will be discussed hereafter
because results from the other two variants are completely
equivalent.

Another interesting observation is the well-faceted morphology
developed at later stages as shown in Fig. 3. As will be shown later,
this is closely related to the fact that the interfacial energy is
reduced significantly by forming the facets. For the sake of easy
analysis, the precipitate shape is displayed by using an average
density profile [40], where the inclinations of the habit plane with
respect to the x-axis are determined to be 4i ¼ ±15� (i ¼ 1, 2). In
addition, it is also revealed that the atomic structure of the interface
between the hexagon and square phases consists of terraces and
steps, as shown by the inset of Fig. 3(a). The details of the crystal-
lography analysis, including the orientation relationship, habit
plane inclination and interface structure will be presented in Sec-
tion 4.

In order to determine exactly when such an orientation rela-
tionship is formed, we use the free-end NEB method to search for
the atomic configuration of the critical nucleus, where a super-
critical nucleus obtained from the PFC simulation is used as the
input of the end image. As revealed by the atomic configurations
along the minimum energy path (MEP) shown in Fig. 3(b), the
orientation relationship is exactly <211> hex==<10> sq. Thus,
during the structural transformation the orientation relationship
between the parent and product phases is formed “by birth”
during nucleation and remains unchanged thereafter during
growth.

To further examine how the interphase boundary plane mi-
grates during the phase transformation, a planar interface with the
habit plane orientation and structure found in the simulation (e.g.,
the inset in Fig. 3(a)) is created as the initial configuration
(Fig. 4(a)). In order to obtain a fully relaxed interface, a small slab of
supercooled liquid is placed in between the hexagon and square
crystals at temperature T ¼ 0.05. The interface forms when the two
crystals grow and impinge upon each other, which is then evolved
for a while before examination. To initiate the migration of the
interface, a colored noise is used. See Supplemental Movie for the
interface migration displayed using the continuous atomic density
field n(r).

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.actamat.2017.01.036.

As shown in Fig. 4(b), in addition to the SLs on the interface, a
growth ledge (GL) is formed in a manner similar to the double-kink
nucleation mechanism seen in dislocation glide. The characteristics
of both the SL and GL will be analyzed in the next section. As shown
in Fig. 4 (b)-(d), through the lateral movement of the GL, the
interface migrates in the normal direction from right to left. As an
extrinsic part of the interface, the GL can move independently
without any structural restrictions and thus fewer sites are involved
during the interface migration, making it more energetically
favorable as compared to the synchronized motion of all SLs. It is
noticed that although structurally the GL is similar to the ML, the
atomic mechanism during migration of these ledges are of funda-
mental difference, as explained below.

http://dx.doi.org/10.1016/j.actamat.2017.01.036


Fig. 2. Atomic configurations obtained from PFC simulations, with the square phase having misorientation q ¼ 0� (a), �30� (b) and �60� (c) with respect to the parent hexagon
phase. The misorientation q is defined by the intersection angle between the [10]sq direction and x-axis.

Fig. 3. (a) Shape of a square-phase precipitate embedded in a hexagon matrix obtained
from the PFC simulation. (b) The minimum energy path (MEP) and critical nucleus
configuration (inset) obtained from the FE-NEB calculation. (c) Schematic drawing
showing the simulation setup of a macroscopic planar interface with the same
orientation relationship and atomic structure as those shown in (a). The inclination
angle 4i (i ¼ 1, 2) between the habit plane and the x-axis equals to �15�and 15� ,
respectively. The area enclosed by the yellow dashed box in (c) corresponds to what is
shown in Fig. 4. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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4. Discussion

