Three-dimensional carbon framework anode improves sodiation–desodiation properties in ionic liquid electrolyte

Xu-Feng Luo*, Ahmed S. Helalb, Chien-Te Hsiehd, Ju Lib,⁎, Jeng-Kuei Changb,⁎⁎

a Institute of Materials Science and Engineering, National Central University, Taiwan
b Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
c Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
d Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan

ARTICLE INFO

Keywords: Carbon framework Three-dimensional electrode Anodes Ionic liquid Sodium-ion batteries

ABSTRACT

Ionic liquid (IL), characterized by wide potential window, high thermal stability, negligible volatility, and low flammability, is a promising electrolyte for sodium-ion batteries (NIBs). However, the typical NIB anodes, such as hard carbon, show unsatisfactory capacities and poor charge–discharge rate capability in IL electrolyte at room temperature. A three-dimensional carbon framework (3-D CF) constructed with graphene nanosheets and carbon nanospheres is developed to address this issue. With this unique nano-architecture, the interfacial charge transfer, IL electrolyte infiltration, and Na⁺ transport can be improved at room temperature. As a consequence, this electrode shows superior sodiation–desodiation properties, with a charge–discharge efficiency being stable over 250 cycles in N-propyl-N-methylpyrrolidinium bis[(fluorosulfonyl)imide] IL electrolyte. We also confirm that the 3-D CF electrode exhibits higher Coulombic efficiency and better cycling stability in the IL electrolyte than those found in conventional organic carbonate electrolyte, especially at an elevated temperature, due to the different chemistry of the solid–electrolyte interphase. The total heat released of the sodiated 3-D CF samples contacted with IL and carbonate electrolytes, measured with differential scanning calorimetry up to 300 °C, are 250 and 805 J g⁻¹, respectively. The combination of the 3-D CF electrode and IL electrolyte shows great potential for NIB applications.

1. Introduction

Grid-scale energy storage is currently a bottleneck for low-carbon society [1,2]. Li-ion batteries (LIBs) widely used for consumer electronic devices and electric vehicles may not be an ideal candidate for this application, because of the relatively high cost and uneven distribution of Li in the Earth’s crust [3,4]. It is noted that Li is also an important ingredient for the glass, ceramic, and the pharmaceutical industries, which are expected to grow at a rapid pace [5,6]. Na-ion batteries (NIBs) based on highly abundant Na are appealing alternatives or complements to LIBs. Recently, several favorable NIB cathodes, including polyanionic compounds, layered oxides, organic compounds, and Prussian blue analogues have been reported [7–9], with the performance being close to that of LIB cathodes [10]. Nevertheless, designing a good anode is challenging. For instance, the graphite anode (commonly used for LIBs) has poor Na⁺ storage capability, due to the lack of stable graphite intercalation compounds for Na⁺ [11,12]. While Ti-based anodes usually have low capacities, the alloying and conversion electrodes typically suffer from unsatisfactory reversibility and cyclic stability [13]. Development of a better anode material is thus urgently required, as it will be an enabling step for practical implementation of NIBs.

Organic electrolytes composed of Na salts and carbonate solvents are widely used in NIBs. However, the molecular organic solvent exhibits volatility and flammability, which can limit battery operation temperature and cause safety and environmental hazards [14,15]. The larger scale the energy storage system, the more severe these problems become. In this context, ionic liquid (IL) electrolytes, characterized by high thermal and chemical stability, large electrochemical stability window, negligible volatility, and fire-retardant ability, have received considerable attention [16]. The tunable physicochemical properties of ILs (by designing the cation/anion combinations) enable the possibility...
of electrolyte optimization for various battery applications [17]. However, IL electrolytes typically have higher viscosity and lower conductivity at room temperature as compared to those of conventional organic electrolytes [15,18]. Many studies have thus focused on the use of IL electrolytes at elevated temperature, such as 90°C, where the abovementioned limitations of ILs can be mitigated and organic electrolytes become unstable [19,20]. However, such a high temperature could complicate the system design and restrict the battery applications. At 25°C, the hard carbon (HC) electrode, one of the most promising anodes for NIBs, exhibited a limited capacity of ~35 mAh g\(^{-1}\) (at a rate of 0.5 A g\(^{-1}\)) in IL electrolyte [21]. Clearly, a better electrode material and architecture are needed.

