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Nanoscale specimens of semiconductor materials as diverse as
silicon and diamond are now known to be deformable to large elastic
strains without inelastic relaxation. These discoveries harbinger a
new age of deep elastic strain engineering of the band structure and
device performance of electronic materials. Many possibilities remain
to be investigated as to what pure silicon can do as the most versatile
electronic material and what an ultrawide bandgap material such as
diamond, with many appealing functional figures of merit, can offer
after overcoming its present commercial immaturity. Deep elastic
strain engineering explores full six-dimensional space of admissible
nonlinear elastic strain and its effects on physical properties. Here we
present a general method that combines machine learning and ab
initio calculations to guide strain engineering whereby material prop-
erties and performance could be designed. This method invokes
recent advances in the field of artificial intelligence by utilizing a
limited amount of ab initio data for the training of a surrogate model,
predicting electronic bandgap within an accuracy of 8 meV. Our
model is capable of discovering the indirect-to-direct bandgap transi-
tion and semiconductor-to-metal transition in silicon by scanning the
entire strain space. It is also able to identify the most energy-efficient
strain pathways that would transform diamond from an ultrawide-
bandgap material to a smaller-bandgap semiconductor. A broad
framework is presented to tailor any target figure of merit by
recourse to deep elastic strain engineering and machine learning
for a variety of applications in microelectronics, optoelectronics,
photonics, and energy technologies.

electronic band structure | bandgap engineering | first-principles
calculation | neural network | semiconductor materials

Nanostructured materials can withstand extremely large de-
formation without mechanical relaxation or failure com-

pared with their conventional counterparts, opening up a vast
parameter space for rational engineering of material properties
by tensorial elastic strain. The electronic, optical, thermal, and
chemical properties of crystals are functions of the six-dimensional
elastic strain tensor « («1 ≡ «11, «2 ≡ «22, «3 ≡ «33, «4 ≡ «23, «5 ≡ «13,
«6 ≡ «12 following the so-called Voigt notation), which provides a
continuously tunable set of variables analogous to the chemical
composition of a seven-element alloy. Electronic bandgap Eg
opens or closes with «, resulting in drastic alteration of the elec-
trical, thermal, optical, and magnetic characteristics (1). With the
proliferation of ultrastrength nanostructured materials that can
sustain a wide range of nonhydrostatic and potentially dynamically
varying stresses (2), and various miniaturization-enabled means of
applying « (3), a historical window of opportunity has now opened
up to scan a vast unexplored space for the development of ma-
terials and devices with desirable combinations of physical and
functional properties (4). For example, while it is well known that
unstrained Si has an electronic bandgap of 1.1 eV, we know that,
when subjected to an equibiaxial strain of 5%, it would have a
different bandgap. Furthermore, a 5% tensile strain on Si would
produce a different bandgap from a 5% shear strain. At large
strains, all these differently strained pure Si crystals would not
behave as the unstrained “typical silicon.” An added benefit is that

with strain engineering, it is in principle possible to dynamically
change the mechanical actuation, and switch between these dif-
ferently strained materials, something that bandgap engineering
by chemical means such as molecular beam epitaxy cannot ac-
complish. Not only the value of Eg, but also its character (e.g.,
direct or indirect), and the topological features of a band structure
can be changed with « before the ideal strain surface [a five-
dimensional (5D) surface] f ð«1, «2, «3, «4, «5, «6Þ= 0 in six dimen-
sions (6D) is reached (5).
Over the past two decades, elastic strain engineering (ESE)

has achieved one substantial commercial success (6): strained
silicon technology, where a biaxial elastic strain of the order of
1% applied to a thin channel of silicon enhances the mobility of
charge carriers by more than 50% and increases central pro-
cessing unit (CPU) clock speed correspondingly. Recent studies
have shown that nanowires of silicon can sustain a tensile elastic
strain of as much as 16% (7), while nanoscale needles of di-
amond can be bent to a local maximum tensile elastic strain in
excess of 9% (8). As we show in this paper, if we are able to
exploit the ability of Si and C to deform up to strains of these
magnitudes under certain conditions, there exist much greater
possibilities than what is currently realized for engineering of band
structure and bandgap for a wide variety of electronic, opto-
electronic, and photonic materials employed in communication,
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information, and energy applications that impact every aspect of
modern life (9).
ESE seeks to identify metastable states of matter for opti-

mizing functional properties and performance. A strained ma-
terial is in a state of higher energy than when it is in a stress-free
state, characterized by the strain-energy density h which is
measured in units of meV/Å

3
. Therefore, addressing the fol-

lowing question is at the heart of ESE: What is the energy cost
ðhÞ to achieve the desired property change? Consider the chal-
lenges of reducing the bandgap of Si from 1.1 eV in its stress-free
state to 0 eV in a metal-like state, or converting diamond from
an ultrawide-bandgap material into a wide or even medium-
bandgap material so that the full potential of its many appeal-
ing characteristics for microelectronics and optoelectronics could
be realized. To achieve the above transitions in the most efficient
manner, it is important to design « through the most optimal
combination of its normal and shear components.
To address the foregoing question, we resort to deep ESE