4.1. Crystallographic analysis

In this section, crystallographic features exhibited during the
hexagon to square transformation, including orientation relation-
ship, habit plane inclination and interface structure, are analyzed
bymeans of the O-line, SL and coincidence site lattice (CSL) theories
[6,8,14e16,41e44]. In the formulation proposed by Zhang and
Purdy [11,41], the O-line condition can be identified using a more
general criterion, i.e., the Dg parallelism rule, deduced from the
condition that misfit dislocations at the interface are completely
eliminated in one direction. According to group theory, the number
of transformation variants or deformation variants (DVs) is deter-
mined by the order of the symmetry group of the parent phase
divided by the order of the so-called stabilizer group (i.e., the group
includes all the unbroken symmetry operations during the trans-
formation) for a given lattice correspondence (LC) [45]. Since the
point groups of the hexagon and square phases are 6mm and 4mm
with the order of 12 and 8 and the stabilizer group (i.e., intersection
group) between them is 2 mm with the order 4, three DVs are
expected. Required by the O-line condition, each DV will be
transformed into two new variants with different orientations,
referred to as orientation variants (OVs), generated by two appro-
priate rotations. Details of the crystallographic calculations are
presented in Appendix B. The calculation results in reciprocal space
are shown in Fig. 5, where the diffraction patterns of the hexagon
phase are superimposed onto those of the final OVs of the square
phase produced by the corresponding transformation matrix A*

i;j.
As shown in Fig. 5, the normal n of the habit plane is parallel to the
displacement vector Dg in reciprocal space, which is defined as the
difference between the normal vectors of the two correlated
planes, i.e., Dg ¼ ghex e gOV. Two sets of correlated planes, desig-
nated as ghex1 jgOVi

1 and ghex2 jgOVi
2 (i ¼ 1e6), are indicated by the el-

lipses in Fig. 5. For a better visualization, the geometric relations
between the hexagon matrix, the DVs and the OVs during the O-
line calculation are presented in real space as shown in Fig. 6.

From Fig. 6 it can be seen that the misorientation angle q asso-
ciated with the six OVs of the square phase can be summarized as:
q ¼ 0� for OV1 and OV2, q ¼ �30� for OV3 and OV4, and q ¼ �60� for
OV5 and OV6, yielding the orientation relationship of
<211> hex==<10> sq. In addition, the associated inclination an-
gles 4 between the habit plane and x-axis are determined to be
15

�
and�15� for q¼ 0�, 75

�
and 45� for q¼�30�, and�75� and�45�



Fig. 4. Atomic configurations of a hexagon-square phase interface at different time moments during the transformation process: (a) dimensionless time t ¼ 10900, (b) t ¼ 11650, (c)
t ¼ 12050, (d) t ¼ 12200. The solid and dashed black lines indicate the microscopic stepped interface and the macroscopic planar interface, respectively. The red dashed line in (a)
mark the unit height of the growth ledge. The climb trajectory of the interface dislocations is represented by the gold dashed line. See Supplemental Movie M1 for the interface
migration process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for q ¼ �60�, respectively. Note that OV1 and OV2 are non-
distinguishable in terms of the misorientation between the two
phases, without knowing the transformation path (i.e., lattice cor-
respondence). However, the habit planes they form are different. It
is the same for OV3/OV4, OV5/OV6. Therefore, both the orientation
relationship and the habit plane inclination established during the
hexagon to square transformation are well captured by our simu-
lation and are in a good accordance with the crystallographic
analysis.

For the atomic configurations of the interface, since the
boundary plane inclination 4 ¼ ±15� is irrational with respect to
both phases, a stepped interface consisting of terraces and steps (as
indicated by the black lines in Fig. 7(a)) develops in order to
guarantee the optimal atomic site matching along the interface,
which is indicated by the appearance of periodical good-matching
(relatively) patches of atomic sites (gold-colored) in Fig. 7(a). For
convenience, a criterion is set for “good-matching”, i.e., pairs of
sites are regarded as good-matching if their separation is below 15%
of the spacing between adjacent [01]sq rows, similar to that used in
the literature [41,42]. Based on the crystallographic relationship
shown in Fig. 7(b), the (average) terrace length lSL defined in the
hexagon lattice equals to lSL ¼ hSLcot4 � hSLcot60�, where hSL
represents the step height. With hSL ¼ 1 and 4 ¼ 15�, the length of
the terraces lSL is determined to be 3.155. Because the terrace length
lSL is not an integer number of the atomic spacing along ½211�hex,
the combination of two sets of terraces with length 3ahex and 2ahex
is expected, as indicated in Fig. 4(a), where ahex¼ 2=