Graphene-based anodes have been proposed for conventional organic electrolyte NIBs. Owing to the unique two-dimensional structure with large surface area, high electron mobility, and great chemical stabilities, good charge storage performance has been reported for graphene anodes [22,23]. Heteroatom doping and KOH activation have been applied to graphene electrodes to enhance the electrochemical properties [24]. However, graphene anodes generally encounter two obstacles for practical applications. First, the highly anisotropic graphene sheets tend to restack during electrode preparation. The strong agglomeration can reduce reaction sites and hinder wetting and transport, limiting the electrode performance [25,26]. A three-dimensional carbon framework (3-D CF) electrode is thus developed in this study to deal with this difficulty. Second, the graphene sheets usually have a high surface area and high density of defective sites (non-perfect sp\(^2\)-hybridized carbon bonding produced during synthesis), which show high reactivity towards electrolytes [27,28]. Traditional organic electrolytes are unable to passivate the graphene anodes well, leading to distinct capacity fading upon electrode cycling [29,30]. The IL-derived solid–electrolyte interphase (SEI) is expected to stabilize the anode/electrolyte interface better [31,32]. Unfortunately, to date there have been no studies exploring the interaction between the graphene-based anode and IL electrolyte. This work thus aims to investigate this issue.

In the present study, a 3-D CF is constructed with graphene nanosheets (GNSs) and carbon nanospheres. Higher electrode performance (i.e., 235 mAh g\(^{-1}\) @ 0.03 A g\(^{-1}\) and 115 mAh g\(^{-1}\) @ 1 A g\(^{-1}\)) is achieved compared to that of HC, GNS, and many existing anodes in the literature for IL electrolytes at room temperature. Moreover, the SEI chemistry and charge–discharge properties of the 3-D CF electrodes in IL and conventional carbonate electrolytes are systematically examined. The thermal reactivity of the sodiated 3-D CF samples towards IL and carbonate electrolytes was evaluated using DSC (Netzsch DSC3500) in the temperature range of 50–300°C. The 3-D CF samples were pre-sodiated to 0.01 V vs Na/Na\(^+\), recovered from the coin cells, and then placed into Al capsules in the glove box without washing and drying. The samples were heated at a rate of 10°C min\(^{-1}\) under a N\(_2\) atmosphere.

3. Results and discussion

The morphologies of the GNSs and carbon nanospheres, examined using TEM, are shown in Fig. 1(a) and (b), respectively. The GNSs showed a flake-like structure with the lateral dimension of up to a micron. The high electron transparency reflected the thinness of the carbon sheet. An average particle diameter of ~40 nm was found for the carbon nanospheres. As shown in Fig. 1(c), after the homogenization process, the nanospheres are well dispersed on the GNSs. The nanospheres act as spacers between GNSs, not only preventing restacking of the carbon sheets but also creating a 3-D interpenetrating architecture. It is noted that this homogenization process is effective, facile, and can be easily scaled up for mass production.