which exploits the latest advances in artificial intelligence and
multiscale modeling. To set the scene, consider a situation where
it is desirable to examine all possible combinations of the com-
ponents of «, over a range of potential interest, say between −10
and +10% in each strain component. Here, say that the objective
is to determine the least energetically expensive route to alter the
bandgap of a material by a desired amount. Although ab initio
calculations such as those involving many-body corrections can
provide accurate energy-band results, the scope of such calcu-
lations is somewhat limited to about 1,000 strain points because
of high computational cost. On the other hand, by discretizing «
with a regular grid comprising 20 nodes separated at each 1%
strain interval over the strain range of −10 to +10%, the com-
putational model would entail about 108 band structures, up to
five orders of magnitude higher computational requirement than
what can be reasonably achieved presently. To overcome these
difficulties, we present here a general method that combines
machine learning (ML) and ab initio calculations to identify
pathways to ESE. This method invokes artificial neural networks
(NNs) to predict, to a reasonable degree of accuracy, material
properties as functions of the various input strain combinations
on the basis of only a limited amount of data. We also demon-
strate the potential of our method for bandgap engineering with
specific calculations for perfect crystals of Si and diamond. These
two materials bookend the wide spectrum of current possibilities
and potential opportunities for optimizing the performance of
semiconductor materials and devices. Si, on the one hand, rep-
resents the most widely used and commercially successful semi-
conductor material. Diamond, on the other hand, represents the
most appealing ultrawide-bandgap material due to its extremely
high thermal conductivity and hardness, high electron/hole mo-
bilities and saturation drift velocities, and breakdown field (10).
Tuning bandgap, and more broadly the band structure, through
deep ESE provides opportunities for tapping into the many ap-
pealing figures of merit for device performance of any material.
Moreover, we choose Si, the most versatile electronic material,
to demonstrate that our ML machinery is capable of predicting
important physical phenomena such as indirect-to-direct bandgap
transition and semiconductor-to-semimetal transition. We also
visualize silicon’s “paleolith”-like isobandgap surfaces in strain
space, akin to the yield surface commonly used to describe the
plastic deformation of metallic materials, but with sharp ridges
and corners that reflect band-edge cross-overs.

Results
ML and Density of States of Bandgap. We aim to describe the
electronic bandgap and band structure as functions of strain by
training ML models on first-principles density-functional theory
(DFT) data. This approach leads to reasonably accurate training
with much fewer computed data than fine-grid ab initio calcu-
lations and a fast evaluation time. The DFT calculations were
conducted in two settings: a large, computationally inexpensive
Perdew–Burke–Ernzerhof (10) (PBE) dataset obtained for fitting

and a small but accurate many-body GW [G, Green’s function; W,
screened Coulomb interaction (11)] dataset for correction. As
depicted in Fig. 1A, the strain tensor and/or the k-point coordi-
nates are fed into different ML models as input to fit or make
predictions about energy eigenvalues or bandgap. Table 1 dem-
onstrates the accuracy of these models on the PBE data, the best
of which is attained by the NN. The data fusion technique (12, 13)
is adopted to further improve the learning outcome of bandgap.
The resulting model allows the prediction of bandgap to reach an
extremely high accuracy of 8 meV in the mean absolute error
(MAE), as shown in Fig. 1B and SI Appendix, Table S1. The
successful combination of the quantitative advantage of PBE and
the qualitative advantage of GW results in a bandgap-prediction
model with a level of accuracy comparable to experiments.

Fig. 1. (A) ML workflow with NN. For a typical bandgap-prediction task, the
input contains the strain information only and the target is either EPBE

g or
EGW
g . In the data fusion process, the bandgap predicted from fitting the PBE

dataset is also taken in as an input to fit the GW bandgap. For the whole
band structure fitting task, the input contains both strain information and
the k-point coordinates and the target is the energy dispersion «nðk; eÞ,
where n is the band index, k is the wavevector, and « is the crystal strain
tensor. The hidden-layer structures of the two associated deep NNs are also
depicted. (B) Better bandgap-fitting results measured by MAE are yielded by
data fusion compared with the sole use of « as input to fit GW data. (Inset)
Data-fusion-based learning of the difference between EPBE

g and EGW
g . En-

semble methods on decision-tree classifiers including gradient boosting re-
gression (GBR) and random forest regression (RFR), Lagrange interpolation
and NN are adopted for ML fitting. (C) Reachable bandgap values for various
h within the whole deformation space for silicon. The region where the
strained silicon has a direct bandgap is colored in red. The circle at h = 1.35
meV/Å

3
indicates the lowest energy penalty for the semiconductor-to-metal

transition. (D) Diamond bandgap envelope extending toward the small-
bandgap semiconductor region. The upper- and lower-envelope functions
are indicated by black and red dots, respectively. The arrows on the horizontal
axes in C and D indicate reachable h by the in situ experiments (7, 8).
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In ESE experiments, the objective is to identify the highest or
lowest bandgap that can be achieved through the expenditure of
a certain elastic strain energy density ðhÞ defined as

hð«Þ≡Eð«Þ−E0

V 0 , [1]

where Eð«Þ is the total energy of the cell deformed by strain «,
and E0 and V 0 are the total energy and volume of the unde-
formed cell, respectively. Here, we data-mine the 6D deforma-
tion by ML the bandgap distribution and the elastic strain energy
density against «. The many-to-many relation between hð«Þ and
the bandgap Egð«Þis shown in Fig. 1 C and D. In the stress-free
equilibrium state, silicon has a bandgap of 1.1 eV; with an increase
in strain energy density, a variety of possible bandgaps emerge.
Even silicon with as little strain energy density as 0.2 meV/Å

3
can

become quite a different material from the stress-free silicon. As
h further increases, the largest allowable bandgap drops and an
“envelope” forms, as evidenced by the change of maximal and
minimal bandgap reachable under a fixed h. The shading of the
envelope regions in Fig. 1 C and D reflects the distribution of the
available bandgap. A darker shading qualitatively indicates that
the amount of possible strains to achieve a specific bandgap at a
given h is higher. Outside the envelope the shading color is white,
meaning that the corresponding bandgap is not attainable. Math-
ematically, we can define the cumulative “density of states” of
bandgap as

c
�
Eg′; h′

�
≡

Z
hð«Þ<h′

d6«δ
�
Eg′−Egð«Þ

�

=
Z

d6eδ
�
Eg′−Egð«Þ

�
Hðh′− hð«ÞÞ,

[2]

where d6«≡ d«1d«2d«3d«4d«5d«6 in the 6D strain space, δð·Þ is
the Dirac delta function, and Hð·Þ is the Heaviside step function.
We then define the density of states of bandgap (DOB) at h′ by
taking the derivative of cðEg′; h′Þ with respect to h′:

ρ
�
Eg′; h′

�
≡
∂c
�
Eg′; h′

�
∂h′

=
Z

d6eδ
�
Eg′−Egð«Þ

�
δðh′− hð«ÞÞ. [3]

The meaning of DOB can be described by considering all

possible elastically strained states within the
�
h− dh

2 , h+
dh
2

�
en-

ergy interval, and the resultant distribution of bandgaps arising
from these states. The DOB function ρðEg; hÞ offers a blueprint
for determining which bandgaps are accessible at what energy
cost. One can use the definition (3) not only for the electronic
bandgap, but also generally for any scalar property that will provide

an easy-to-visualize map for deep ESE such as the thermoelectric
figure of merit zT, Baliga’s figure of merit (14), Curie temperature,
etc. (4). An upper-envelope function Eupper

g ðhÞ and lower-envelope
function Elower

g ðhÞ can also be defined based on ρðEg; hÞ:

Eupper
g ðhÞ≡max suppEg

�
ρ
�
Eg; h

��
,

Elower
g ðhÞ≡min suppEg

�
ρ
�
Eg; h

��
,

[4]

which are rendered as black and red dotted lines in Fig. 1 C and
D, so the nonzero DOB falls within ðElower

g ðhÞ,Eupper
g ðhÞÞ. In deep

ESE, Elower
g ðhÞ also indicates the path to obtain the fastest change

in Eg. For instance, if the goal is to reduce the bandgap of silicon
from 1.1 eV as fast as possible, with the least cost of elastic
energy, the red-dotted line in Fig. 1C (which is further detailed
in Fig. 2A) Elower

g ðhÞ offers the best design of the strain tensor « to
achieve this goal.
It is seen from Fig. 1 C and D that, with the application of a

relatively small amount of mechanical energy, the overall distribu-
tion of Si bandgap shifts downward. This means that by modulating
the tensorial strain (shear/tension/compression combinations) in
multiple directions, strained silicon becomes capable of absorbing a
different part of the electromagnetic spectrum than when it is in a
stress-free state. It was also found that at 1.35 meV/Å

3
the bandgap

of Si can vanish, corresponding to the minimum energy required for
semiconductor-to-metal transition in the whole 6D strain space (see
Fig. 2B for the band structure, which corresponds to the red circle in
Fig. 1C). Fig. 2A further illustrates that silicon’s “most energy effi-
cient path to metallization” is actually a curved path in the strain
space: The initial fastest-descent direction for Eg (at h = 0) is quite

different from when Eg hits zero at h = 1.35 meV/Å
3
and thus linear

perturbation theory such as the deformation potential theory (15) is
not expected to work well in deep-strain space. It is not straight-
forward yet to achieve this complex optimal strain state in 6D ex-
perimentally, despite Feynman’s prophecy to use “a hundred tiny
hands” (3). To provide experimental guidance, we further imple-
mented our ML model in experimentally feasible uniaxial strain
cases. It is found that h111i crystal direction is the most energy-
efficient uniaxial strain direction for Si bandgap engineering (SI
Appendix, Fig. S3). A complete ranking of the common crystal di-
rections in terms of their ability to lower Si bandgap can be found in
SI Appendix, Note S3. In the case of diamond, deep ESE provides
an opportunity to reduce its bandgap to a level comparable to that
of InAs. Our results thus demonstrate that by straining diamond in
the most optimal way, it can be transformed to mimic the properties
of a lower-bandgap semiconductor while almost preserving its own
uniqueness such as high strength and thermal conductivity, thereby

Table 1. Root-mean-squared error for various ML algorithms for
the bandgap and band structure prediction tasks from PBE data
for silicon (in units of electron volts)

ML input

ML algorithms

ML targetGBR RFR NN

«3D 0.0367 0.0247 0.0049 Bandgap
«6D 0.0743 0.0781 0.0264 Bandgap
k and «6D VB 0.1125 0.1078 0.0131 enðk; eÞ
k and «6D CB 0.1593 0.1555 0.0184 enðk; eÞ

«3D and «6D denote three-normal-strains deformation and general defor-
mation cases, respectively. For all of the details on ML and DFT methodol-
ogy, optimization, and implementation, see Methods and SI Appendix,
Notes S1 and S2 and Figs. S1 and S2.

Fig. 2. (A) The most energy-efficient strain pathway to reach the zero-
bandgap state, i.e., the lower-envelope function Elower

g ðhÞ in silicon corre-
sponding to the red-dotted line in Fig. 1C. The zero-bandgap state (open red
circle on the horizontal axis of Fig. 1C) corresponds to the deformation case
of «1 = 0.5522%, «2 =−1.2582%, «3 =−1.036%, «4 =−1.9168%, «5 = 0.7411%,
and «6 = 1.6878%. (B) GW band structure associated with this deformation.
The fractional coordinates for the three high-symmetry points along the
selected k path are (0.5, 0, 0), (0, 0, 0), and (0.5, 0, 0.5), respectively.
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paving the way for designing hitherto unexplored combinations of
material characteristics.
Another important issue for optical applications pertains to

whether the bandgap is direct or indirect. This direct bandgap
envelope is a subset of DOB. We define the density of direct
bandgaps (DOD) in parallel to [2]–[4], but with Edirect g instead
of Eg, to obtain DOD ρdðEdirect g; hÞ and its bounds Eupper

direct gðhÞ,
Elower
direct gðhÞ. Obviously, if direct bandgaps exist at any strain, for

that strain there will be
�
Elower
direct gðhÞ,Eupper

direct gðhÞ
�
⊆
�
Elower
g ðhÞ,Eupper

g ðhÞ
�
. [5]