ffiffiffi
3

p
is the lattice

constant of the hexagon lattice. As will be shown later in Fig. 10,
these two terrace sizes correspond to two different types of shear
zones. On the other hand, in order to compensate the misfit within
the terraces arising from the difference in inter-atomic distance
along the ½211�hex and [10]sq directions, interfacial dislocations or
disconnections appear on the steps as indicated by the dislocation
sign in Fig. 7(a). Based on the CSL model [43,44], the Burgers vector
of the interfacial dislocations should be a displacement shift com-
plete lattice (DSCL) vector to preserve the interface structure with
the least displacement. By applying the Burgers circuit abcda'
(Fig. 7(a)), the Burgers vector is determined to be 1/6½211�hexj1/2
[10]sq, where the DSCL is indicated by the dashed red lines in
Fig. 7(a) [41].
Fig. 8 shows the atomic structure of the GL appeared during the
interface migration process simulated by the PFC (Fig. 4). The unit
height of the GL, hGL, which is defined as the spacing between two
neighboring habit planes, is equivalent to 2hSL based on the
calculation in Appendix B, as shown in Fig. 8. Two sets of planes,
ð10ÞOV2

jð110Þhex planes and ð01ÞOV2
jð011Þhex planes, intersect at

the same interface, indicating an energy minimum associated with
the habit plane [11]. Here the GL can be regarded as a ML since the
habit planes containing the invariant lines are equivalent to the
Moir�e planes and the unit height of the GL can also be obtained
from the ML analysis [14e16].

4.2. Critical nucleus configuration by FE-NEB method

Because of the statistical nature of Langevin dynamics (Eq. (5)),
it is difficult to use it in the PFC model to search for the exact saddle
configuration. In addition, an artificially large amplitude of the
noise term has usually to be adapted in order to capture the
nucleation events within a computationally affordable time inter-
val. By combing the ability of the FE-NEB technique [25,26] to
search for saddle point configurations along the MEP and the
Langevin dynamics in PFC to generate an over critical configuration
as the free-end image, we show that the critical nucleus configu-
ration with atomistic resolution and the associated activation en-
ergy can be easily obtained. For the hexagon-to-square
transformation considered in the current study, the critical nucleus
configuration obtained using this approach is shown in the inset of
Fig. 3(b). As has been mentioned earlier, the orientation relation-
ship between the parent and product phases for this trans-
formation has already been formed at the birth of the square phase,
<211> hex==<10> sq, where the ½10�sq direction in the square
phase is aligned with the ½211�hex direction in the hexagon phase,
offering the minimum lattice mismatch and interfacial energy be-
tween the two phases. Following the same line of arguments,
critical nucleus has adopted an elliptical morphology instead of the
circular ones as assumed in the classic nucleation theory.

In addition, since only the total free energy and the first-order
derivatives of the PFC functional are required in the implementa-
tion of the NEB calculation, this approach can also be extended to
other thermally activated processes that can bemodeled by the PFC



Fig. 6. Crystallographic relationships between the hexagon and square phases in real
space. The matrix phase and the deformation variants (DVs) and orientation variants
(OVs) of the square phase are colored in white, light blue and light green, respectively.
Blue and green arrows indicate the corresponding lattice vector pairs in the hexagon
phase and different variants of the square phase. The dashed lines denote the habit
plane trace. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Superimposed diffraction patterns of the hexagon (open circles) and square
(filled circles) phases. The square phases in (aef) correspond to the six orientation
variants described in Fig. 6. Dashed lines represent the habit plane trace. Ellipses
indicate the two sets of correlated principal planes, namely ghex1 jgOVi

1 and ghex2 jgOVi
2

(i ¼ 1e6).
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method, including nucleation of other extended defects such as
dislocation loops, stacking faults, voids, et al., nucleated either
homogeneously or heterogeneously.
4.3. Growth mechanism