The crystallinity of GNSs, carbon nanospheres, and 3-D CF were examined by XRD and shown in Fig. 2(a). The GNSs exhibited a broad peak at 25.2°, which can be attributed to the (002) plane diffraction with a d-spacing of 0.354 nm (according to Bragg’s law). The much smaller d-spacing than that of GO (~0.798 nm) indicates that the thermal treatment (400°C in H\(_2\)) effectively reduced the sample. The nanospheres also showed a broad (002) peak with low diffraction intensity, which was ascribed to their nanocrystalline nature, as was observed by TEM. It was found that the 3-D CF sample showed an even broader (002) diffraction peak as compared to that of GNSs. This suggests that the number of carbon layers of GNSs was further reduced during the homogenization process. Fig. 2(b) shows the XPS data of various samples, with the C 1 s and O 1 s being the only signals observed, reflecting the high purity of the samples. The oxygen content of...
GNSs was attributed to the residual oxygen-containing functional groups. The high-resolution C 1s spectrum is shown in Fig. S1, which indicates the co-existence of C–O, C=O, and O=O–C groups on the GNS surface. These groups were found to facilitate reversible redox interactions with Na⁺ during charging/discharging, contributing to pseudocapacitance [30,35,36]. The oxygen concentration for the 3-D CF sample was approximately 6 at%. Raman spectroscopy analyses were also conducted to examine the carbon bonding characteristics. As shown in Fig. S2, the D (~1340 cm⁻¹) and G (~1580 cm⁻¹) bands are recognized for all samples. The former is associated with imperfect carbon bonding, whereas the latter results from the Raman-allowed phonon vibration of a well-ordered sp² structure [37]. The D-to-G band intensity ratios for the GNSs, carbon nanospheres, and 3-D CF samples were found to be 1.08, 0.97, and 1.00, respectively.

CV measurements were conducted to characterize the electrochemical behavior of the electrodes in the PMP–FSI IL electrolyte. Fig. 3(a) and (b) show the initial five scans of the GNS and 3-D CF electrodes, which exhibit similar CV shapes. In the first negative scan, an irreversible cathodic peak appeared at ~0.6 V, which was associated with electrolyte decomposition and SEI formation [38,39]. The first-cycle coulombic efficiencies for the two electrodes were approximately 40%. From the second cycle on, the redox behavior of both electrodes became stable and highly reversible. Above 0.4 V, the nearly rectangular CV shape can be ascribed to the double-layer capacitance and reversible redox transitions of oxygen-containing functional groups on GNSs. Below 0.4 V, a distinct redox couple was observed, which was related to Na⁺ insertion/desertion between the graphene layers [30,35]. It is found that the 3-D CF electrode shows a clearly larger...
enclosed CV area, suggesting a higher charge storage capacity than that of the GNS electrode. This reveals that the 3-D architecture can effectively suppress graphene restacking and agglomeration, and thus maximize the active material utilization, resulting in superior electrochemical performance.

Fig. 4(a) and (b) show the charge–discharge curves of the GNS and 3-D CF electrodes recorded at various rates in the PMP–FSI IL electrolyte (after five conditioning cycles). At a current density of 0.03 A g⁻¹, the reversible capacities of the two electrodes were 165 and 235 mAh g⁻¹, respectively. The commercial HC (whose morphology and crystallinity are given in Fig. S3) electrode was subjected to a similar charge–discharge evaluation, and the data are shown in Fig. 4(c) for comparison. The voltage profile of the HC electrode is characterized by a sloping region (1.1–0.1 V), which is attributed to the Na⁺ insertion between carbon layers, and a plateau region (below 0.1 V), which is associated with the filling of Na⁺ into the HC micro pores [40]. For the HC electrode, a capacity of 170 mAh g⁻¹ was obtained at 0.03 A g⁻¹ in the IL electrolyte. In the literature, an Sb/C composite showed a capacity of 80 mAh g⁻¹ [41], an anatase TiO₂ showed a capacity of 150 mAh g⁻¹ [42], a Nb-doped TiO₂ showed a capacity of 110 mAh g⁻¹ [43], an organic quinone showed a capacity of 150 mAh g⁻¹ [44], and a commercial HC showed a capacity of 170 mAh g⁻¹ [21]. The nearly 40% improvement (235/170 = 1.382) shows that our 3-D CF, produced by a highly scalable synthesis route, is a promising NIB anode with IL electrolyte.