Our deep ESE model found within experimentally accessible
strain range that the indirect-to-direct bandgap transition takes
place in silicon in the high-h region and a minimum strain energy

density hmin
d around 15.4 meV/Å

3
exists for the direct bandgap to

appear (the red region in Fig. 1C):

hmin
d =min supph

�
Eupper
direct gðhÞ−Elower

direct gðhÞ
�
. [6]

This little “island” of DOD within the ocean of DOB can be
achieved by applying «1 = «2 = «3 ≥ 9.3%.
The conventional way to modulate electronic properties in

semiconductors is the so-called compositional grading technique.
Through varying the stoichiometry of an alloy semiconductor, as
for example by molecular beam epitaxy, a graded bandgap can be
produced (16). This method of tweaking the material property is
conceptually based on chemical alloying, whereby the chemical
composition is tuned in an alloy melt to produce desirable strength
or ductility. Invoking this approach, conventional bandgap engi-
neering resorted to chemical alloying such as GaAl1−xAsx or
Ga1−xInxAs (17). However, we have demonstrated here that the
stress-free situation is usually not the optimal state for a figure of
merit, and elastic strains allow the bandgap to exhibit many more

possible values so that each pure material candidate should oc-
cupy a much larger hyperspace enabled through the achievable 6D
strain space. The more general bandgap engineering approach
could utilize gradients in both composition and strain to achieve
the desired band alignment.

Exploring Bandgap Ridgelines in Strain Space. Here we choose the
most widely used semiconductor material, Si, as an example to
demonstrate the generality and flexibility of our method. Since
the full 6D strain space does not allow for easy visualization, we
restrict ourselves to tensile and compressive normal strains only
ð«4 = «5 = «6 = 0Þ for illustration purposes. Note that combina-
tions of tensile and compressive strains can be used to generate
shear strains in the material even though not all shear strains are
considered. Fig. 3A illustrates the isosurface for Si bandgap, i.e.,
the set of points in the strain space where the bandgap equals
some given value, for different Eg levels obtained by our high-
throughput NN model. The most striking visual feature of this Eg
isosurface in «1«2«3 space is its piecewise smoothness. There are
cusp singularities of different order: ridgelines where two smooth
pieces of the Eg isosurface meet, and corners where three ridge-
lines meet. These singularities are characterized by discontinuities
in the slope (but not value) of the isosurface in the strain space
due to band cross-over or even band topology change. Such cusp
features also exist in Eg isosurface in the general-«1«2«3«4«5«6
space, although they are more difficult to visualize directly. One
can mathematically define these nonsmooth features on the 5D
isosurface (embedded in 6D) as nth-order ridges ðEgÞ if they are
differentiable in 5-n directions, while sustaining a change in slope
in the other n directions in the strain space.
Since both the crystal structure and deformation tensor have

symmetries, and the bandgap as a function of strain is invariant
with respect to some of them, the “paleolith”-like Eg isosurface
(in analogy to the Tresca yield surface in strength of materials)
has the following symmetry structure:

Fig. 3. (A) Bandgap isosurfaces for silicon in the
«1«2«3 strain space appear to have the paleolith
shape for every Eg level. The main corners ðχ, μ, αj , βjÞ
of an isosurface at Eg = 0.9 eV are indicated by dif-
ferent colors and the “carapaces” are distinguished
by their associated k-space CBM labels. The red tri-
angular faces indicate the direct-bandgap region at
different Eg levels. As bandgap increases, the area for
the red triangle eventually shrinks to a single χ point.
GW model was used. (B) Bandgap isosurface shown
through the «1 − «2 projection of Si at 1 eV level
with GW data. The χ point corresponds to the
direct-bandgap case and it splits into three at small
Eg as shown in A. (C) Zero-bandgap isosurface in the
strain space based on GW data. The blue point
corresponds to the strain-free state; red points are
strains with the least h of 1.65 meV/Å

3
on this iso-

surface. (D) Strain-space coordinates of the bandgap
isosurface corners (defined as in A) as a function of the
bandgap level. The maximum bandgap possible in this
strain space is about 1.24 eV, and it is reached at a
triaxial strain of 6.5%. In the cases where three χ-type
points exist, b equals the average coordinate of them.
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i) The points μ (the most “compressive” hydrostatic strain
point on the Eg isosurface) and χ (most “tensile” hydrostatic
strain point on the Eg isosurface) lie on the «1 = «2 = «3 line.
We thus denote their strain-space coordinates by ða, a, aÞ
and ðb, b, bÞ, respectively. At small or moderate Eg, χ splits
and gives rise to a topologically triangular region χ1χ2χ3 as
shown in Fig. 3A. It will later be shown these χ-type points
form the direct bandgap region on the Eg isosurface.

ii) The points αjðj= 1,2,3Þ form a regular triangle which lies in a
plane orthogonal to the «1 = «2 = «3 line. Their coordinates
are denoted by ðc, d, dÞ, ðd, c, dÞ, and ðd, d, cÞ, respectively.

iii) The points βjðj= 1,2,3Þ also form a regular triangle which lies
in a plane orthogonal to the «1 = «2 = «3 line. Their coordi-
nates are denoted by ðf , e, eÞ, ðe, f , eÞ, and ðe, e, f Þ, respectively.