A peculiar self-accommodation mechanism is found to operate
within the unit height of the GL. Two rhombuses of mirror sym-
metry are outlined (in red) within a unit height of the GL in Fig. 4(a).
By examining the variation of angles q1 and q2, which characterizes
the shape change of these two rhombuses, the structural trans-
formation occurring at atomistic scale is revealed. As shown in
Fig. 9(a), the angles of both q1 and q2 increase gradually from 60� to
90�, demonstrating the occurrence of two opposite shears during
the migration process. The deviation of angles from exact values of
60� and 90� in Fig. 9(a) is caused by the spatial discretization [46]
and the local lattice distortion in the close proximity to the inter-
face. As an indicator of boundary migration, Fig. 9(b) shows the
transformation of the number of nearest neighbors (NN) of the
gold-colored atomic sites in Fig. 4(a) from 6 to 5 and then to 4,
indicating the completion of the hexagon to square phase trans-
formation in the region. Accompanying the shearing process, dis-
locations located at the edges of the terraces are found to climb,
following the trajectory depicted by the dashed gold lines in Fig. 4.

By analyzing the site movements revealed in Fig. 4, a periodic
arrangement of two opposite shear modes (represented by two
different colors) is shown graphically in Fig. 10. On the boundary of
the shearing zones, intersection sites are identified, marked by the
open-circles. Unlike the one-to-one LC in each shearing zone, a
one-to-two splitting of lattice sites emerges locally among these
intersection sites. Non-conservation of lattice sites has been
observed in various structural transformations in experiments, for
example, in the ordering processes of Ni3Fe and Cu3Au [19] where
large lattice contractions are involved. Also, from Fig. 10, it is shown
that the mode of site movement and creation (mixed-type LC)
differs from the one-to-one LC that is usually assumed in the ledge-
wise motion of both ML and SL mechanisms [3,10,13e15], even
though the fundamental structural features (e.g., orientation rela-
tionship, habit plane inclination) of the GL predicted by PFC in this
study agree well with those predicted by the existing crystallo-
graphic theories. In general, the operation of an interface migration
mechanism depends not only on the structure of an interface, i.e.,
stepped or flat, coherent or semi-coherent or incoherent, etc., but
also on many other factors such as the transformation driving force
and boundary conditions, thus, leading to diverse modes of
migration even for the same interface.

The particular migration mode presented above, for which site
displacements u(r) away from themoving phase boundary is nearly
zero (see Supplementary Movie), should be a mode observable at
higher temperatures when diffusion is rampant and residual stress
s(r) is small. It is in principle also possible for the vacancies to
annihilate at phase boundaries to create lab-frame crystal dis-
placements, like in the Kirkendall experiments, but this may
necessitate the generation of strain and stress depending on the far-
field mechanical boundary condition, and is anyhow not the main
accommodation mechanism seen in the present simulations. Both
modes of accommodating the lattice site density change (by su-
perabundant vacancies or by displacement) can be considered
high-temperature, low-stress, diffusion-dominant processes. As
the transformation temperature lowers, at certain point the dis-
placive character could dominate, which necessitates significant



Fig. 7. Interfacial structure between the hexagon and square phases in a non-relaxed state: (a) Atom matching along the interface and dislocation arrangement, (b) the (average)
terrace length lSL and step height hSL. Symbol ‘T’ denotes the misfit dislocation core at the step riser. The red line in (b) marks the inclination of the macroscopic habit plane. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Schematic drawing illustrating the atomic structure of SL and GL at the inter-
face. The red lines represent the macroscopic habit planes and the GL, while the black
lines represent the microscopic terraces and steps. The heights of both GL and SL are
marked. Two sets of planes, ð01ÞOV2

���ð011Þhex and ð10ÞOV2

���ð110Þhex, intersected at the
same interface, indicating an energy minimum associated with the habit plane. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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displacement u(r) and stress s(r) away from the migrating inter-
face. At such low temperatures, due to the difficulty of diffusion and
the increasing deterministic nature of military-style trans-
formations, the non-conservative nature of lattice site correspon-
dences is expected to decrease, where the lattice sites move as
atoms, and do not split from one to two, or vanish, as the phase
boundary sweeps across.