Fig. 4(d) compares the rate capability of the electrodes. At 1 A g⁻¹, the GNS, 3-D CF, and HC electrodes exhibited capacities of 85, 115, and 39 mAh g⁻¹, respectively. The traditional bulky electrode materials usually show limited charge–discharge kinetics in the IL electrolyte under room temperature, which has relatively high viscosity and low ion mobility (e.g., 27.4 cp and 2.0 mS cm⁻¹ at 298 K for the PMP–FSI IL) [39]. The high-rate capability of the 3-D CF electrode (i.e., delivering a capacity of 115 mAh g⁻¹ in 6.9 min (@1 A g⁻¹)) clearly outperforms those of the reported NIB anodes in IL electrolytes, such as an anatase TiO₂ electrode (108 mAh g⁻¹ @0.335 A g⁻¹) [42], a Nb-doped TiO₂ electrode (50 mAh g⁻¹ @0.7 A g⁻¹) [43], an organic quinone electrode (100 mAh g⁻¹ @0.3 A g⁻¹) [44], and a commercial HC electrode (35 mAh g⁻¹ @0.5 A g⁻¹) [21].

EIS analyses were conducted to further characterize the electrode properties in the IL electrolyte. Two identical electrodes were pre-sodiated to 0.1 V vs. Na/Na⁺ and then assembled as a symmetric cell, which can avoid the interference of large interfacial impedance at a Na electrode [32]. As shown in the Nyquist plot of Fig. 5(a), the spectra are composed of a semicircle (whose diameter represents the charge transfer resistance at the electrode interface) at high frequency, and a sloping line (which is associated with the Na⁺ diffusion in the electrode) at low frequency [45]. The clearly larger charge transfer resistance at the HC electrode is attributed to the lower electrochemical surface area of HC due to its bulky nature, which limits the redox active sites in the electrolyte. The Bode plot in Fig. 5(b) indicates that the 3-D CF cell shows the lowest magnitude of total impedance among the cells in the whole frequency range. The open interpenetrating structure of 3-D CF (with suppressed graphene restacking) provides sufficient reaction sites to optimize the interfacial double-layer capacitance and pseudocapacitance. At the low-frequency region, the 3-D nanoarchitecture can ensure the electrolyte accessibility and shorten the Na⁺ diffusion length in the electrode, leading to the lower impedance as compared to those of the GNS and HC electrodes. It is noted that the ion diffusion characteristic time constant (τ) in the electrode can be calculated as τ = Dl² / D, where l is the diffusion length and D is the diffusion coefficient [46]. The short l of the interpenetrating 3-D nanostructure is favorable for the high-rate charge–discharge performance.

It should be emphasized that, besides a gravimetric consideration, electrode volumetric performance is a crucial concern for practical battery applications. The compressed densities of the GNS, 3-D CF, and HC layers were measured to be 0.37, 0.5, and 0.625 g cm⁻³, respectively. According to these values, the volumetric capacities of various electrodes in the IL electrolyte can be calculated, and the results are shown in Fig. 4(e). The 3-D CF electrode possesses volumetric capacities of 82 mAh cm⁻³ (at 0.03 A g⁻¹) and 40 mAh cm⁻³ (at 1 A g⁻¹), which are clearly higher than those of the GNS and HC electrodes. Nanostructured materials usually suffer from low tap density and therefore low volumetric performance. However, the experimental results confirm that the proposed 3-D CF electrode has a reasonable density and is able to show superior volumetric capacities than those of the HC electrode, especially at a high charge–discharge rate in the PMP–FSI IL electrolyte.

The 3-D CF electrode was also tested in 1 M NaTFSI/PMP–TFSI IL electrolyte, and the CV results are shown in Fig. S4. Interestingly, a much lower current density was found compared to that of Fig. 3(b). The similar IL, composed of the same pyrrolidinium cation and analogue imide anions (just TFSI⁻ instead of FSI⁻), resulted in totally different electrochemical behavior of the electrode. This highlights that the IL composition is very significant in determining the electrode Na⁺ storage performance. It was reported that a HC electrode also showed a limited capacity in TFSI-based IL electrolyte [47]. Presumably, the decomposed TFSI forms an ion-resistive SEI that is unfavorable for Na⁺ transport at room temperature. This SEI would hinder the electrode sodiation reaction, leading to the low redox activity. Since the exact mechanism is not yet clear, further investigation is required.