The shape of the isosurface is similar for both PBE and GW
bandgaps, although the specific strain values may differ for the
same PBE and GW bandgap levels. It was found that the easiest
way [with the least hðe3DÞ] to obtain the 0-eV bandgap without
any shear strain is to apply a normal strain of −3.86 and 4.36%
along any two of the three h100i directions while leaving the third
h100i direction undeformed. Therefore, there are six strain cases
that are equivalent, as indicated by red dots in Fig. 3C. The
position of the vertices of the Eg isosurface in the strain space is
the function of selected bandgap value, and the detailed re-
lationship between the bandgap and the strains is shown in Fig.
3D. According to our PBE + GW model, the maximum bandgap
reachable by strained silicon is 1.24 eV under a hydrostatic
tensile strain of 6.5%. It should be noted that silicon strained to
such an extent can nearly reach the maximum theoretical effi-
ciency, known as the Shockley–Queisser limit (18), of a single p-n
junction solar cell, demonstrating possible application of ESE in
solar energy conversion devices.
The formation of the Eg isosurfaces, such as the ones in Fig.

3A, is due to the relative position of the valence band maximum
(VBM) and the conduction band minimum (CBM). Despite
different shape variations of the two energy bands, modulating
elastic strain provides possibilities for the VBM and CBM to
differ by the same amount with respect to the vacuum level. For
undeformed silicon with a bandgap of 1.1 eV, the VBM is lo-
cated at the Γ point and the CBM lies on the straight line (the Δ
line) in the k space and is positioned at about 85% of the way
from the Brillouin zone center to the zone boundary (19). Under
3D deformation, the cubic crystal symmetry of Si is lifted and we
follow the k-point labeling scheme explained in SI Appendix,
Note S1 and Fig. 1 to describe band extrema positions. It is
found that VBM remains at Γ irrespective of deformation
whereas the position of CBM can be greatly affected by external
strains. Using the geometry of the Eg isosurface as a visualization
tool, we identify four types of k-space transition in CBM that
may happen across the ridgelines on the isosurface.
Starting with the strain points on the lower faces separated by

μ− αj ridgelines of the Eg isosurface in Fig. 3A, we found that the
CBM retains roughly the same relative position along the “Δ”-type
line as in the undeformed case, and that crossing the ridgelines
only switches CBM among Δ1 = ð0, k1, k1Þ, Δ2 = ðk1, 0, k1Þ, and
Δ3 = ðk1, k1, 0Þ, where k1 ≈ 0.425. In other words, μ−α1 ridgeline
corresponds to Δ2/Δ3 transition, μ−α2 ridgeline corresponds to
Δ1/Δ3 transition, μ−α3 ridgeline corresponds to Δ1/Δ2 transition,
and we can indeed label each carapace by its CBM characterΔ1,Δ2,
Δ3. We term this transition occurring in the small strain region as
the Δ switching. In this case, the linear deformation potential theory
can be used to describe the strain effects on the band extremum
(15). However, investigation of the large deformation points on its
upper faces in Fig. 3A reveals that the CBM would not retain its
location and major changes would happen.
Our ML model captures the occurrence of “L-Δ” transition

across the βi − αj ridgelines where the CBM changes to “L”
points in k space: L1 = (0.5, 0, 0), L2 = (0, 0.5, 0), L3 = (0, 0, 0.5);
see Fig. 4 A and B, where for example, “Δ3 carapace” changes to

“L1 carapace” across the α1−β3 ridgeline, and “Δ3 carapace”
changes to “L2 carapace” across the α2−β3 ridgeline. None of the
ridgelines or carapaces (e.g., Δ3 carapace bound by μ−α1−β3−
α2−μ) are truly flat. The large, nonperturbative deformation
makes the conventional theory ineffective in predicting it.
Moving further toward χ in the strain space, CBM would remain
at L and a cross-over of the χ2 − βj ridgelines is referred to as an L
switching. Indirect-to-direct bandgap transition occurs near the up-
per tip of the paleolith-like isosurface where CBM appears at Γ, as
shown in Fig. 4C. This can be explained by the competition be-
tween drops of different band edges. In general, as strain in-
creases, the band edge at both Γ and L would decrease. As a
result of high strains, the energy decrease at Γ is faster and
eventually the bandgap becomes direct, as shown in Fig. 4D. In this
case, we transition for example from the L1 carapace (α1−β3−χ3−χ2−
β2−α1 in Fig. 3A) to “Γ carapace” (χ1−χ2−χ3−χ1 in Fig. 3A) across
the χ2−χ3 ridgeline. When the strained Si turns into a direct-bandgap
semiconductor, it would exhibit a significant enhancement in its
optical transitions around the fundamental adsorption edge
compared with an undeformed Si, due to the elimination of phonon
involvement to facilitate adsorption or emission. As absorbance
increases exponentially with thickness in a material, a solar cell
based on direct bandgap Si with high adsorption coefficient would
require much less thickness to absorb the same amount of light,
paving the way for the design of lightweight high-efficiency solar
cells. SI Appendix, Table S2 summarizes all of the details of the
k-space transitions, thus resolving the conduction band properties
exhaustively for a wide range of strains.