The mixed-type LC found in the current study emerges in two
forms, named Type I in Fig. 10(a) and (b) and Type II in Fig. 10(c) and
(d), which are directly related to the terrace-step interphase
Fig. 9. (a) Variations of angles q1 and q2 (indicated in Fig. 4(a)) and (b) number of NN of the
references to colour in this figure legend, the reader is referred to the web version of this
boundary structure. Type I is associated with the terrace length of
3ahex while Type II is associated with the terrace length of 2ahex,
and their respective volume changes are calculated to be �1.03%
and 3.92%, considering the identical inter-planar spacing of the
ð011Þhex and (01)sq planes. Therefore, by a right mixture of these
two types, e.g., 79.3% of the system undergoes the correspondence
through Type I and 20.7% undergoes the correspondence through
Type II, the volume change, which would otherwise reaches to
13.4% in any conservative LC (arising from the identical inter-planar
spacing of the ð011Þhex and (01)sq planes), can be fully accommo-
dated. In other words, the system has achieved an average trans-
formation strain <εtransform> close to zero with the non-
conservative LCs.
4.4. Limitation of the model

It should be pointed out that in the PFC model employed in the
current study, the molar density of a phase and its lattice constant
(i.e., site density) are independent. For example, for the same molar
density of a given phase, the lattice constant will vary with the
choice of k1 in Eq. (2). This may lead to an unphysical situation
where the single site occupation probability exceeds unity. In the
currently study, however, the reference density rL or the dimen-
sional lattice parameter of the high temperature hexagon phase can
always be chosen such that the single site occupation probability
does not exceed unity and, then, when it transforms to the square
phase at low temperatures the occupation probability can only
decrease because of the increase in lattice site density, as have been
shown in the simulations and discussed above.
gold-colored atomic site (shown in Fig. 4) as function of time. (For interpretation of the
article.)



Fig. 10. Spatial arrangement of two opposite shearing zones (indicated by the light orange and blue background colors) involved during the hexagon to square structural trans-
formation. (a) and (b) correspond to Type I arrangement with the shearing zones of length 3ahex, as indicated by the red boxes. (c) and (d) correspond to Type II arrangement with
the shearing zones of length 2ahex, as indicated by the blue boxes. The one-to-two LC is among the open-circle sites on the two lattices. The two types of shear zones correspond to
the two terrace sizes identified in Fig. 4(a). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusion

In summary, a complete atomic picture of diffusional migration
of a terrace-step phase boundary in a solid state phase trans-
formation is provided for the first time, which has significant im-
plications both theoretically and experimentally. First of all, the
non-conservative LCs provides a generalized description for diffu-
sional transformations, in particular where appreciable molar vol-
ume difference is involved. Furthermore, the non-conservative
interface migration can be exploited as a new route for designing
radiation-tolerant materials by accommodating the radiation-
induced point defects. Secondly, in contrast to the conventional
synchronized glide of SLs in order to preserve the inclination of the
habit planes, a GL has been identified in our simulation. This may
help to unveil the actual migration mechanism of planar interfaces
during structural phase transformations such as the orthorhombic/
tetragonal to monoclinic transformation in zirconia [10]. Thirdly,
the opposite shearing mechanism found in this study provides a
new way of eliminating transformation strain during diffusional
structural transformations. The idea that the Frank-Bilby disloca-
tion content [13] is divided into two groups that move differently is
also used to explain stress-driven grain boundary migration that
generates uniaxial plastic strain [47].

Lastly, by taking advantage of the efficiency of the FE-NEB
technique in exploring the free energy landscape of PFC, a new
approach capable of finding critical nucleus configurations with
atomistic resolution and the corresponding activation energies are
developed for both homogeneous and heterogeneous nucleation
events.
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Appendix A. Free energy densities for liquid, square and
hexagon phases

By substituting the density field n(r) for each phase as described
before into Eq. (1), the corresponding free energy densities can be
calculated as,

fliq ¼ 1
2
n2 � h

6
n3 þ n

12
n4 � 1

2
C
_

2ð0Þn2 (A1)
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4 þ b1
	
A1
sq
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2 þ c1
	
A1
sq


2	
A2
sq
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fhex ¼ a2A
4
hex þ b2A

3
hex þ c2A

2
hex þ d2 (A3)

where the coefficients are,

a1 ¼ 3n

b1 ¼ 12n

c1 ¼ 8nn� 4h

d1 ¼ 2� 2hnþ 2nn2 � 2C
_

2ðk1Þ

e1 ¼ 2� 2hnþ 2nn2 � 2C
_
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Appendix B. Crystallographic calculations of hexagon to
square transformation