Fig. 6(a) shows the initial five CV scans of the 3-D CF electrode measured in conventional 1 M NaClO₄/EC:DEC organic electrolyte. A 1 M NaTFSI/EC:DEC electrolyte has also been tested. However, as shown in Fig. S5, a large Al current collector corrosion current emerges at ~3.8 V, which prohibits this electrolyte from real applications. A commonly used salt for carbonate electrolytes in the literature, NaClO₄, is thus adopted. The electrochemical characteristics (Fig. 6(a)) resembled those found in the PMP–FSI IL electrolyte (Fig. 3(b)), suggesting a similar charge storage mechanism. Fig. S6 compares the initial five charge–discharge curves of the 3-D CF electrodes recorded in the organic carbonate and IL electrolytes at a rate of 0.03 A g⁻¹. The variations of coulombic efficiency (CE) with the cycle number are summarized in Table 1. The conventional carbonate electrolyte was not able to effectively passivate the electrode, with the CE value saturating at only ~95%, which was associated with unstable SEI. In contrast, the charge–discharge curves were well overlapping after three cycles and the CE reached almost 100% in the IL electrolyte. This suggests that the highly protective SEI that was formed can prevent continuous
decomposition of the electrolyte and ensure high reversibility of the electrode. Another advantage of the IL electrolyte is the higher anodic potential limit (> 5.5 V vs. Na/Na+) than that (~4.7 V vs. Na/Na+) of the conventional NaClO4/EC:DEC electrolyte, as shown in Fig. S5.

Fig. 6(b) shows the electrode capacities measured in the organic carbonate electrolyte. Having relatively low viscosity and high conductivity (3.0 cp and 6.4 mS cm\(^{-1}\) at 298 K), this carbonate electrolyte typically enables higher capacities than those found in IL electrolyte. However, comparison of Fig. 6(b) to Fig. 4(d) indicates that the 3-D CF electrode can show similar performance in the two electrolytes. The other two materials exhibited a dramatic capacity reduction in the IL electrolyte. This confirms the uniqueness of the proposed 3-D CF architecture for use in the IL electrolyte. It is also noted in Fig. 6(b) that the benefit due to the nanosphere incorporation is less pronounced than that found in Fig. 4(d), implying that the GNS restacking problem is more serious in IL (probably due to the more difficult wetting and infiltration of IL that cause imbalances in capillary forces), which can be effectively minimized by introduction of the nanospheres.

XPS analyses were performed to characterize the chemistry of SEIs formed at the 3-D CF electrodes. Fig. 7(a) shows the survey scans of the electrodes after being cycled five times in the conventional carbonate

Fig. 4. Charge–discharge curves of (a) GNS, (b) 3-D CF, and (c) HC electrodes in NaFSI/PMP–FSI IL electrolyte. Comparisons of (d) gravimetric and (e) volumetric capacities of various electrodes recorded at various rates in NaFSI/PMP–FSI IL electrolyte.

Fig. 5. EIS (a) Nyquist plots and (b) Bode plots for GNS, 3-D CF, and HC symmetric cells with NaFSI/PMP–FSI IL electrolyte.
and IL electrolytes. The chemical compositions of the two samples are summarized in Table 2. The conventional-electrolyte sample was enriched with C and O, which are thought to be the decomposition products of the carbonate solvent. The F and S signals found at the IL-electrolyte sample were further subjected to high-resolution scans, with the obtained data being shown in Fig. 7(b) and (c), respectively. The F 1s spectrum exhibits a strong signal at ~685.7 eV related to NaF and a minor peak at ~689.4 eV associated with an F\(^{-}\)-S bond [48]. As for the sulfur spectrum, there are three constituents coexisting: -SO\(_2\)- (168.5 eV), SO\(_x\) (166.7 eV), and sulfide (162.1 eV) [49]. These species are associated with the solid reductive decomposition products of FSI\(^{-}\).

Fig. 7(d) compares the C 1s spectra of the two electrodes. The conventional-electrolyte sample had relatively high contents of C\(-\)O, C\(\equiv\)O, Na\(_2\)CO\(_3\) and NaCO\(_2\)R, whereas the polyolefin ((CH\(_2\))\(_n\)) and FSI-derived S\(\equiv\)C\(\equiv\)O were the dominant compounds for the IL-electrolyte sample. This IL anion-derived SEI is thought to be responsible for the superior CE and reversibility of the electrode.