Incremental Fitting. We next show that our NN-based surrogate
models can successfully learn from several datasets and assimi-
late them. This capability is becoming increasingly important
with the spread of materials property databases that collect data
from different studies (20). The incremental training of the NN
starts from the same weights but is done on the extended dataset
with the additional data included. We also increase the learning
rate of stochastic gradient descent algorithm and regularizers
(dropout rate and weight regularization) to circumvent limitations
arising from the same local minima of the loss function established
during the training on the initial dataset. This allows the model to

Fig. 4. Illustration of k-space transition in Si predicted by deep ESE. All of the
transitions are verified by GW calculations. (A and B) Representation of the Δ-L
transition. (B and C) The indirect-to-direct transition. The CBM (red arrows)
locates at k point (0.433, 0.433, 0), (0.5, 0, 0), and (0, 0, 0) respectively. (D) The
enlarged band structure around Fermi energy shows the competition of the
three possible CBM positions. The three nonshear-strain cases for A–C are
(−0.23, 1.84, 3.45%), (4.63, 8.23, 9.22%), and (9.85, 9.31, 9.4%), corresponding
to points on the different faces of the bandgap isosurface in Fig. 3.
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not only handle additional training on the incoming data appended
to a database but to do it much faster than from scratch.
Numerical experiments conducted on the NN model demon-

strate that incremental fitting of the models effectively reduces
the error on a new dataset, see SI Appendix, Table S3. Such in-
crementally fitted models are, thus, equally applicable to the
bandgap approximation and various optimization tasks. Moreover,
these models may be reused when shifting to other materials
such as Ge, since the implicit insights about symmetries, transi-
tions, and extreme cases are stored in the parameters of NN.
Training the model for the other material starting from the
weights for Si would significantly reduce the time and amount of
data needed due to knowledge transfer, also referred to as transfer
learning (21), leading to rapid development of versatile surrogate
models for ESE.

Discussion
ML models provide an efficient way of representing electronic
band structure allowing for studies and accurate ESE predictions
of a variety of physical phenomena such as band warping, de-
generacy lifting, indirect-to-direct bandgap transition, and
semiconductor-to-metal transition. In previous studies, bandgap
engineering was conducted largely by tuning only one or two
strain components. Our ML methods are capable of exploring
the full spectrum of possibilities by efficiently analyzing highly
nonlinear relations between electronic band dispersion and the
strain tensor. To this end, the electronic band structure of silicon is
accurately captured from ML through only a limited amount of
calculations. Employing deep-NN algorithms, the bandgap of Si can
be fitted as a function of strain within milli-electron-volt accuracy.
In prior approaches of analytically describing strain effects by

traditional means, the linear deformation potential theory has
often been invoked and its insufficiency at large deformation
cases (Fig. 2A) makes it impossible to map out the entire strain
space. By contrast, the general and systematic ML framework we
demonstrate here makes the problem of representing the
bandgap, and more broadly, the band structure, as a function of
6D strain computationally tractable. Many avenues remain for
the application of our models on multiple fronts. Among these
we mention the extension of the model to increasingly complex
material structures, predicting their bandgap and band structure,
and phonon and photonic band structure.
Different strains may result in the same bandgap, and in seeking

a specific bandgap, or any other materials figure of merit, one
should choose the strain with a minimal effort required given the

nonuniqueness of choice of a given target property or figure of
merit. For this purpose, the DOB envelope we developed here is
essential in understanding and fully utilizing deep ESE. In our
work, we use the elastic strain energy density as a scalar metric or
“norm” of the strain tensor for rationally choosing the ESE route
that requires the least energy metastability and corresponds to the
safest deformation manner in principle. For example, we have
demonstrated that our model is able to locate the most energy-
efficient pathway in the entire strain space to transform silicon
from a semiconductor to a metal or to convert diamond from an
ultrawide-bandgap material to a wide or even small-bandgap semi-
conductor. Latest advances in methods to apply large strains
have included wide adoption of microelectromechanical sys-
tems and nanoelectromechanical systems, in situ indentation
techniques, and nano-cantilever-beam bending (7, 8) and anviling
(22) on materials across different size scales. The growing variety
of technologies available to apply strains in a precisely controlled
manner through mechanical, electrical, magnetic, thermal, and
other means also promises the design of experiments to impose
and tune different components of strains (23–26). Thanks to the
expanding maturity of available tools, experimental implementa-
tion of the ESE approaches identified here for the 6D strain space
is a next step in advancing further progress in this field. The
distinctive ML model we propose here thus offers a potentially
powerful method in guiding the design of approaches for a wide
variety of semiconductor materials including silicon and diamond
that could lead to performance improvement in applications as
diverse as flexible electronics (27), nanomechanical resonators
(28), optical fibers (23), and energy storage systems (29).

Methods
First-Principles Calculations. Details for DFT simulations are in SI Appendix,
Note S2.

ML. NN and tree-based ensemble algorithms were adopted. More details are
in SI Appendix, Note S2.

Data Fusion. Details for data fusion are in SI Appendix, Note S2.
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SI Appendix, Note S1: Straining of diamond cubic crystals in real and reciprocal space 
 
The straining can be best described by applying a 3 × 3 tensor transformation to the perfect 
silicon or diamond primitive cell to avoid the confounding effect of band folding in larger 
supercells which causes difficulty in identifying band structure information (1). Due to material 
anisotropy, we present all the related figure of merit results within 6D strain space instead of 3D 
space of principal strains. To avoid redundant computations, we ensured that each strain we 
applied to a crystal has a one-to-one correspondence to a distinct deformation case. The 
non-translational part of a homogeneous deformation of a crystal can be defined by a 
second-order deformation gradient tensor 𝐅𝐅, which can be viewed as the Jacobi matrix linking 
deformed and underformed lattice vectors. The relationship between the symmetric strain tensor 
𝜺𝜺 and 𝐅𝐅 is given by 𝜺𝜺 = 1

2
(𝐅𝐅 + 𝐅𝐅𝐓𝐓) − 𝐈𝐈. Since the band structure does not change upon 

rotations of the crystal, we can eliminate the rotational degrees of freedom by adopting upper 
triangular 𝐅𝐅 to map out all deformation cases, as in SI Appendix, Figure S1a. 