The base vectors of the hexagon matrix and the 3 deformation
variants (DV), as indicated by blue and green arrows in Fig. 6, are
expressed in an orthonormal coordinates as,

ahex1 ¼

0B@ 2ffiffiffi
3

p

0

1CA; ahex2 ¼

0B@ 1ffiffiffi
3

p

1

1CA; aDV1
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�
1
0
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2
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�
0
1
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�
1
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�
1
1


; aDV3
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2
p
0
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2
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0BBB@
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2
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2

p

2

1CCCA
and the corresponding reciprocal vectors in Fig. 5 are determined
as,

ghex1 ¼

0BB@
ffiffiffi
3

p

2

�1
2
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p

2

�
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p
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2

p

;

According to the O-line theory [11,48], the starting trans-
formation matrix A*

O;i linking the hexagon matrix and the DV is
given by,

A*
o;i ¼

h
gDVi
1 gDVi

2

ih
ghex1 ghex2

i�1ði ¼ 1� 3Þ (A5)

where the symbol '*' represents the matrix operation in reciprocal
space and the index i denote the i-th deformation variant hereafter.
During the calculations, the reference lattice is chosen as hexagon
lattice. Substituting the related reciprocal vectors into Eq. (A5), the
above transformation matrices are calculated as,

A*
o;1 ¼

26664
2ffiffiffi
3

p 0

1ffiffiffi
3

p 1

37775; A*
o;2 ¼

26664
2ffiffiffi
3

p 0

� 1ffiffiffi
3

p 1

37775; A*
o;3 ¼

264
ffiffiffi
6

p

3
0

0
ffiffiffi
2

p

375;
In order to form invariant lines [48], the final transformation

matrix A*
o;i needs to be acted by a rotation operation R*

i;j,

A�
i;j ¼ R*

i;jA
*
o;iði ¼ 1� 3; j ¼ 1;2Þ (A6)

where the matrix A*
i;j describes the transformation from the

hexagon lattice to the final orientation variant (OV). The index j
denotes two different rotation matrix R*

i;j associated with the
transformationmatrix A*

O;i. Required by the invariant line condition
that one of eigenvalues of A*

i;j should be one, i.e. jI� A*
i;j

��� ¼ 0, the
rotation angles f of rotation matrix R*

i;j can be solved as (counter-
clockwise rotation being positive),

f
	
R�
1;1



¼ �30+; f

	
R�
1;2



¼ 0+; f

	
R�
2;1



¼ 0+; f

	
R�
2;2



¼ 30+; f

	
R�
3;1



¼ �15+; f

	
R�
3;2



¼ 15+

where the rotation starts from the orientation specified by their
original DVs.

Since the habit plane is defined by the intersection of two pairs
of correlated principal planes (containing at least two Burgers
vectors [11]), the normal n of the habit plane equals to the
displacement vector Dg between any one pair of them, which can
be given by Refs. [11,48],

Dgi;j¼ ðI� A*
i;jÞgP; ði ¼ 1� 3; j ¼ 1;2Þ (A7)

where gP refers to the principal reciprocal vector defined in hexa-
gon lattice, i.e., ghex1 or ghex2 . Thus the habit plane normal n is ob-
tained as [49e51],

n1;1 ¼
��0:134

�0:5


; n1;2 ¼

� �0:5
0:134


; n2;1 ¼

�
0:5

0:134


; n2;2

¼
��0:1340

0:5


; n3;1 ¼

�
0:366
�0:366


; n3;2 ¼

��0:366
�0:366


;

And the inclination angles 4 between the habit plane and x-axis
are converted to be 4 ¼ 75�, �15�, 15�, �75�, �45� and 45�.

Moreover, the unit height hGL between two adjacent habit
planes can be determined to be 1.932 following the relation hGL ¼
1=jnj or 2hSL in terms of the unit height of SL as shown in Fig. 8.
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