Fig. 8(a) shows the cyclic stability of the 3-D CF electrodes (in terms of the capacity retention and CE variation during cycling) evaluated at a rate of 0.1 A g\(^{-1}\) at 25 and 60 °C (after five conditioning cycles). With the carbonate electrolyte, ~70% capacity retention was obtained at 25 °C after 250 charge-discharge cycles. When the temperature increased to 60 °C, the CE reduced to < 98%. Since the irreversible reaction between the electrode and electrolyte was promoted by the elevated temperature, a serious capacity decay was found (less than 40% of the initial capacity can be retained). In contrast, with better CE, the capacity retention ratios after the same number of cycles in the IL

Table 2

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>C</th>
<th>O</th>
<th>F</th>
<th>Na</th>
<th>Cl</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaClO(_4)/EC: DEC</td>
<td>42</td>
<td>41</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>NaFSI/PMP−FSI</td>
<td>33</td>
<td>31</td>
<td>10</td>
<td>22</td>
<td>31</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 8. Variations of (a) capacity and coulombic efficiency and (b) energy efficiency (a constant cathode potential of 3.8 V is assumed) versus cycle number for 3-D CF electrodes measured at 0.1 A g\(^{-1}\) in conventional carbonate and IL electrolytes at 25 and 60 °C.

and IL electrolytes. The chemical compositions of the two samples are summarized in Table 2. The conventional-electrolyte sample was enriched with C and O, which are thought to be the decomposition products of the carbonate solvent. The F and S signals found at the IL-electrolyte sample were further subjected to high-resolution scans, with the obtained data being shown in Fig. 7(b) and (c), respectively. The F 1s spectrum exhibits a strong signal at ~685.7 eV related to NaF and a minor peak at ~689.4 eV associated with an F\(^{-}\)-S bond [48]. As for the sulfur spectrum, there are three constituents coexisting: -SO\(_2\)- (168.5 eV), SO\(_x\) (166.7 eV), and sulfide (162.1 eV) [49]. These species are associated with the solid reductive decomposition products of FSI\(^{-}\).

Fig. 7(d) compares the C 1s spectra of the two electrodes. The conventional-electrolyte sample had relatively high contents of C\(-\)O, C\(\equiv\)O, Na\(_2\)CO\(_3\) and NaCO\(_2\)R, whereas the polyolefin ((CH\(_2\))\(_n\)) and FSI-derived S\(\equiv\)C\(\equiv\)O were the dominant compounds for the IL-electrolyte sample. This IL anion-derived SEI is thought to be responsible for the superior CE and reversibility of the electrode.

Fig. 8(a) shows the cyclic stability of the 3-D CF electrodes (in terms of the capacity retention and CE variation during cycling) evaluated at a rate of 0.1 A g\(^{-1}\) at 25 and 60 °C (after five conditioning cycles). With the carbonate electrolyte, ~70% capacity retention was obtained at 25 °C after 250 charge-discharge cycles. When the temperature increased to 60 °C, the CE reduced to < 98%. Since the irreversible reaction between the electrode and electrolyte was promoted by the elevated temperature, a serious capacity decay was found (less than 40% of the initial capacity can be retained). In contrast, with better CE, the capacity retention ratios after the same number of cycles in the IL
The electrolyte were 85% at 25 °C and 80% at 60 °C. This shows better high-temperature ageing performance of the IL cells, due to higher quality SEI formed with the reductive decomposition of FSI [50]. The energy efficiency variations upon cycling were further assessed to understand the resistance change of the 3-D CF electrodes. A constant cathode potential of 3.8 V is assumed in the calculation. The results in Fig. S6 show that the energy efficiency values of the IL-electrolyte cells, regardless of the temperature, keep stable above 90%, indicating little growth of the SEIs during the prolonged cycling. A clearly lower energy efficiency was found for the conventional-electrolyte cell at 60 °C. Moreover, the efficiency gradually decreased with increasing the cycle number. These results indicate a more ion-resistive SEI was formed, which was also unable to fully passivate the electrode and thus led to accumulation of the decomposition products over charging and discharging. The advantages of the IL electrolyte to enable superior electrode cyclability, especially at elevated temperatures, are remarkable.