Under general 3D three-normal-strains deformation, the original 𝑂𝑂ℎ crystal point group of Si 
turns into a 𝐷𝐷2ℎ point group. The Brillouin zone for deformed Si in this case is shown in SI 
Appendix, Figure S1b. In general it is not anymore a regular truncated octahedron with 
equilateral hexagonal and square faces. The reciprocal space lattice vectors are adjusted by the 
inverse transpose of the deformation gradient tensor in real space, i.e. 𝐅𝐅−𝑇𝑇, as a result of the 
deformation. The center of any type of Brillouin zone is labeled as Γ and we keep this tradition. 
In undeformed Si, the centers of the square and regular hexagonal surfaces on the Brillouin zone 
boundary are completely degenerate and labeled as 𝑋𝑋 and 𝐿𝐿, respectively. For the simplicity of 
comparison, we follow the same spirit and still denote the ‘𝑋𝑋’-type points as the centers of the 
tetragon surfaces and 𝐿𝐿-type points as the centers of the regular/non-regular hexagonal surfaces. 
The lines that connect the Γ point to the ‘𝑋𝑋’-type points are labeled as ‘Δ’-type. This way, the 
six ‘𝑋𝑋 ’- and ‘𝐿𝐿 ’-type points, though non-degenerate, would keep the correct fractional 
coordinates of 〈0.5,0,0.5〉- and 〈0.5,0,0〉-type, and the k-points along the Γ-‘𝑋𝑋’ line would all 
have the 〈𝜁𝜁, 0, 𝜁𝜁〉-type coordinates. As the CBMs of our concern always appear on either the 
center of the Brillouin zone, center of the zone boundary surfaces, or the line connecting the zone 
center and surface center, our notations are sufficient. 

www.pnas.org/cgi/doi/10.1073/pnas.1818555116



SI Appendix, Note S2: 

First-principles calculations 
We used the Perdew-Burke-Ernzerhof (PBE) (2) exchange-correlation functional and the 
projector augmented wave method (PAW) (3) in our DFT simulations implemented in the 
Vienna Ab initio Simulation Package (4) with spin-orbit coupling incorporated. A plane wave 
basis set with an energy cutoff of 520 eV was adopted to expand the electronic wavefunctions. 
The Brillouin zone integration was conducted on a 13 × 13 × 13 Monkhorst-Pack 𝒌𝒌-point 
mesh (6 × 6 × 6 for GW calculations). Atomic coordinates in all the structures were relaxed 
until the maximum residual force was below 0.0005 eV Å−1. We focused on the strain range of 
{−5% ≤ 𝜀𝜀𝑗𝑗 ≤ 10%, 𝑗𝑗 = 1 …  6} for silicon and {−5% ≤ 𝜀𝜀𝑗𝑗 ≤ 5%, 𝑗𝑗 = 1 … 6} for diamond. 
The large strain values and corresponding strain energy density values are on the same order of 
magnitude compared to those achieved experimentally for bulk silicon and bulk diamond and 
these strains are all below theoretical failure strains, i.e. without phonon instability occurring.  
 
Machine learning 
Neural network (NN) 
NN fitting is implemented within the Tensorflow (5) framework. To predict the bandgap we used 
deep NNs with four hidden layers with a (64 - 128 - 256 - 256) structure in the case of 
three-normal-strains strains (𝜺𝜺𝟑𝟑𝟑𝟑) and a (512 - 256 - 256 - 256) structure for the case with shear 
strains (𝜺𝜺𝟔𝟔𝟑𝟑), as shown in main text Figure 1a and SI Appendix, Figure S2. For the more 
complicated task of band energy prediction at a single 𝐤𝐤-point, the architecture of (512 - 256 - 
256 - 256) was used. The leaky rectified linear unit was chosen as an activation function. We 
used the Adam stochastic optimization method, the orthogonal weight initialization (6) and the 
dropout technique to prevent overfitting. 
Tree-based ensemble algorithms 
The algorithms were implemented in Scikit-learn (7). For our regression task, we used two types 
of ensembling on decision trees: the random forest regression (8) and the gradient boosting 
regression (9). The architecture is shown in SI Appendix, Figure S2. Hyper-parameters tuning 
was executed by using cross-validation on a training set to enhance the fitting process. 
 
Data fusion 
Data fusion represents the concept of combining different data sources in order to improve the 
model (10). We adopted this approach to further improve the learning outcome of 𝐸𝐸g, namely 
the most technically important property for an electronic material. While the data fusion model 
prediction in Ref. (11) corresponds to a baseline value plus a correction, our data fusion 
approach is more advanced. More specifically, given 𝐸𝐸gPBE computed using an approximate 
baseline level of theory (PBE) at a particular query strain case, a related 𝐸𝐸gGW  value 
corresponding to a more accurate and more demanding target level of theory (GW) can be 
estimated as a function of both 𝐸𝐸gPBE and 𝜺𝜺. Therefore, the 𝐸𝐸gGW consistent with the query 



strain case is learned using exclusively 𝜺𝜺 and 𝐸𝐸gPBE as input, as illustrated in Figure 1a and b. 
The resulting data fusion model reduces the MAE in the prediction of bandgap by more than half 
for kernel-based ensemble methods and allow the bandgap predicted by NN be reach an 
extremely high accuracy of 8 meV, as shown in main text Figure 1b and SI Appendix, Table S1. 
 