In addition, the self-discharge tests for the 3-D CF electrode are performed both in the organic carbonate and IL electrolytes. Fig. S7 shows that after a rest of 5 days at 25 °C the capacity losses are 15% and 8%, respectively. The superior performance of the IL electrolyte should be associated with the interface SEI properties; however, more detailed investigations are needed.

The thermal reactivity of the electrolytes with the sodiated 3-D CF electrodes was evaluated using DSC, and the results are shown in Fig. 9. Two key parameters are major safety concerns with respect to thermal runaways: (i) the exothermic onset temperature, which is regarded as the initial step for thermal runaway, and (ii) the total heat generated, indicative of the magnitude of reactivity between the electrolyte and sodiated electrode [51]. As shown in the figure, the profile of the conventional-electrolyte sample can be distinguished into the following regions: the original SEI film breakdown at 70–95 °C, the chemical reaction between electrolyte and the SEI-free anode (leading to formation of a new SEI) at 95–140 °C, the thermal decomposition of this re-formed SEI at 150–170 °C, the bulk reaction between the electrolyte and sodiated electrode at 180–230 °C, and the interaction between the sodiated anode and the PVDF binder at 250 – 300 °C [52]. The exothermic onset temperature of ~70 °C and the measured total heat of ~805 J g⁻¹ are close to those reported for HC with the same electrolyte [52]. In contrast, the IL-electrolyte sample did not show distinct DSC peaks, and only a broad hump with low exothermic intensity was observed. This indicates that the IL-derived SEI is robust and can withstand higher temperature. Moreover, the high chemical stability of IL towards the reducing sodiated anode also contributed to the low thermal reactivity. The total heat generated was as low as ~250 J g⁻¹, reflecting the much improved safety characteristics.

To demonstrate the effectiveness of the new anode and IL electrolyte, full-cell cycling is needed. A Na₃V₂(PO₄)₃//NaFSI/PMP-FSI//3-D CF full cell has been constructed, with cathode/anode capacity ratio of 1/1.2 at 1 C (this ratio decreases with increasing C rate). The charge–discharge data are shown in Fig. S8. Although further optimization of the full cell is needed, the results have confirmed that a full-cell NIB involving the proposed anode and electrolyte is feasible.

4. Conclusions

A facile and scalable synthesis method was developed to fabricate 3-D CF, consisting of graphene nanosheets interpenetrating with carbon nanospheres, with decent compressed density. This architecture facilitates the interfacial charge transfer reaction, promotes electrolyte accessibility, and shortens the Na⁺ diffusion length in the electrode. The electrode showed excellent charge–discharge capacities in PMP–FSI IL electrolyte, being 235 mAh g⁻¹ @ 0.03 A g⁻¹ and 115 mAh g⁻¹ @ 1 A g⁻¹ at 25 °C with great cycling stability. The rate capability and volumetric performance of the 3-D CF electrode are superior to those of a commercial HC electrode. The IL-derived SEI, which involved the reductive decomposition products of FSI⁻, was found to be more robust than the carbonate-electrolyte-derived SEI, resulting in the higher CE and better cyclability of the electrode, especially with elevated-temperature operations. The thermal reactivity of the sodiated 3-D CF electrode towards the PMP–FSI electrolyte was much lower than that towards the conventional carbonate electrolyte. Integrating the proposed 3-D CF electrode with IL electrolyte is a unique combination that shows great potential for high-performance, high-durability, and safe NIB applications.

Acknowledgements

The financial support provided for this work by the Ministry of Science and Technology (MOST) of Taiwan (Grant No. 106-2628-E-008-002-MY3 and 106-2221-E-008-091-MY3) is gratefully appreciated. JL acknowledges support by NSF ECCS-1610806.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.nanoen.2018.04.043.

References