SI Appendix, Note S3: 

Ranking of common Si crystal direction families for obtaining the same target bandgap through 
uniaxial compressive straining (from the most energy efficient strain direction to the least energy 
efficient strain direction): 

<111>, <332>, <322>, <221>, <211>, <321>, <331>, <320>, <210>, <311>, <110>, <310>, <100> 
Ranking of common Si crystal direction families for obtaining the same target bandgap through 
uniaxial tensile straining (from the most energy efficient strain direction to the least energy 
efficient strain direction): 

<111>, <332>, <221>, <322>, <331>, <211>, <311>, <321>, <110>, <320>, <210>, <310>, <100> 
 

SI Appendix, Table S1:  

Table S1: MAE and RMSE (in units of eV) for ML algorithms for bandgap prediction with or 
without the ∆-ML model. Here, the Lagrange polynomial of degree 8 is used. Relative error: 
norm of the difference between the true value and the prediction divided by the norm of the true 
value. 

    

ML algorithms GW GW+PBE (∆-ML) 
MAE RMSE MAE RMSE 

Lagrange 0.0211 0.0274 0.0186 0.0241 
GBR 0.0334 0.0521 0.0135 0.0209 
RFR 0.0434 0.0596 0.0145 0.0215 
NN 0.0099 0.0144 0.0080 0.0118 

NN relative error 1.72% 2.78% 1.38% 2.05% 
 

 
 
 
 
 
 
 

 



SI Appendix, Table S2:  

Table S2: k-space CBM transitions. Each of 12 separating ridgelines of the iso-bandgap body 
tabulated. The constants 𝑘𝑘1 and 𝑘𝑘2 are approximately equal to 0.425 and 0.5, corresponding to 
points on Δ and L, respectively. 

Type Change of “carapace” k-coordinate of CBM 

‘Δ’-switching 
 

Δ1 ↔ Δ2 (0,𝑘𝑘1, 𝑘𝑘1) ↔ (𝑘𝑘1, 0,𝑘𝑘1) 
Δ2 ↔ Δ3 (𝑘𝑘1, 0, 𝑘𝑘1) ↔ (𝑘𝑘1, 𝑘𝑘1, 0) 
Δ3 ↔ Δ1 (𝑘𝑘1,𝑘𝑘1, 0) ↔ (0,𝑘𝑘1, 𝑘𝑘1) 

‘L’-switching 
 

L1 ↔ L2 (𝑘𝑘2, 0, 0) ↔ (0,𝑘𝑘2, 0) 
L2 ↔ L3 (0,𝑘𝑘2, 0) ↔ (0, 0,𝑘𝑘2) 
L3 ↔ L1 (0, 0,𝑘𝑘2) ↔ (𝑘𝑘2, 0, 0) 

‘L-to-Δ’ transition 
 

L1 ↔ Δ2 (𝑘𝑘2, 0, 0) ↔ (𝑘𝑘1, 0,𝑘𝑘1) 
L1 ↔ Δ3 (𝑘𝑘2, 0, 0) ↔ (𝑘𝑘1,𝑘𝑘1, 0) 
L2 ↔ Δ1 (0,𝑘𝑘2, 0) ↔ (0,𝑘𝑘1,𝑘𝑘1) 
L2 ↔ Δ3 (0,𝑘𝑘2, 0) ↔ (𝑘𝑘1,𝑘𝑘1, 0) 
L3 ↔ Δ1 (0, 0, 𝑘𝑘2) ↔ (0,𝑘𝑘1,𝑘𝑘1) 
L3 ↔ Δ2 (0, 0, 𝑘𝑘2) ↔ (𝑘𝑘1, 0,𝑘𝑘1) 

Indirect-to-direct bandgap transition 
 

L1 ↔ Γ (𝑘𝑘2, 0, 0) ↔ (0, 0, 0) 
L2 ↔ Γ (0,𝑘𝑘2, 0) ↔ (0, 0, 0) 
L3 ↔ Γ (0, 0,𝑘𝑘2) ↔ (0, 0, 0) 

 
 

SI Appendix, Table S3:  

Table S3: Si bandgap prediction errors, RMSE and MAE (in units of eV), for the incremental 
fitting scenario on reduced datasets. The error in both metrics is reduced for both 𝜺𝜺𝟑𝟑𝟑𝟑 and 𝜺𝜺𝟔𝟔𝟑𝟑 
datasets after the incremental fitting.  
    

 𝜺𝜺𝟑𝟑𝟑𝟑 𝜺𝜺𝟔𝟔𝟑𝟑 
before after before after 

RMSE 0.0403 0.0069 0.0264 0.0253 
MAE 0.0167 0.0052 0.0179 0.0167 

 

 
 
 
 



SI Appendix, Figure S1:  
 

    
Figure S1: (a) ESE achieved by applying a reduced deformation gradient tensor to the 
undeformed diamond cubic lattice of Si or C in the real space. (b) Brillouin zone of diamond 
cubic crystal under three-normal-strains deformation. It is a tetradecahedron with 8 hexagonal 
and 6 quadrilateral faces. The discussions based on Figure 5 of the main text incorporate the 
same labels and k coordinates as here.  
 
 
SI Appendix, Figure S2:  



Figure S2: Top: Three major processing steps involved in the deep ESE of bandgap, including 
data acquisition through ab initio computations, ML and physical property exploration. Middle: 
Flowchart setting out the details of the ML process. Here, strain tensor and k coordinate are used 
as the input whereas the bandgap and energy dispersion are the target for fitting. For the ML 
algorithms, our set-up supports ANN, GBR, RFR, and other kernel-based fitting methods. 
Bottom: Detailed architecture of the algorithms adopted.  
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Figure S3: Color contour map of the elastic strain energy density (ℎ) required to reach the same 
bandgap level of 0.6 eV through uniaxial compressive straining in Si.  
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